Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRF_VdwNone_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW3P1_VF_sse2_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            None
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwNone_GeomW3P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m128d          dummy_mask,cutoff_mask;
94     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
95     __m128d          one     = _mm_set1_pd(1.0);
96     __m128d          two     = _mm_set1_pd(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm_set1_pd(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     krf              = _mm_set1_pd(fr->ic->k_rf);
111     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
112     crf              = _mm_set1_pd(fr->ic->c_rf);
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
117     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
118     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
144                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149         fix1             = _mm_setzero_pd();
150         fiy1             = _mm_setzero_pd();
151         fiz1             = _mm_setzero_pd();
152         fix2             = _mm_setzero_pd();
153         fiy2             = _mm_setzero_pd();
154         fiz2             = _mm_setzero_pd();
155
156         /* Reset potential sums */
157         velecsum         = _mm_setzero_pd();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168
169             /* load j atom coordinates */
170             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
171                                               &jx0,&jy0,&jz0);
172
173             /* Calculate displacement vector */
174             dx00             = _mm_sub_pd(ix0,jx0);
175             dy00             = _mm_sub_pd(iy0,jy0);
176             dz00             = _mm_sub_pd(iz0,jz0);
177             dx10             = _mm_sub_pd(ix1,jx0);
178             dy10             = _mm_sub_pd(iy1,jy0);
179             dz10             = _mm_sub_pd(iz1,jz0);
180             dx20             = _mm_sub_pd(ix2,jx0);
181             dy20             = _mm_sub_pd(iy2,jy0);
182             dz20             = _mm_sub_pd(iz2,jz0);
183
184             /* Calculate squared distance and things based on it */
185             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
186             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
187             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
188
189             rinv00           = gmx_mm_invsqrt_pd(rsq00);
190             rinv10           = gmx_mm_invsqrt_pd(rsq10);
191             rinv20           = gmx_mm_invsqrt_pd(rsq20);
192
193             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
194             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
195             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
196
197             /* Load parameters for j particles */
198             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
199
200             fjx0             = _mm_setzero_pd();
201             fjy0             = _mm_setzero_pd();
202             fjz0             = _mm_setzero_pd();
203
204             /**************************
205              * CALCULATE INTERACTIONS *
206              **************************/
207
208             /* Compute parameters for interactions between i and j atoms */
209             qq00             = _mm_mul_pd(iq0,jq0);
210
211             /* REACTION-FIELD ELECTROSTATICS */
212             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
213             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
214
215             /* Update potential sum for this i atom from the interaction with this j atom. */
216             velecsum         = _mm_add_pd(velecsum,velec);
217
218             fscal            = felec;
219
220             /* Calculate temporary vectorial force */
221             tx               = _mm_mul_pd(fscal,dx00);
222             ty               = _mm_mul_pd(fscal,dy00);
223             tz               = _mm_mul_pd(fscal,dz00);
224
225             /* Update vectorial force */
226             fix0             = _mm_add_pd(fix0,tx);
227             fiy0             = _mm_add_pd(fiy0,ty);
228             fiz0             = _mm_add_pd(fiz0,tz);
229
230             fjx0             = _mm_add_pd(fjx0,tx);
231             fjy0             = _mm_add_pd(fjy0,ty);
232             fjz0             = _mm_add_pd(fjz0,tz);
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq10             = _mm_mul_pd(iq1,jq0);
240
241             /* REACTION-FIELD ELECTROSTATICS */
242             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
243             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
244
245             /* Update potential sum for this i atom from the interaction with this j atom. */
246             velecsum         = _mm_add_pd(velecsum,velec);
247
248             fscal            = felec;
249
250             /* Calculate temporary vectorial force */
251             tx               = _mm_mul_pd(fscal,dx10);
252             ty               = _mm_mul_pd(fscal,dy10);
253             tz               = _mm_mul_pd(fscal,dz10);
254
255             /* Update vectorial force */
256             fix1             = _mm_add_pd(fix1,tx);
257             fiy1             = _mm_add_pd(fiy1,ty);
258             fiz1             = _mm_add_pd(fiz1,tz);
259
260             fjx0             = _mm_add_pd(fjx0,tx);
261             fjy0             = _mm_add_pd(fjy0,ty);
262             fjz0             = _mm_add_pd(fjz0,tz);
263
264             /**************************
265              * CALCULATE INTERACTIONS *
266              **************************/
267
268             /* Compute parameters for interactions between i and j atoms */
269             qq20             = _mm_mul_pd(iq2,jq0);
270
271             /* REACTION-FIELD ELECTROSTATICS */
272             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
273             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velecsum         = _mm_add_pd(velecsum,velec);
277
278             fscal            = felec;
279
280             /* Calculate temporary vectorial force */
281             tx               = _mm_mul_pd(fscal,dx20);
282             ty               = _mm_mul_pd(fscal,dy20);
283             tz               = _mm_mul_pd(fscal,dz20);
284
285             /* Update vectorial force */
286             fix2             = _mm_add_pd(fix2,tx);
287             fiy2             = _mm_add_pd(fiy2,ty);
288             fiz2             = _mm_add_pd(fiz2,tz);
289
290             fjx0             = _mm_add_pd(fjx0,tx);
291             fjy0             = _mm_add_pd(fjy0,ty);
292             fjz0             = _mm_add_pd(fjz0,tz);
293
294             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
295
296             /* Inner loop uses 99 flops */
297         }
298
299         if(jidx<j_index_end)
300         {
301
302             jnrA             = jjnr[jidx];
303             j_coord_offsetA  = DIM*jnrA;
304
305             /* load j atom coordinates */
306             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
307                                               &jx0,&jy0,&jz0);
308
309             /* Calculate displacement vector */
310             dx00             = _mm_sub_pd(ix0,jx0);
311             dy00             = _mm_sub_pd(iy0,jy0);
312             dz00             = _mm_sub_pd(iz0,jz0);
313             dx10             = _mm_sub_pd(ix1,jx0);
314             dy10             = _mm_sub_pd(iy1,jy0);
315             dz10             = _mm_sub_pd(iz1,jz0);
316             dx20             = _mm_sub_pd(ix2,jx0);
317             dy20             = _mm_sub_pd(iy2,jy0);
318             dz20             = _mm_sub_pd(iz2,jz0);
319
320             /* Calculate squared distance and things based on it */
321             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
322             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
323             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
324
325             rinv00           = gmx_mm_invsqrt_pd(rsq00);
326             rinv10           = gmx_mm_invsqrt_pd(rsq10);
327             rinv20           = gmx_mm_invsqrt_pd(rsq20);
328
329             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
330             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
331             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
332
333             /* Load parameters for j particles */
334             jq0              = _mm_load_sd(charge+jnrA+0);
335
336             fjx0             = _mm_setzero_pd();
337             fjy0             = _mm_setzero_pd();
338             fjz0             = _mm_setzero_pd();
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             /* Compute parameters for interactions between i and j atoms */
345             qq00             = _mm_mul_pd(iq0,jq0);
346
347             /* REACTION-FIELD ELECTROSTATICS */
348             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
349             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
353             velecsum         = _mm_add_pd(velecsum,velec);
354
355             fscal            = felec;
356
357             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
358
359             /* Calculate temporary vectorial force */
360             tx               = _mm_mul_pd(fscal,dx00);
361             ty               = _mm_mul_pd(fscal,dy00);
362             tz               = _mm_mul_pd(fscal,dz00);
363
364             /* Update vectorial force */
365             fix0             = _mm_add_pd(fix0,tx);
366             fiy0             = _mm_add_pd(fiy0,ty);
367             fiz0             = _mm_add_pd(fiz0,tz);
368
369             fjx0             = _mm_add_pd(fjx0,tx);
370             fjy0             = _mm_add_pd(fjy0,ty);
371             fjz0             = _mm_add_pd(fjz0,tz);
372
373             /**************************
374              * CALCULATE INTERACTIONS *
375              **************************/
376
377             /* Compute parameters for interactions between i and j atoms */
378             qq10             = _mm_mul_pd(iq1,jq0);
379
380             /* REACTION-FIELD ELECTROSTATICS */
381             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
382             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
383
384             /* Update potential sum for this i atom from the interaction with this j atom. */
385             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
386             velecsum         = _mm_add_pd(velecsum,velec);
387
388             fscal            = felec;
389
390             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm_mul_pd(fscal,dx10);
394             ty               = _mm_mul_pd(fscal,dy10);
395             tz               = _mm_mul_pd(fscal,dz10);
396
397             /* Update vectorial force */
398             fix1             = _mm_add_pd(fix1,tx);
399             fiy1             = _mm_add_pd(fiy1,ty);
400             fiz1             = _mm_add_pd(fiz1,tz);
401
402             fjx0             = _mm_add_pd(fjx0,tx);
403             fjy0             = _mm_add_pd(fjy0,ty);
404             fjz0             = _mm_add_pd(fjz0,tz);
405
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             /* Compute parameters for interactions between i and j atoms */
411             qq20             = _mm_mul_pd(iq2,jq0);
412
413             /* REACTION-FIELD ELECTROSTATICS */
414             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
415             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
416
417             /* Update potential sum for this i atom from the interaction with this j atom. */
418             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
419             velecsum         = _mm_add_pd(velecsum,velec);
420
421             fscal            = felec;
422
423             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
424
425             /* Calculate temporary vectorial force */
426             tx               = _mm_mul_pd(fscal,dx20);
427             ty               = _mm_mul_pd(fscal,dy20);
428             tz               = _mm_mul_pd(fscal,dz20);
429
430             /* Update vectorial force */
431             fix2             = _mm_add_pd(fix2,tx);
432             fiy2             = _mm_add_pd(fiy2,ty);
433             fiz2             = _mm_add_pd(fiz2,tz);
434
435             fjx0             = _mm_add_pd(fjx0,tx);
436             fjy0             = _mm_add_pd(fjy0,ty);
437             fjz0             = _mm_add_pd(fjz0,tz);
438
439             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
440
441             /* Inner loop uses 99 flops */
442         }
443
444         /* End of innermost loop */
445
446         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
447                                               f+i_coord_offset,fshift+i_shift_offset);
448
449         ggid                        = gid[iidx];
450         /* Update potential energies */
451         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
452
453         /* Increment number of inner iterations */
454         inneriter                  += j_index_end - j_index_start;
455
456         /* Outer loop uses 19 flops */
457     }
458
459     /* Increment number of outer iterations */
460     outeriter        += nri;
461
462     /* Update outer/inner flops */
463
464     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*99);
465 }
466 /*
467  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomW3P1_F_sse2_double
468  * Electrostatics interaction: ReactionField
469  * VdW interaction:            None
470  * Geometry:                   Water3-Particle
471  * Calculate force/pot:        Force
472  */
473 void
474 nb_kernel_ElecRF_VdwNone_GeomW3P1_F_sse2_double
475                     (t_nblist                    * gmx_restrict       nlist,
476                      rvec                        * gmx_restrict          xx,
477                      rvec                        * gmx_restrict          ff,
478                      t_forcerec                  * gmx_restrict          fr,
479                      t_mdatoms                   * gmx_restrict     mdatoms,
480                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
481                      t_nrnb                      * gmx_restrict        nrnb)
482 {
483     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
484      * just 0 for non-waters.
485      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
486      * jnr indices corresponding to data put in the four positions in the SIMD register.
487      */
488     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
489     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
490     int              jnrA,jnrB;
491     int              j_coord_offsetA,j_coord_offsetB;
492     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
493     real             rcutoff_scalar;
494     real             *shiftvec,*fshift,*x,*f;
495     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
496     int              vdwioffset0;
497     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
498     int              vdwioffset1;
499     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
500     int              vdwioffset2;
501     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
502     int              vdwjidx0A,vdwjidx0B;
503     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
504     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
505     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
506     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
507     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
508     real             *charge;
509     __m128d          dummy_mask,cutoff_mask;
510     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
511     __m128d          one     = _mm_set1_pd(1.0);
512     __m128d          two     = _mm_set1_pd(2.0);
513     x                = xx[0];
514     f                = ff[0];
515
516     nri              = nlist->nri;
517     iinr             = nlist->iinr;
518     jindex           = nlist->jindex;
519     jjnr             = nlist->jjnr;
520     shiftidx         = nlist->shift;
521     gid              = nlist->gid;
522     shiftvec         = fr->shift_vec[0];
523     fshift           = fr->fshift[0];
524     facel            = _mm_set1_pd(fr->epsfac);
525     charge           = mdatoms->chargeA;
526     krf              = _mm_set1_pd(fr->ic->k_rf);
527     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
528     crf              = _mm_set1_pd(fr->ic->c_rf);
529
530     /* Setup water-specific parameters */
531     inr              = nlist->iinr[0];
532     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
533     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
534     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
535
536     /* Avoid stupid compiler warnings */
537     jnrA = jnrB = 0;
538     j_coord_offsetA = 0;
539     j_coord_offsetB = 0;
540
541     outeriter        = 0;
542     inneriter        = 0;
543
544     /* Start outer loop over neighborlists */
545     for(iidx=0; iidx<nri; iidx++)
546     {
547         /* Load shift vector for this list */
548         i_shift_offset   = DIM*shiftidx[iidx];
549
550         /* Load limits for loop over neighbors */
551         j_index_start    = jindex[iidx];
552         j_index_end      = jindex[iidx+1];
553
554         /* Get outer coordinate index */
555         inr              = iinr[iidx];
556         i_coord_offset   = DIM*inr;
557
558         /* Load i particle coords and add shift vector */
559         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
560                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
561
562         fix0             = _mm_setzero_pd();
563         fiy0             = _mm_setzero_pd();
564         fiz0             = _mm_setzero_pd();
565         fix1             = _mm_setzero_pd();
566         fiy1             = _mm_setzero_pd();
567         fiz1             = _mm_setzero_pd();
568         fix2             = _mm_setzero_pd();
569         fiy2             = _mm_setzero_pd();
570         fiz2             = _mm_setzero_pd();
571
572         /* Start inner kernel loop */
573         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
574         {
575
576             /* Get j neighbor index, and coordinate index */
577             jnrA             = jjnr[jidx];
578             jnrB             = jjnr[jidx+1];
579             j_coord_offsetA  = DIM*jnrA;
580             j_coord_offsetB  = DIM*jnrB;
581
582             /* load j atom coordinates */
583             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
584                                               &jx0,&jy0,&jz0);
585
586             /* Calculate displacement vector */
587             dx00             = _mm_sub_pd(ix0,jx0);
588             dy00             = _mm_sub_pd(iy0,jy0);
589             dz00             = _mm_sub_pd(iz0,jz0);
590             dx10             = _mm_sub_pd(ix1,jx0);
591             dy10             = _mm_sub_pd(iy1,jy0);
592             dz10             = _mm_sub_pd(iz1,jz0);
593             dx20             = _mm_sub_pd(ix2,jx0);
594             dy20             = _mm_sub_pd(iy2,jy0);
595             dz20             = _mm_sub_pd(iz2,jz0);
596
597             /* Calculate squared distance and things based on it */
598             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
599             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
600             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
601
602             rinv00           = gmx_mm_invsqrt_pd(rsq00);
603             rinv10           = gmx_mm_invsqrt_pd(rsq10);
604             rinv20           = gmx_mm_invsqrt_pd(rsq20);
605
606             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
607             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
608             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
609
610             /* Load parameters for j particles */
611             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
612
613             fjx0             = _mm_setzero_pd();
614             fjy0             = _mm_setzero_pd();
615             fjz0             = _mm_setzero_pd();
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             /* Compute parameters for interactions between i and j atoms */
622             qq00             = _mm_mul_pd(iq0,jq0);
623
624             /* REACTION-FIELD ELECTROSTATICS */
625             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
626
627             fscal            = felec;
628
629             /* Calculate temporary vectorial force */
630             tx               = _mm_mul_pd(fscal,dx00);
631             ty               = _mm_mul_pd(fscal,dy00);
632             tz               = _mm_mul_pd(fscal,dz00);
633
634             /* Update vectorial force */
635             fix0             = _mm_add_pd(fix0,tx);
636             fiy0             = _mm_add_pd(fiy0,ty);
637             fiz0             = _mm_add_pd(fiz0,tz);
638
639             fjx0             = _mm_add_pd(fjx0,tx);
640             fjy0             = _mm_add_pd(fjy0,ty);
641             fjz0             = _mm_add_pd(fjz0,tz);
642
643             /**************************
644              * CALCULATE INTERACTIONS *
645              **************************/
646
647             /* Compute parameters for interactions between i and j atoms */
648             qq10             = _mm_mul_pd(iq1,jq0);
649
650             /* REACTION-FIELD ELECTROSTATICS */
651             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
652
653             fscal            = felec;
654
655             /* Calculate temporary vectorial force */
656             tx               = _mm_mul_pd(fscal,dx10);
657             ty               = _mm_mul_pd(fscal,dy10);
658             tz               = _mm_mul_pd(fscal,dz10);
659
660             /* Update vectorial force */
661             fix1             = _mm_add_pd(fix1,tx);
662             fiy1             = _mm_add_pd(fiy1,ty);
663             fiz1             = _mm_add_pd(fiz1,tz);
664
665             fjx0             = _mm_add_pd(fjx0,tx);
666             fjy0             = _mm_add_pd(fjy0,ty);
667             fjz0             = _mm_add_pd(fjz0,tz);
668
669             /**************************
670              * CALCULATE INTERACTIONS *
671              **************************/
672
673             /* Compute parameters for interactions between i and j atoms */
674             qq20             = _mm_mul_pd(iq2,jq0);
675
676             /* REACTION-FIELD ELECTROSTATICS */
677             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
678
679             fscal            = felec;
680
681             /* Calculate temporary vectorial force */
682             tx               = _mm_mul_pd(fscal,dx20);
683             ty               = _mm_mul_pd(fscal,dy20);
684             tz               = _mm_mul_pd(fscal,dz20);
685
686             /* Update vectorial force */
687             fix2             = _mm_add_pd(fix2,tx);
688             fiy2             = _mm_add_pd(fiy2,ty);
689             fiz2             = _mm_add_pd(fiz2,tz);
690
691             fjx0             = _mm_add_pd(fjx0,tx);
692             fjy0             = _mm_add_pd(fjy0,ty);
693             fjz0             = _mm_add_pd(fjz0,tz);
694
695             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
696
697             /* Inner loop uses 84 flops */
698         }
699
700         if(jidx<j_index_end)
701         {
702
703             jnrA             = jjnr[jidx];
704             j_coord_offsetA  = DIM*jnrA;
705
706             /* load j atom coordinates */
707             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
708                                               &jx0,&jy0,&jz0);
709
710             /* Calculate displacement vector */
711             dx00             = _mm_sub_pd(ix0,jx0);
712             dy00             = _mm_sub_pd(iy0,jy0);
713             dz00             = _mm_sub_pd(iz0,jz0);
714             dx10             = _mm_sub_pd(ix1,jx0);
715             dy10             = _mm_sub_pd(iy1,jy0);
716             dz10             = _mm_sub_pd(iz1,jz0);
717             dx20             = _mm_sub_pd(ix2,jx0);
718             dy20             = _mm_sub_pd(iy2,jy0);
719             dz20             = _mm_sub_pd(iz2,jz0);
720
721             /* Calculate squared distance and things based on it */
722             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
723             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
724             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
725
726             rinv00           = gmx_mm_invsqrt_pd(rsq00);
727             rinv10           = gmx_mm_invsqrt_pd(rsq10);
728             rinv20           = gmx_mm_invsqrt_pd(rsq20);
729
730             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
731             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
732             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
733
734             /* Load parameters for j particles */
735             jq0              = _mm_load_sd(charge+jnrA+0);
736
737             fjx0             = _mm_setzero_pd();
738             fjy0             = _mm_setzero_pd();
739             fjz0             = _mm_setzero_pd();
740
741             /**************************
742              * CALCULATE INTERACTIONS *
743              **************************/
744
745             /* Compute parameters for interactions between i and j atoms */
746             qq00             = _mm_mul_pd(iq0,jq0);
747
748             /* REACTION-FIELD ELECTROSTATICS */
749             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
750
751             fscal            = felec;
752
753             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
754
755             /* Calculate temporary vectorial force */
756             tx               = _mm_mul_pd(fscal,dx00);
757             ty               = _mm_mul_pd(fscal,dy00);
758             tz               = _mm_mul_pd(fscal,dz00);
759
760             /* Update vectorial force */
761             fix0             = _mm_add_pd(fix0,tx);
762             fiy0             = _mm_add_pd(fiy0,ty);
763             fiz0             = _mm_add_pd(fiz0,tz);
764
765             fjx0             = _mm_add_pd(fjx0,tx);
766             fjy0             = _mm_add_pd(fjy0,ty);
767             fjz0             = _mm_add_pd(fjz0,tz);
768
769             /**************************
770              * CALCULATE INTERACTIONS *
771              **************************/
772
773             /* Compute parameters for interactions between i and j atoms */
774             qq10             = _mm_mul_pd(iq1,jq0);
775
776             /* REACTION-FIELD ELECTROSTATICS */
777             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
778
779             fscal            = felec;
780
781             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
782
783             /* Calculate temporary vectorial force */
784             tx               = _mm_mul_pd(fscal,dx10);
785             ty               = _mm_mul_pd(fscal,dy10);
786             tz               = _mm_mul_pd(fscal,dz10);
787
788             /* Update vectorial force */
789             fix1             = _mm_add_pd(fix1,tx);
790             fiy1             = _mm_add_pd(fiy1,ty);
791             fiz1             = _mm_add_pd(fiz1,tz);
792
793             fjx0             = _mm_add_pd(fjx0,tx);
794             fjy0             = _mm_add_pd(fjy0,ty);
795             fjz0             = _mm_add_pd(fjz0,tz);
796
797             /**************************
798              * CALCULATE INTERACTIONS *
799              **************************/
800
801             /* Compute parameters for interactions between i and j atoms */
802             qq20             = _mm_mul_pd(iq2,jq0);
803
804             /* REACTION-FIELD ELECTROSTATICS */
805             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
806
807             fscal            = felec;
808
809             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
810
811             /* Calculate temporary vectorial force */
812             tx               = _mm_mul_pd(fscal,dx20);
813             ty               = _mm_mul_pd(fscal,dy20);
814             tz               = _mm_mul_pd(fscal,dz20);
815
816             /* Update vectorial force */
817             fix2             = _mm_add_pd(fix2,tx);
818             fiy2             = _mm_add_pd(fiy2,ty);
819             fiz2             = _mm_add_pd(fiz2,tz);
820
821             fjx0             = _mm_add_pd(fjx0,tx);
822             fjy0             = _mm_add_pd(fjy0,ty);
823             fjz0             = _mm_add_pd(fjz0,tz);
824
825             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
826
827             /* Inner loop uses 84 flops */
828         }
829
830         /* End of innermost loop */
831
832         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
833                                               f+i_coord_offset,fshift+i_shift_offset);
834
835         /* Increment number of inner iterations */
836         inneriter                  += j_index_end - j_index_start;
837
838         /* Outer loop uses 18 flops */
839     }
840
841     /* Increment number of outer iterations */
842     outeriter        += nri;
843
844     /* Update outer/inner flops */
845
846     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*84);
847 }