8c371c56adc6f40cebf806a87b766fab0df0799e
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_single / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_sse2_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_single.h"
50 #include "kernelutil_x86_sse2_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_sse2_single
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_sse2_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_elec_vdw->data;
130     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
135     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
136     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }  
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171         
172         fix0             = _mm_setzero_ps();
173         fiy0             = _mm_setzero_ps();
174         fiz0             = _mm_setzero_ps();
175         fix1             = _mm_setzero_ps();
176         fiy1             = _mm_setzero_ps();
177         fiz1             = _mm_setzero_ps();
178         fix2             = _mm_setzero_ps();
179         fiy2             = _mm_setzero_ps();
180         fiz2             = _mm_setzero_ps();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_ps();
184         vvdwsum          = _mm_setzero_ps();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                               x+j_coord_offsetC,x+j_coord_offsetD,
203                                               &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm_sub_ps(ix0,jx0);
207             dy00             = _mm_sub_ps(iy0,jy0);
208             dz00             = _mm_sub_ps(iz0,jz0);
209             dx10             = _mm_sub_ps(ix1,jx0);
210             dy10             = _mm_sub_ps(iy1,jy0);
211             dz10             = _mm_sub_ps(iz1,jz0);
212             dx20             = _mm_sub_ps(ix2,jx0);
213             dy20             = _mm_sub_ps(iy2,jy0);
214             dz20             = _mm_sub_ps(iz2,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
218             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
219             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
220
221             rinv00           = gmx_mm_invsqrt_ps(rsq00);
222             rinv10           = gmx_mm_invsqrt_ps(rsq10);
223             rinv20           = gmx_mm_invsqrt_ps(rsq20);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                               charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             fjx0             = _mm_setzero_ps();
234             fjy0             = _mm_setzero_ps();
235             fjz0             = _mm_setzero_ps();
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             r00              = _mm_mul_ps(rsq00,rinv00);
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq00             = _mm_mul_ps(iq0,jq0);
245             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
246                                          vdwparam+vdwioffset0+vdwjidx0B,
247                                          vdwparam+vdwioffset0+vdwjidx0C,
248                                          vdwparam+vdwioffset0+vdwjidx0D,
249                                          &c6_00,&c12_00);
250
251             /* Calculate table index by multiplying r with table scale and truncate to integer */
252             rt               = _mm_mul_ps(r00,vftabscale);
253             vfitab           = _mm_cvttps_epi32(rt);
254             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
255             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
256
257             /* CUBIC SPLINE TABLE ELECTROSTATICS */
258             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
259             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
260             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
261             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
262             _MM_TRANSPOSE4_PS(Y,F,G,H);
263             Heps             = _mm_mul_ps(vfeps,H);
264             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
265             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
266             velec            = _mm_mul_ps(qq00,VV);
267             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
268             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
269
270             /* CUBIC SPLINE TABLE DISPERSION */
271             vfitab           = _mm_add_epi32(vfitab,ifour);
272             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
273             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
274             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
275             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
276             _MM_TRANSPOSE4_PS(Y,F,G,H);
277             Heps             = _mm_mul_ps(vfeps,H);
278             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
279             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
280             vvdw6            = _mm_mul_ps(c6_00,VV);
281             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
282             fvdw6            = _mm_mul_ps(c6_00,FF);
283
284             /* CUBIC SPLINE TABLE REPULSION */
285             vfitab           = _mm_add_epi32(vfitab,ifour);
286             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
287             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
288             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
289             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
290             _MM_TRANSPOSE4_PS(Y,F,G,H);
291             Heps             = _mm_mul_ps(vfeps,H);
292             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
293             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
294             vvdw12           = _mm_mul_ps(c12_00,VV);
295             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
296             fvdw12           = _mm_mul_ps(c12_00,FF);
297             vvdw             = _mm_add_ps(vvdw12,vvdw6);
298             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velecsum         = _mm_add_ps(velecsum,velec);
302             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
303
304             fscal            = _mm_add_ps(felec,fvdw);
305
306             /* Calculate temporary vectorial force */
307             tx               = _mm_mul_ps(fscal,dx00);
308             ty               = _mm_mul_ps(fscal,dy00);
309             tz               = _mm_mul_ps(fscal,dz00);
310
311             /* Update vectorial force */
312             fix0             = _mm_add_ps(fix0,tx);
313             fiy0             = _mm_add_ps(fiy0,ty);
314             fiz0             = _mm_add_ps(fiz0,tz);
315
316             fjx0             = _mm_add_ps(fjx0,tx);
317             fjy0             = _mm_add_ps(fjy0,ty);
318             fjz0             = _mm_add_ps(fjz0,tz);
319             
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             r10              = _mm_mul_ps(rsq10,rinv10);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _mm_mul_ps(iq1,jq0);
328
329             /* Calculate table index by multiplying r with table scale and truncate to integer */
330             rt               = _mm_mul_ps(r10,vftabscale);
331             vfitab           = _mm_cvttps_epi32(rt);
332             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
333             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
334
335             /* CUBIC SPLINE TABLE ELECTROSTATICS */
336             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
337             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
338             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
339             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
340             _MM_TRANSPOSE4_PS(Y,F,G,H);
341             Heps             = _mm_mul_ps(vfeps,H);
342             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
343             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
344             velec            = _mm_mul_ps(qq10,VV);
345             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
346             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velecsum         = _mm_add_ps(velecsum,velec);
350
351             fscal            = felec;
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm_mul_ps(fscal,dx10);
355             ty               = _mm_mul_ps(fscal,dy10);
356             tz               = _mm_mul_ps(fscal,dz10);
357
358             /* Update vectorial force */
359             fix1             = _mm_add_ps(fix1,tx);
360             fiy1             = _mm_add_ps(fiy1,ty);
361             fiz1             = _mm_add_ps(fiz1,tz);
362
363             fjx0             = _mm_add_ps(fjx0,tx);
364             fjy0             = _mm_add_ps(fjy0,ty);
365             fjz0             = _mm_add_ps(fjz0,tz);
366             
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             r20              = _mm_mul_ps(rsq20,rinv20);
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq20             = _mm_mul_ps(iq2,jq0);
375
376             /* Calculate table index by multiplying r with table scale and truncate to integer */
377             rt               = _mm_mul_ps(r20,vftabscale);
378             vfitab           = _mm_cvttps_epi32(rt);
379             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
380             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
381
382             /* CUBIC SPLINE TABLE ELECTROSTATICS */
383             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
384             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
385             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
386             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
387             _MM_TRANSPOSE4_PS(Y,F,G,H);
388             Heps             = _mm_mul_ps(vfeps,H);
389             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
390             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
391             velec            = _mm_mul_ps(qq20,VV);
392             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
393             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
394
395             /* Update potential sum for this i atom from the interaction with this j atom. */
396             velecsum         = _mm_add_ps(velecsum,velec);
397
398             fscal            = felec;
399
400             /* Calculate temporary vectorial force */
401             tx               = _mm_mul_ps(fscal,dx20);
402             ty               = _mm_mul_ps(fscal,dy20);
403             tz               = _mm_mul_ps(fscal,dz20);
404
405             /* Update vectorial force */
406             fix2             = _mm_add_ps(fix2,tx);
407             fiy2             = _mm_add_ps(fiy2,ty);
408             fiz2             = _mm_add_ps(fiz2,tz);
409
410             fjx0             = _mm_add_ps(fjx0,tx);
411             fjy0             = _mm_add_ps(fjy0,ty);
412             fjz0             = _mm_add_ps(fjz0,tz);
413             
414             fjptrA             = f+j_coord_offsetA;
415             fjptrB             = f+j_coord_offsetB;
416             fjptrC             = f+j_coord_offsetC;
417             fjptrD             = f+j_coord_offsetD;
418
419             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
420
421             /* Inner loop uses 159 flops */
422         }
423
424         if(jidx<j_index_end)
425         {
426
427             /* Get j neighbor index, and coordinate index */
428             jnrlistA         = jjnr[jidx];
429             jnrlistB         = jjnr[jidx+1];
430             jnrlistC         = jjnr[jidx+2];
431             jnrlistD         = jjnr[jidx+3];
432             /* Sign of each element will be negative for non-real atoms.
433              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
434              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
435              */
436             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
437             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
438             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
439             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
440             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
441             j_coord_offsetA  = DIM*jnrA;
442             j_coord_offsetB  = DIM*jnrB;
443             j_coord_offsetC  = DIM*jnrC;
444             j_coord_offsetD  = DIM*jnrD;
445
446             /* load j atom coordinates */
447             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
448                                               x+j_coord_offsetC,x+j_coord_offsetD,
449                                               &jx0,&jy0,&jz0);
450
451             /* Calculate displacement vector */
452             dx00             = _mm_sub_ps(ix0,jx0);
453             dy00             = _mm_sub_ps(iy0,jy0);
454             dz00             = _mm_sub_ps(iz0,jz0);
455             dx10             = _mm_sub_ps(ix1,jx0);
456             dy10             = _mm_sub_ps(iy1,jy0);
457             dz10             = _mm_sub_ps(iz1,jz0);
458             dx20             = _mm_sub_ps(ix2,jx0);
459             dy20             = _mm_sub_ps(iy2,jy0);
460             dz20             = _mm_sub_ps(iz2,jz0);
461
462             /* Calculate squared distance and things based on it */
463             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
464             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
465             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
466
467             rinv00           = gmx_mm_invsqrt_ps(rsq00);
468             rinv10           = gmx_mm_invsqrt_ps(rsq10);
469             rinv20           = gmx_mm_invsqrt_ps(rsq20);
470
471             /* Load parameters for j particles */
472             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
473                                                               charge+jnrC+0,charge+jnrD+0);
474             vdwjidx0A        = 2*vdwtype[jnrA+0];
475             vdwjidx0B        = 2*vdwtype[jnrB+0];
476             vdwjidx0C        = 2*vdwtype[jnrC+0];
477             vdwjidx0D        = 2*vdwtype[jnrD+0];
478
479             fjx0             = _mm_setzero_ps();
480             fjy0             = _mm_setzero_ps();
481             fjz0             = _mm_setzero_ps();
482
483             /**************************
484              * CALCULATE INTERACTIONS *
485              **************************/
486
487             r00              = _mm_mul_ps(rsq00,rinv00);
488             r00              = _mm_andnot_ps(dummy_mask,r00);
489
490             /* Compute parameters for interactions between i and j atoms */
491             qq00             = _mm_mul_ps(iq0,jq0);
492             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
493                                          vdwparam+vdwioffset0+vdwjidx0B,
494                                          vdwparam+vdwioffset0+vdwjidx0C,
495                                          vdwparam+vdwioffset0+vdwjidx0D,
496                                          &c6_00,&c12_00);
497
498             /* Calculate table index by multiplying r with table scale and truncate to integer */
499             rt               = _mm_mul_ps(r00,vftabscale);
500             vfitab           = _mm_cvttps_epi32(rt);
501             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
502             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
503
504             /* CUBIC SPLINE TABLE ELECTROSTATICS */
505             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
506             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
507             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
508             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
509             _MM_TRANSPOSE4_PS(Y,F,G,H);
510             Heps             = _mm_mul_ps(vfeps,H);
511             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
512             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
513             velec            = _mm_mul_ps(qq00,VV);
514             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
515             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
516
517             /* CUBIC SPLINE TABLE DISPERSION */
518             vfitab           = _mm_add_epi32(vfitab,ifour);
519             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
520             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
521             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
522             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
523             _MM_TRANSPOSE4_PS(Y,F,G,H);
524             Heps             = _mm_mul_ps(vfeps,H);
525             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
526             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
527             vvdw6            = _mm_mul_ps(c6_00,VV);
528             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
529             fvdw6            = _mm_mul_ps(c6_00,FF);
530
531             /* CUBIC SPLINE TABLE REPULSION */
532             vfitab           = _mm_add_epi32(vfitab,ifour);
533             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
534             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
535             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
536             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
537             _MM_TRANSPOSE4_PS(Y,F,G,H);
538             Heps             = _mm_mul_ps(vfeps,H);
539             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
540             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
541             vvdw12           = _mm_mul_ps(c12_00,VV);
542             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
543             fvdw12           = _mm_mul_ps(c12_00,FF);
544             vvdw             = _mm_add_ps(vvdw12,vvdw6);
545             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
546
547             /* Update potential sum for this i atom from the interaction with this j atom. */
548             velec            = _mm_andnot_ps(dummy_mask,velec);
549             velecsum         = _mm_add_ps(velecsum,velec);
550             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
551             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
552
553             fscal            = _mm_add_ps(felec,fvdw);
554
555             fscal            = _mm_andnot_ps(dummy_mask,fscal);
556
557             /* Calculate temporary vectorial force */
558             tx               = _mm_mul_ps(fscal,dx00);
559             ty               = _mm_mul_ps(fscal,dy00);
560             tz               = _mm_mul_ps(fscal,dz00);
561
562             /* Update vectorial force */
563             fix0             = _mm_add_ps(fix0,tx);
564             fiy0             = _mm_add_ps(fiy0,ty);
565             fiz0             = _mm_add_ps(fiz0,tz);
566
567             fjx0             = _mm_add_ps(fjx0,tx);
568             fjy0             = _mm_add_ps(fjy0,ty);
569             fjz0             = _mm_add_ps(fjz0,tz);
570             
571             /**************************
572              * CALCULATE INTERACTIONS *
573              **************************/
574
575             r10              = _mm_mul_ps(rsq10,rinv10);
576             r10              = _mm_andnot_ps(dummy_mask,r10);
577
578             /* Compute parameters for interactions between i and j atoms */
579             qq10             = _mm_mul_ps(iq1,jq0);
580
581             /* Calculate table index by multiplying r with table scale and truncate to integer */
582             rt               = _mm_mul_ps(r10,vftabscale);
583             vfitab           = _mm_cvttps_epi32(rt);
584             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
585             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
586
587             /* CUBIC SPLINE TABLE ELECTROSTATICS */
588             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
589             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
590             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
591             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
592             _MM_TRANSPOSE4_PS(Y,F,G,H);
593             Heps             = _mm_mul_ps(vfeps,H);
594             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
595             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
596             velec            = _mm_mul_ps(qq10,VV);
597             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
598             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             velec            = _mm_andnot_ps(dummy_mask,velec);
602             velecsum         = _mm_add_ps(velecsum,velec);
603
604             fscal            = felec;
605
606             fscal            = _mm_andnot_ps(dummy_mask,fscal);
607
608             /* Calculate temporary vectorial force */
609             tx               = _mm_mul_ps(fscal,dx10);
610             ty               = _mm_mul_ps(fscal,dy10);
611             tz               = _mm_mul_ps(fscal,dz10);
612
613             /* Update vectorial force */
614             fix1             = _mm_add_ps(fix1,tx);
615             fiy1             = _mm_add_ps(fiy1,ty);
616             fiz1             = _mm_add_ps(fiz1,tz);
617
618             fjx0             = _mm_add_ps(fjx0,tx);
619             fjy0             = _mm_add_ps(fjy0,ty);
620             fjz0             = _mm_add_ps(fjz0,tz);
621             
622             /**************************
623              * CALCULATE INTERACTIONS *
624              **************************/
625
626             r20              = _mm_mul_ps(rsq20,rinv20);
627             r20              = _mm_andnot_ps(dummy_mask,r20);
628
629             /* Compute parameters for interactions between i and j atoms */
630             qq20             = _mm_mul_ps(iq2,jq0);
631
632             /* Calculate table index by multiplying r with table scale and truncate to integer */
633             rt               = _mm_mul_ps(r20,vftabscale);
634             vfitab           = _mm_cvttps_epi32(rt);
635             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
636             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
637
638             /* CUBIC SPLINE TABLE ELECTROSTATICS */
639             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
640             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
641             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
642             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
643             _MM_TRANSPOSE4_PS(Y,F,G,H);
644             Heps             = _mm_mul_ps(vfeps,H);
645             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
646             VV               = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
647             velec            = _mm_mul_ps(qq20,VV);
648             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
649             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
650
651             /* Update potential sum for this i atom from the interaction with this j atom. */
652             velec            = _mm_andnot_ps(dummy_mask,velec);
653             velecsum         = _mm_add_ps(velecsum,velec);
654
655             fscal            = felec;
656
657             fscal            = _mm_andnot_ps(dummy_mask,fscal);
658
659             /* Calculate temporary vectorial force */
660             tx               = _mm_mul_ps(fscal,dx20);
661             ty               = _mm_mul_ps(fscal,dy20);
662             tz               = _mm_mul_ps(fscal,dz20);
663
664             /* Update vectorial force */
665             fix2             = _mm_add_ps(fix2,tx);
666             fiy2             = _mm_add_ps(fiy2,ty);
667             fiz2             = _mm_add_ps(fiz2,tz);
668
669             fjx0             = _mm_add_ps(fjx0,tx);
670             fjy0             = _mm_add_ps(fjy0,ty);
671             fjz0             = _mm_add_ps(fjz0,tz);
672             
673             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
674             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
675             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
676             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
677
678             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
679
680             /* Inner loop uses 162 flops */
681         }
682
683         /* End of innermost loop */
684
685         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
686                                               f+i_coord_offset,fshift+i_shift_offset);
687
688         ggid                        = gid[iidx];
689         /* Update potential energies */
690         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
691         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
692
693         /* Increment number of inner iterations */
694         inneriter                  += j_index_end - j_index_start;
695
696         /* Outer loop uses 20 flops */
697     }
698
699     /* Increment number of outer iterations */
700     outeriter        += nri;
701
702     /* Update outer/inner flops */
703
704     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*162);
705 }
706 /*
707  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_sse2_single
708  * Electrostatics interaction: CubicSplineTable
709  * VdW interaction:            CubicSplineTable
710  * Geometry:                   Water3-Particle
711  * Calculate force/pot:        Force
712  */
713 void
714 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_sse2_single
715                     (t_nblist                    * gmx_restrict       nlist,
716                      rvec                        * gmx_restrict          xx,
717                      rvec                        * gmx_restrict          ff,
718                      t_forcerec                  * gmx_restrict          fr,
719                      t_mdatoms                   * gmx_restrict     mdatoms,
720                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
721                      t_nrnb                      * gmx_restrict        nrnb)
722 {
723     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
724      * just 0 for non-waters.
725      * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
726      * jnr indices corresponding to data put in the four positions in the SIMD register.
727      */
728     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
729     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
730     int              jnrA,jnrB,jnrC,jnrD;
731     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
732     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
733     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
734     real             rcutoff_scalar;
735     real             *shiftvec,*fshift,*x,*f;
736     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
737     real             scratch[4*DIM];
738     __m128           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
739     int              vdwioffset0;
740     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
741     int              vdwioffset1;
742     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
743     int              vdwioffset2;
744     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
745     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
746     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
747     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
748     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
749     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
750     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
751     real             *charge;
752     int              nvdwtype;
753     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
754     int              *vdwtype;
755     real             *vdwparam;
756     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
757     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
758     __m128i          vfitab;
759     __m128i          ifour       = _mm_set1_epi32(4);
760     __m128           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
761     real             *vftab;
762     __m128           dummy_mask,cutoff_mask;
763     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
764     __m128           one     = _mm_set1_ps(1.0);
765     __m128           two     = _mm_set1_ps(2.0);
766     x                = xx[0];
767     f                = ff[0];
768
769     nri              = nlist->nri;
770     iinr             = nlist->iinr;
771     jindex           = nlist->jindex;
772     jjnr             = nlist->jjnr;
773     shiftidx         = nlist->shift;
774     gid              = nlist->gid;
775     shiftvec         = fr->shift_vec[0];
776     fshift           = fr->fshift[0];
777     facel            = _mm_set1_ps(fr->epsfac);
778     charge           = mdatoms->chargeA;
779     nvdwtype         = fr->ntype;
780     vdwparam         = fr->nbfp;
781     vdwtype          = mdatoms->typeA;
782
783     vftab            = kernel_data->table_elec_vdw->data;
784     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
785
786     /* Setup water-specific parameters */
787     inr              = nlist->iinr[0];
788     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
789     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
790     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
791     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
792
793     /* Avoid stupid compiler warnings */
794     jnrA = jnrB = jnrC = jnrD = 0;
795     j_coord_offsetA = 0;
796     j_coord_offsetB = 0;
797     j_coord_offsetC = 0;
798     j_coord_offsetD = 0;
799
800     outeriter        = 0;
801     inneriter        = 0;
802
803     for(iidx=0;iidx<4*DIM;iidx++)
804     {
805         scratch[iidx] = 0.0;
806     }  
807
808     /* Start outer loop over neighborlists */
809     for(iidx=0; iidx<nri; iidx++)
810     {
811         /* Load shift vector for this list */
812         i_shift_offset   = DIM*shiftidx[iidx];
813
814         /* Load limits for loop over neighbors */
815         j_index_start    = jindex[iidx];
816         j_index_end      = jindex[iidx+1];
817
818         /* Get outer coordinate index */
819         inr              = iinr[iidx];
820         i_coord_offset   = DIM*inr;
821
822         /* Load i particle coords and add shift vector */
823         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
824                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
825         
826         fix0             = _mm_setzero_ps();
827         fiy0             = _mm_setzero_ps();
828         fiz0             = _mm_setzero_ps();
829         fix1             = _mm_setzero_ps();
830         fiy1             = _mm_setzero_ps();
831         fiz1             = _mm_setzero_ps();
832         fix2             = _mm_setzero_ps();
833         fiy2             = _mm_setzero_ps();
834         fiz2             = _mm_setzero_ps();
835
836         /* Start inner kernel loop */
837         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
838         {
839
840             /* Get j neighbor index, and coordinate index */
841             jnrA             = jjnr[jidx];
842             jnrB             = jjnr[jidx+1];
843             jnrC             = jjnr[jidx+2];
844             jnrD             = jjnr[jidx+3];
845             j_coord_offsetA  = DIM*jnrA;
846             j_coord_offsetB  = DIM*jnrB;
847             j_coord_offsetC  = DIM*jnrC;
848             j_coord_offsetD  = DIM*jnrD;
849
850             /* load j atom coordinates */
851             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
852                                               x+j_coord_offsetC,x+j_coord_offsetD,
853                                               &jx0,&jy0,&jz0);
854
855             /* Calculate displacement vector */
856             dx00             = _mm_sub_ps(ix0,jx0);
857             dy00             = _mm_sub_ps(iy0,jy0);
858             dz00             = _mm_sub_ps(iz0,jz0);
859             dx10             = _mm_sub_ps(ix1,jx0);
860             dy10             = _mm_sub_ps(iy1,jy0);
861             dz10             = _mm_sub_ps(iz1,jz0);
862             dx20             = _mm_sub_ps(ix2,jx0);
863             dy20             = _mm_sub_ps(iy2,jy0);
864             dz20             = _mm_sub_ps(iz2,jz0);
865
866             /* Calculate squared distance and things based on it */
867             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
868             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
869             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
870
871             rinv00           = gmx_mm_invsqrt_ps(rsq00);
872             rinv10           = gmx_mm_invsqrt_ps(rsq10);
873             rinv20           = gmx_mm_invsqrt_ps(rsq20);
874
875             /* Load parameters for j particles */
876             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
877                                                               charge+jnrC+0,charge+jnrD+0);
878             vdwjidx0A        = 2*vdwtype[jnrA+0];
879             vdwjidx0B        = 2*vdwtype[jnrB+0];
880             vdwjidx0C        = 2*vdwtype[jnrC+0];
881             vdwjidx0D        = 2*vdwtype[jnrD+0];
882
883             fjx0             = _mm_setzero_ps();
884             fjy0             = _mm_setzero_ps();
885             fjz0             = _mm_setzero_ps();
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             r00              = _mm_mul_ps(rsq00,rinv00);
892
893             /* Compute parameters for interactions between i and j atoms */
894             qq00             = _mm_mul_ps(iq0,jq0);
895             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
896                                          vdwparam+vdwioffset0+vdwjidx0B,
897                                          vdwparam+vdwioffset0+vdwjidx0C,
898                                          vdwparam+vdwioffset0+vdwjidx0D,
899                                          &c6_00,&c12_00);
900
901             /* Calculate table index by multiplying r with table scale and truncate to integer */
902             rt               = _mm_mul_ps(r00,vftabscale);
903             vfitab           = _mm_cvttps_epi32(rt);
904             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
905             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
906
907             /* CUBIC SPLINE TABLE ELECTROSTATICS */
908             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
909             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
910             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
911             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
912             _MM_TRANSPOSE4_PS(Y,F,G,H);
913             Heps             = _mm_mul_ps(vfeps,H);
914             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
915             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
916             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
917
918             /* CUBIC SPLINE TABLE DISPERSION */
919             vfitab           = _mm_add_epi32(vfitab,ifour);
920             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
921             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
922             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
923             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
924             _MM_TRANSPOSE4_PS(Y,F,G,H);
925             Heps             = _mm_mul_ps(vfeps,H);
926             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
927             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
928             fvdw6            = _mm_mul_ps(c6_00,FF);
929
930             /* CUBIC SPLINE TABLE REPULSION */
931             vfitab           = _mm_add_epi32(vfitab,ifour);
932             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
933             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
934             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
935             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
936             _MM_TRANSPOSE4_PS(Y,F,G,H);
937             Heps             = _mm_mul_ps(vfeps,H);
938             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
939             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
940             fvdw12           = _mm_mul_ps(c12_00,FF);
941             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
942
943             fscal            = _mm_add_ps(felec,fvdw);
944
945             /* Calculate temporary vectorial force */
946             tx               = _mm_mul_ps(fscal,dx00);
947             ty               = _mm_mul_ps(fscal,dy00);
948             tz               = _mm_mul_ps(fscal,dz00);
949
950             /* Update vectorial force */
951             fix0             = _mm_add_ps(fix0,tx);
952             fiy0             = _mm_add_ps(fiy0,ty);
953             fiz0             = _mm_add_ps(fiz0,tz);
954
955             fjx0             = _mm_add_ps(fjx0,tx);
956             fjy0             = _mm_add_ps(fjy0,ty);
957             fjz0             = _mm_add_ps(fjz0,tz);
958             
959             /**************************
960              * CALCULATE INTERACTIONS *
961              **************************/
962
963             r10              = _mm_mul_ps(rsq10,rinv10);
964
965             /* Compute parameters for interactions between i and j atoms */
966             qq10             = _mm_mul_ps(iq1,jq0);
967
968             /* Calculate table index by multiplying r with table scale and truncate to integer */
969             rt               = _mm_mul_ps(r10,vftabscale);
970             vfitab           = _mm_cvttps_epi32(rt);
971             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
972             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
973
974             /* CUBIC SPLINE TABLE ELECTROSTATICS */
975             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
976             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
977             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
978             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
979             _MM_TRANSPOSE4_PS(Y,F,G,H);
980             Heps             = _mm_mul_ps(vfeps,H);
981             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
982             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
983             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
984
985             fscal            = felec;
986
987             /* Calculate temporary vectorial force */
988             tx               = _mm_mul_ps(fscal,dx10);
989             ty               = _mm_mul_ps(fscal,dy10);
990             tz               = _mm_mul_ps(fscal,dz10);
991
992             /* Update vectorial force */
993             fix1             = _mm_add_ps(fix1,tx);
994             fiy1             = _mm_add_ps(fiy1,ty);
995             fiz1             = _mm_add_ps(fiz1,tz);
996
997             fjx0             = _mm_add_ps(fjx0,tx);
998             fjy0             = _mm_add_ps(fjy0,ty);
999             fjz0             = _mm_add_ps(fjz0,tz);
1000             
1001             /**************************
1002              * CALCULATE INTERACTIONS *
1003              **************************/
1004
1005             r20              = _mm_mul_ps(rsq20,rinv20);
1006
1007             /* Compute parameters for interactions between i and j atoms */
1008             qq20             = _mm_mul_ps(iq2,jq0);
1009
1010             /* Calculate table index by multiplying r with table scale and truncate to integer */
1011             rt               = _mm_mul_ps(r20,vftabscale);
1012             vfitab           = _mm_cvttps_epi32(rt);
1013             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1014             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1015
1016             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1017             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1018             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1019             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1020             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1021             _MM_TRANSPOSE4_PS(Y,F,G,H);
1022             Heps             = _mm_mul_ps(vfeps,H);
1023             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1024             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1025             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1026
1027             fscal            = felec;
1028
1029             /* Calculate temporary vectorial force */
1030             tx               = _mm_mul_ps(fscal,dx20);
1031             ty               = _mm_mul_ps(fscal,dy20);
1032             tz               = _mm_mul_ps(fscal,dz20);
1033
1034             /* Update vectorial force */
1035             fix2             = _mm_add_ps(fix2,tx);
1036             fiy2             = _mm_add_ps(fiy2,ty);
1037             fiz2             = _mm_add_ps(fiz2,tz);
1038
1039             fjx0             = _mm_add_ps(fjx0,tx);
1040             fjy0             = _mm_add_ps(fjy0,ty);
1041             fjz0             = _mm_add_ps(fjz0,tz);
1042             
1043             fjptrA             = f+j_coord_offsetA;
1044             fjptrB             = f+j_coord_offsetB;
1045             fjptrC             = f+j_coord_offsetC;
1046             fjptrD             = f+j_coord_offsetD;
1047
1048             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1049
1050             /* Inner loop uses 139 flops */
1051         }
1052
1053         if(jidx<j_index_end)
1054         {
1055
1056             /* Get j neighbor index, and coordinate index */
1057             jnrlistA         = jjnr[jidx];
1058             jnrlistB         = jjnr[jidx+1];
1059             jnrlistC         = jjnr[jidx+2];
1060             jnrlistD         = jjnr[jidx+3];
1061             /* Sign of each element will be negative for non-real atoms.
1062              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1063              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1064              */
1065             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1066             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1067             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1068             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1069             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1070             j_coord_offsetA  = DIM*jnrA;
1071             j_coord_offsetB  = DIM*jnrB;
1072             j_coord_offsetC  = DIM*jnrC;
1073             j_coord_offsetD  = DIM*jnrD;
1074
1075             /* load j atom coordinates */
1076             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1077                                               x+j_coord_offsetC,x+j_coord_offsetD,
1078                                               &jx0,&jy0,&jz0);
1079
1080             /* Calculate displacement vector */
1081             dx00             = _mm_sub_ps(ix0,jx0);
1082             dy00             = _mm_sub_ps(iy0,jy0);
1083             dz00             = _mm_sub_ps(iz0,jz0);
1084             dx10             = _mm_sub_ps(ix1,jx0);
1085             dy10             = _mm_sub_ps(iy1,jy0);
1086             dz10             = _mm_sub_ps(iz1,jz0);
1087             dx20             = _mm_sub_ps(ix2,jx0);
1088             dy20             = _mm_sub_ps(iy2,jy0);
1089             dz20             = _mm_sub_ps(iz2,jz0);
1090
1091             /* Calculate squared distance and things based on it */
1092             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1093             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1094             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1095
1096             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1097             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1098             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1099
1100             /* Load parameters for j particles */
1101             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1102                                                               charge+jnrC+0,charge+jnrD+0);
1103             vdwjidx0A        = 2*vdwtype[jnrA+0];
1104             vdwjidx0B        = 2*vdwtype[jnrB+0];
1105             vdwjidx0C        = 2*vdwtype[jnrC+0];
1106             vdwjidx0D        = 2*vdwtype[jnrD+0];
1107
1108             fjx0             = _mm_setzero_ps();
1109             fjy0             = _mm_setzero_ps();
1110             fjz0             = _mm_setzero_ps();
1111
1112             /**************************
1113              * CALCULATE INTERACTIONS *
1114              **************************/
1115
1116             r00              = _mm_mul_ps(rsq00,rinv00);
1117             r00              = _mm_andnot_ps(dummy_mask,r00);
1118
1119             /* Compute parameters for interactions between i and j atoms */
1120             qq00             = _mm_mul_ps(iq0,jq0);
1121             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1122                                          vdwparam+vdwioffset0+vdwjidx0B,
1123                                          vdwparam+vdwioffset0+vdwjidx0C,
1124                                          vdwparam+vdwioffset0+vdwjidx0D,
1125                                          &c6_00,&c12_00);
1126
1127             /* Calculate table index by multiplying r with table scale and truncate to integer */
1128             rt               = _mm_mul_ps(r00,vftabscale);
1129             vfitab           = _mm_cvttps_epi32(rt);
1130             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1131             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1132
1133             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1134             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1135             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1136             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1137             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1138             _MM_TRANSPOSE4_PS(Y,F,G,H);
1139             Heps             = _mm_mul_ps(vfeps,H);
1140             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1141             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1142             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq00,FF),_mm_mul_ps(vftabscale,rinv00)));
1143
1144             /* CUBIC SPLINE TABLE DISPERSION */
1145             vfitab           = _mm_add_epi32(vfitab,ifour);
1146             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1147             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1148             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1149             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1150             _MM_TRANSPOSE4_PS(Y,F,G,H);
1151             Heps             = _mm_mul_ps(vfeps,H);
1152             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1153             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1154             fvdw6            = _mm_mul_ps(c6_00,FF);
1155
1156             /* CUBIC SPLINE TABLE REPULSION */
1157             vfitab           = _mm_add_epi32(vfitab,ifour);
1158             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1159             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1160             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1161             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1162             _MM_TRANSPOSE4_PS(Y,F,G,H);
1163             Heps             = _mm_mul_ps(vfeps,H);
1164             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1165             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1166             fvdw12           = _mm_mul_ps(c12_00,FF);
1167             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1168
1169             fscal            = _mm_add_ps(felec,fvdw);
1170
1171             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1172
1173             /* Calculate temporary vectorial force */
1174             tx               = _mm_mul_ps(fscal,dx00);
1175             ty               = _mm_mul_ps(fscal,dy00);
1176             tz               = _mm_mul_ps(fscal,dz00);
1177
1178             /* Update vectorial force */
1179             fix0             = _mm_add_ps(fix0,tx);
1180             fiy0             = _mm_add_ps(fiy0,ty);
1181             fiz0             = _mm_add_ps(fiz0,tz);
1182
1183             fjx0             = _mm_add_ps(fjx0,tx);
1184             fjy0             = _mm_add_ps(fjy0,ty);
1185             fjz0             = _mm_add_ps(fjz0,tz);
1186             
1187             /**************************
1188              * CALCULATE INTERACTIONS *
1189              **************************/
1190
1191             r10              = _mm_mul_ps(rsq10,rinv10);
1192             r10              = _mm_andnot_ps(dummy_mask,r10);
1193
1194             /* Compute parameters for interactions between i and j atoms */
1195             qq10             = _mm_mul_ps(iq1,jq0);
1196
1197             /* Calculate table index by multiplying r with table scale and truncate to integer */
1198             rt               = _mm_mul_ps(r10,vftabscale);
1199             vfitab           = _mm_cvttps_epi32(rt);
1200             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1201             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1202
1203             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1204             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1205             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1206             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1207             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1208             _MM_TRANSPOSE4_PS(Y,F,G,H);
1209             Heps             = _mm_mul_ps(vfeps,H);
1210             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1211             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1212             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1213
1214             fscal            = felec;
1215
1216             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1217
1218             /* Calculate temporary vectorial force */
1219             tx               = _mm_mul_ps(fscal,dx10);
1220             ty               = _mm_mul_ps(fscal,dy10);
1221             tz               = _mm_mul_ps(fscal,dz10);
1222
1223             /* Update vectorial force */
1224             fix1             = _mm_add_ps(fix1,tx);
1225             fiy1             = _mm_add_ps(fiy1,ty);
1226             fiz1             = _mm_add_ps(fiz1,tz);
1227
1228             fjx0             = _mm_add_ps(fjx0,tx);
1229             fjy0             = _mm_add_ps(fjy0,ty);
1230             fjz0             = _mm_add_ps(fjz0,tz);
1231             
1232             /**************************
1233              * CALCULATE INTERACTIONS *
1234              **************************/
1235
1236             r20              = _mm_mul_ps(rsq20,rinv20);
1237             r20              = _mm_andnot_ps(dummy_mask,r20);
1238
1239             /* Compute parameters for interactions between i and j atoms */
1240             qq20             = _mm_mul_ps(iq2,jq0);
1241
1242             /* Calculate table index by multiplying r with table scale and truncate to integer */
1243             rt               = _mm_mul_ps(r20,vftabscale);
1244             vfitab           = _mm_cvttps_epi32(rt);
1245             vfeps            = _mm_sub_ps(rt,_mm_cvtepi32_ps(vfitab));
1246             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1247
1248             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1249             Y                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0) );
1250             F                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1) );
1251             G                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2) );
1252             H                = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3) );
1253             _MM_TRANSPOSE4_PS(Y,F,G,H);
1254             Heps             = _mm_mul_ps(vfeps,H);
1255             Fp               = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1256             FF               = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1257             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1258
1259             fscal            = felec;
1260
1261             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1262
1263             /* Calculate temporary vectorial force */
1264             tx               = _mm_mul_ps(fscal,dx20);
1265             ty               = _mm_mul_ps(fscal,dy20);
1266             tz               = _mm_mul_ps(fscal,dz20);
1267
1268             /* Update vectorial force */
1269             fix2             = _mm_add_ps(fix2,tx);
1270             fiy2             = _mm_add_ps(fiy2,ty);
1271             fiz2             = _mm_add_ps(fiz2,tz);
1272
1273             fjx0             = _mm_add_ps(fjx0,tx);
1274             fjy0             = _mm_add_ps(fjy0,ty);
1275             fjz0             = _mm_add_ps(fjz0,tz);
1276             
1277             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1278             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1279             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1280             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1281
1282             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1283
1284             /* Inner loop uses 142 flops */
1285         }
1286
1287         /* End of innermost loop */
1288
1289         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1290                                               f+i_coord_offset,fshift+i_shift_offset);
1291
1292         /* Increment number of inner iterations */
1293         inneriter                  += j_index_end - j_index_start;
1294
1295         /* Outer loop uses 18 flops */
1296     }
1297
1298     /* Increment number of outer iterations */
1299     outeriter        += nri;
1300
1301     /* Update outer/inner flops */
1302
1303     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*142);
1304 }