Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRF_VdwLJ_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_sse2_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm_set1_pd(fr->ic->k_rf);
120     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
121     crf              = _mm_set1_pd(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
129     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
130     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
131     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
158
159         fix0             = _mm_setzero_pd();
160         fiy0             = _mm_setzero_pd();
161         fiz0             = _mm_setzero_pd();
162         fix1             = _mm_setzero_pd();
163         fiy1             = _mm_setzero_pd();
164         fiz1             = _mm_setzero_pd();
165         fix2             = _mm_setzero_pd();
166         fiy2             = _mm_setzero_pd();
167         fiz2             = _mm_setzero_pd();
168         fix3             = _mm_setzero_pd();
169         fiy3             = _mm_setzero_pd();
170         fiz3             = _mm_setzero_pd();
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_pd();
174         vvdwsum          = _mm_setzero_pd();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185
186             /* load j atom coordinates */
187             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_pd(ix0,jx0);
192             dy00             = _mm_sub_pd(iy0,jy0);
193             dz00             = _mm_sub_pd(iz0,jz0);
194             dx10             = _mm_sub_pd(ix1,jx0);
195             dy10             = _mm_sub_pd(iy1,jy0);
196             dz10             = _mm_sub_pd(iz1,jz0);
197             dx20             = _mm_sub_pd(ix2,jx0);
198             dy20             = _mm_sub_pd(iy2,jy0);
199             dz20             = _mm_sub_pd(iz2,jz0);
200             dx30             = _mm_sub_pd(ix3,jx0);
201             dy30             = _mm_sub_pd(iy3,jy0);
202             dz30             = _mm_sub_pd(iz3,jz0);
203
204             /* Calculate squared distance and things based on it */
205             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
206             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
207             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
208             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
209
210             rinv10           = gmx_mm_invsqrt_pd(rsq10);
211             rinv20           = gmx_mm_invsqrt_pd(rsq20);
212             rinv30           = gmx_mm_invsqrt_pd(rsq30);
213
214             rinvsq00         = gmx_mm_inv_pd(rsq00);
215             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
216             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
217             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
221             vdwjidx0A        = 2*vdwtype[jnrA+0];
222             vdwjidx0B        = 2*vdwtype[jnrB+0];
223
224             fjx0             = _mm_setzero_pd();
225             fjy0             = _mm_setzero_pd();
226             fjz0             = _mm_setzero_pd();
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             /* Compute parameters for interactions between i and j atoms */
233             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
235
236             /* LENNARD-JONES DISPERSION/REPULSION */
237
238             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
239             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
240             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
241             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
242             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
246
247             fscal            = fvdw;
248
249             /* Calculate temporary vectorial force */
250             tx               = _mm_mul_pd(fscal,dx00);
251             ty               = _mm_mul_pd(fscal,dy00);
252             tz               = _mm_mul_pd(fscal,dz00);
253
254             /* Update vectorial force */
255             fix0             = _mm_add_pd(fix0,tx);
256             fiy0             = _mm_add_pd(fiy0,ty);
257             fiz0             = _mm_add_pd(fiz0,tz);
258
259             fjx0             = _mm_add_pd(fjx0,tx);
260             fjy0             = _mm_add_pd(fjy0,ty);
261             fjz0             = _mm_add_pd(fjz0,tz);
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             /* Compute parameters for interactions between i and j atoms */
268             qq10             = _mm_mul_pd(iq1,jq0);
269
270             /* REACTION-FIELD ELECTROSTATICS */
271             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
272             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velecsum         = _mm_add_pd(velecsum,velec);
276
277             fscal            = felec;
278
279             /* Calculate temporary vectorial force */
280             tx               = _mm_mul_pd(fscal,dx10);
281             ty               = _mm_mul_pd(fscal,dy10);
282             tz               = _mm_mul_pd(fscal,dz10);
283
284             /* Update vectorial force */
285             fix1             = _mm_add_pd(fix1,tx);
286             fiy1             = _mm_add_pd(fiy1,ty);
287             fiz1             = _mm_add_pd(fiz1,tz);
288
289             fjx0             = _mm_add_pd(fjx0,tx);
290             fjy0             = _mm_add_pd(fjy0,ty);
291             fjz0             = _mm_add_pd(fjz0,tz);
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq20             = _mm_mul_pd(iq2,jq0);
299
300             /* REACTION-FIELD ELECTROSTATICS */
301             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
302             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
303
304             /* Update potential sum for this i atom from the interaction with this j atom. */
305             velecsum         = _mm_add_pd(velecsum,velec);
306
307             fscal            = felec;
308
309             /* Calculate temporary vectorial force */
310             tx               = _mm_mul_pd(fscal,dx20);
311             ty               = _mm_mul_pd(fscal,dy20);
312             tz               = _mm_mul_pd(fscal,dz20);
313
314             /* Update vectorial force */
315             fix2             = _mm_add_pd(fix2,tx);
316             fiy2             = _mm_add_pd(fiy2,ty);
317             fiz2             = _mm_add_pd(fiz2,tz);
318
319             fjx0             = _mm_add_pd(fjx0,tx);
320             fjy0             = _mm_add_pd(fjy0,ty);
321             fjz0             = _mm_add_pd(fjz0,tz);
322
323             /**************************
324              * CALCULATE INTERACTIONS *
325              **************************/
326
327             /* Compute parameters for interactions between i and j atoms */
328             qq30             = _mm_mul_pd(iq3,jq0);
329
330             /* REACTION-FIELD ELECTROSTATICS */
331             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
332             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
333
334             /* Update potential sum for this i atom from the interaction with this j atom. */
335             velecsum         = _mm_add_pd(velecsum,velec);
336
337             fscal            = felec;
338
339             /* Calculate temporary vectorial force */
340             tx               = _mm_mul_pd(fscal,dx30);
341             ty               = _mm_mul_pd(fscal,dy30);
342             tz               = _mm_mul_pd(fscal,dz30);
343
344             /* Update vectorial force */
345             fix3             = _mm_add_pd(fix3,tx);
346             fiy3             = _mm_add_pd(fiy3,ty);
347             fiz3             = _mm_add_pd(fiz3,tz);
348
349             fjx0             = _mm_add_pd(fjx0,tx);
350             fjy0             = _mm_add_pd(fjy0,ty);
351             fjz0             = _mm_add_pd(fjz0,tz);
352
353             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
354
355             /* Inner loop uses 131 flops */
356         }
357
358         if(jidx<j_index_end)
359         {
360
361             jnrA             = jjnr[jidx];
362             j_coord_offsetA  = DIM*jnrA;
363
364             /* load j atom coordinates */
365             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
366                                               &jx0,&jy0,&jz0);
367
368             /* Calculate displacement vector */
369             dx00             = _mm_sub_pd(ix0,jx0);
370             dy00             = _mm_sub_pd(iy0,jy0);
371             dz00             = _mm_sub_pd(iz0,jz0);
372             dx10             = _mm_sub_pd(ix1,jx0);
373             dy10             = _mm_sub_pd(iy1,jy0);
374             dz10             = _mm_sub_pd(iz1,jz0);
375             dx20             = _mm_sub_pd(ix2,jx0);
376             dy20             = _mm_sub_pd(iy2,jy0);
377             dz20             = _mm_sub_pd(iz2,jz0);
378             dx30             = _mm_sub_pd(ix3,jx0);
379             dy30             = _mm_sub_pd(iy3,jy0);
380             dz30             = _mm_sub_pd(iz3,jz0);
381
382             /* Calculate squared distance and things based on it */
383             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
384             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
385             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
386             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
387
388             rinv10           = gmx_mm_invsqrt_pd(rsq10);
389             rinv20           = gmx_mm_invsqrt_pd(rsq20);
390             rinv30           = gmx_mm_invsqrt_pd(rsq30);
391
392             rinvsq00         = gmx_mm_inv_pd(rsq00);
393             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
394             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
395             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
396
397             /* Load parameters for j particles */
398             jq0              = _mm_load_sd(charge+jnrA+0);
399             vdwjidx0A        = 2*vdwtype[jnrA+0];
400
401             fjx0             = _mm_setzero_pd();
402             fjy0             = _mm_setzero_pd();
403             fjz0             = _mm_setzero_pd();
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             /* Compute parameters for interactions between i and j atoms */
410             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
411
412             /* LENNARD-JONES DISPERSION/REPULSION */
413
414             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
415             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
416             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
417             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
418             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
419
420             /* Update potential sum for this i atom from the interaction with this j atom. */
421             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
422             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
423
424             fscal            = fvdw;
425
426             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
427
428             /* Calculate temporary vectorial force */
429             tx               = _mm_mul_pd(fscal,dx00);
430             ty               = _mm_mul_pd(fscal,dy00);
431             tz               = _mm_mul_pd(fscal,dz00);
432
433             /* Update vectorial force */
434             fix0             = _mm_add_pd(fix0,tx);
435             fiy0             = _mm_add_pd(fiy0,ty);
436             fiz0             = _mm_add_pd(fiz0,tz);
437
438             fjx0             = _mm_add_pd(fjx0,tx);
439             fjy0             = _mm_add_pd(fjy0,ty);
440             fjz0             = _mm_add_pd(fjz0,tz);
441
442             /**************************
443              * CALCULATE INTERACTIONS *
444              **************************/
445
446             /* Compute parameters for interactions between i and j atoms */
447             qq10             = _mm_mul_pd(iq1,jq0);
448
449             /* REACTION-FIELD ELECTROSTATICS */
450             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
451             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
452
453             /* Update potential sum for this i atom from the interaction with this j atom. */
454             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
455             velecsum         = _mm_add_pd(velecsum,velec);
456
457             fscal            = felec;
458
459             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
460
461             /* Calculate temporary vectorial force */
462             tx               = _mm_mul_pd(fscal,dx10);
463             ty               = _mm_mul_pd(fscal,dy10);
464             tz               = _mm_mul_pd(fscal,dz10);
465
466             /* Update vectorial force */
467             fix1             = _mm_add_pd(fix1,tx);
468             fiy1             = _mm_add_pd(fiy1,ty);
469             fiz1             = _mm_add_pd(fiz1,tz);
470
471             fjx0             = _mm_add_pd(fjx0,tx);
472             fjy0             = _mm_add_pd(fjy0,ty);
473             fjz0             = _mm_add_pd(fjz0,tz);
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             /* Compute parameters for interactions between i and j atoms */
480             qq20             = _mm_mul_pd(iq2,jq0);
481
482             /* REACTION-FIELD ELECTROSTATICS */
483             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
484             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
485
486             /* Update potential sum for this i atom from the interaction with this j atom. */
487             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
488             velecsum         = _mm_add_pd(velecsum,velec);
489
490             fscal            = felec;
491
492             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
493
494             /* Calculate temporary vectorial force */
495             tx               = _mm_mul_pd(fscal,dx20);
496             ty               = _mm_mul_pd(fscal,dy20);
497             tz               = _mm_mul_pd(fscal,dz20);
498
499             /* Update vectorial force */
500             fix2             = _mm_add_pd(fix2,tx);
501             fiy2             = _mm_add_pd(fiy2,ty);
502             fiz2             = _mm_add_pd(fiz2,tz);
503
504             fjx0             = _mm_add_pd(fjx0,tx);
505             fjy0             = _mm_add_pd(fjy0,ty);
506             fjz0             = _mm_add_pd(fjz0,tz);
507
508             /**************************
509              * CALCULATE INTERACTIONS *
510              **************************/
511
512             /* Compute parameters for interactions between i and j atoms */
513             qq30             = _mm_mul_pd(iq3,jq0);
514
515             /* REACTION-FIELD ELECTROSTATICS */
516             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
517             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
521             velecsum         = _mm_add_pd(velecsum,velec);
522
523             fscal            = felec;
524
525             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
526
527             /* Calculate temporary vectorial force */
528             tx               = _mm_mul_pd(fscal,dx30);
529             ty               = _mm_mul_pd(fscal,dy30);
530             tz               = _mm_mul_pd(fscal,dz30);
531
532             /* Update vectorial force */
533             fix3             = _mm_add_pd(fix3,tx);
534             fiy3             = _mm_add_pd(fiy3,ty);
535             fiz3             = _mm_add_pd(fiz3,tz);
536
537             fjx0             = _mm_add_pd(fjx0,tx);
538             fjy0             = _mm_add_pd(fjy0,ty);
539             fjz0             = _mm_add_pd(fjz0,tz);
540
541             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
542
543             /* Inner loop uses 131 flops */
544         }
545
546         /* End of innermost loop */
547
548         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
549                                               f+i_coord_offset,fshift+i_shift_offset);
550
551         ggid                        = gid[iidx];
552         /* Update potential energies */
553         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
554         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
555
556         /* Increment number of inner iterations */
557         inneriter                  += j_index_end - j_index_start;
558
559         /* Outer loop uses 26 flops */
560     }
561
562     /* Increment number of outer iterations */
563     outeriter        += nri;
564
565     /* Update outer/inner flops */
566
567     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*131);
568 }
569 /*
570  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_sse2_double
571  * Electrostatics interaction: ReactionField
572  * VdW interaction:            LennardJones
573  * Geometry:                   Water4-Particle
574  * Calculate force/pot:        Force
575  */
576 void
577 nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_sse2_double
578                     (t_nblist                    * gmx_restrict       nlist,
579                      rvec                        * gmx_restrict          xx,
580                      rvec                        * gmx_restrict          ff,
581                      t_forcerec                  * gmx_restrict          fr,
582                      t_mdatoms                   * gmx_restrict     mdatoms,
583                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
584                      t_nrnb                      * gmx_restrict        nrnb)
585 {
586     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
587      * just 0 for non-waters.
588      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
589      * jnr indices corresponding to data put in the four positions in the SIMD register.
590      */
591     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
592     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
593     int              jnrA,jnrB;
594     int              j_coord_offsetA,j_coord_offsetB;
595     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
596     real             rcutoff_scalar;
597     real             *shiftvec,*fshift,*x,*f;
598     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
599     int              vdwioffset0;
600     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
601     int              vdwioffset1;
602     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
603     int              vdwioffset2;
604     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
605     int              vdwioffset3;
606     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
607     int              vdwjidx0A,vdwjidx0B;
608     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
609     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
610     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
611     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
612     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
613     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
614     real             *charge;
615     int              nvdwtype;
616     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
617     int              *vdwtype;
618     real             *vdwparam;
619     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
620     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
621     __m128d          dummy_mask,cutoff_mask;
622     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
623     __m128d          one     = _mm_set1_pd(1.0);
624     __m128d          two     = _mm_set1_pd(2.0);
625     x                = xx[0];
626     f                = ff[0];
627
628     nri              = nlist->nri;
629     iinr             = nlist->iinr;
630     jindex           = nlist->jindex;
631     jjnr             = nlist->jjnr;
632     shiftidx         = nlist->shift;
633     gid              = nlist->gid;
634     shiftvec         = fr->shift_vec[0];
635     fshift           = fr->fshift[0];
636     facel            = _mm_set1_pd(fr->epsfac);
637     charge           = mdatoms->chargeA;
638     krf              = _mm_set1_pd(fr->ic->k_rf);
639     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
640     crf              = _mm_set1_pd(fr->ic->c_rf);
641     nvdwtype         = fr->ntype;
642     vdwparam         = fr->nbfp;
643     vdwtype          = mdatoms->typeA;
644
645     /* Setup water-specific parameters */
646     inr              = nlist->iinr[0];
647     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
648     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
649     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
650     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
651
652     /* Avoid stupid compiler warnings */
653     jnrA = jnrB = 0;
654     j_coord_offsetA = 0;
655     j_coord_offsetB = 0;
656
657     outeriter        = 0;
658     inneriter        = 0;
659
660     /* Start outer loop over neighborlists */
661     for(iidx=0; iidx<nri; iidx++)
662     {
663         /* Load shift vector for this list */
664         i_shift_offset   = DIM*shiftidx[iidx];
665
666         /* Load limits for loop over neighbors */
667         j_index_start    = jindex[iidx];
668         j_index_end      = jindex[iidx+1];
669
670         /* Get outer coordinate index */
671         inr              = iinr[iidx];
672         i_coord_offset   = DIM*inr;
673
674         /* Load i particle coords and add shift vector */
675         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
676                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
677
678         fix0             = _mm_setzero_pd();
679         fiy0             = _mm_setzero_pd();
680         fiz0             = _mm_setzero_pd();
681         fix1             = _mm_setzero_pd();
682         fiy1             = _mm_setzero_pd();
683         fiz1             = _mm_setzero_pd();
684         fix2             = _mm_setzero_pd();
685         fiy2             = _mm_setzero_pd();
686         fiz2             = _mm_setzero_pd();
687         fix3             = _mm_setzero_pd();
688         fiy3             = _mm_setzero_pd();
689         fiz3             = _mm_setzero_pd();
690
691         /* Start inner kernel loop */
692         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
693         {
694
695             /* Get j neighbor index, and coordinate index */
696             jnrA             = jjnr[jidx];
697             jnrB             = jjnr[jidx+1];
698             j_coord_offsetA  = DIM*jnrA;
699             j_coord_offsetB  = DIM*jnrB;
700
701             /* load j atom coordinates */
702             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
703                                               &jx0,&jy0,&jz0);
704
705             /* Calculate displacement vector */
706             dx00             = _mm_sub_pd(ix0,jx0);
707             dy00             = _mm_sub_pd(iy0,jy0);
708             dz00             = _mm_sub_pd(iz0,jz0);
709             dx10             = _mm_sub_pd(ix1,jx0);
710             dy10             = _mm_sub_pd(iy1,jy0);
711             dz10             = _mm_sub_pd(iz1,jz0);
712             dx20             = _mm_sub_pd(ix2,jx0);
713             dy20             = _mm_sub_pd(iy2,jy0);
714             dz20             = _mm_sub_pd(iz2,jz0);
715             dx30             = _mm_sub_pd(ix3,jx0);
716             dy30             = _mm_sub_pd(iy3,jy0);
717             dz30             = _mm_sub_pd(iz3,jz0);
718
719             /* Calculate squared distance and things based on it */
720             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
721             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
722             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
723             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
724
725             rinv10           = gmx_mm_invsqrt_pd(rsq10);
726             rinv20           = gmx_mm_invsqrt_pd(rsq20);
727             rinv30           = gmx_mm_invsqrt_pd(rsq30);
728
729             rinvsq00         = gmx_mm_inv_pd(rsq00);
730             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
731             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
732             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
733
734             /* Load parameters for j particles */
735             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
736             vdwjidx0A        = 2*vdwtype[jnrA+0];
737             vdwjidx0B        = 2*vdwtype[jnrB+0];
738
739             fjx0             = _mm_setzero_pd();
740             fjy0             = _mm_setzero_pd();
741             fjz0             = _mm_setzero_pd();
742
743             /**************************
744              * CALCULATE INTERACTIONS *
745              **************************/
746
747             /* Compute parameters for interactions between i and j atoms */
748             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
749                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
750
751             /* LENNARD-JONES DISPERSION/REPULSION */
752
753             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
754             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
755
756             fscal            = fvdw;
757
758             /* Calculate temporary vectorial force */
759             tx               = _mm_mul_pd(fscal,dx00);
760             ty               = _mm_mul_pd(fscal,dy00);
761             tz               = _mm_mul_pd(fscal,dz00);
762
763             /* Update vectorial force */
764             fix0             = _mm_add_pd(fix0,tx);
765             fiy0             = _mm_add_pd(fiy0,ty);
766             fiz0             = _mm_add_pd(fiz0,tz);
767
768             fjx0             = _mm_add_pd(fjx0,tx);
769             fjy0             = _mm_add_pd(fjy0,ty);
770             fjz0             = _mm_add_pd(fjz0,tz);
771
772             /**************************
773              * CALCULATE INTERACTIONS *
774              **************************/
775
776             /* Compute parameters for interactions between i and j atoms */
777             qq10             = _mm_mul_pd(iq1,jq0);
778
779             /* REACTION-FIELD ELECTROSTATICS */
780             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
781
782             fscal            = felec;
783
784             /* Calculate temporary vectorial force */
785             tx               = _mm_mul_pd(fscal,dx10);
786             ty               = _mm_mul_pd(fscal,dy10);
787             tz               = _mm_mul_pd(fscal,dz10);
788
789             /* Update vectorial force */
790             fix1             = _mm_add_pd(fix1,tx);
791             fiy1             = _mm_add_pd(fiy1,ty);
792             fiz1             = _mm_add_pd(fiz1,tz);
793
794             fjx0             = _mm_add_pd(fjx0,tx);
795             fjy0             = _mm_add_pd(fjy0,ty);
796             fjz0             = _mm_add_pd(fjz0,tz);
797
798             /**************************
799              * CALCULATE INTERACTIONS *
800              **************************/
801
802             /* Compute parameters for interactions between i and j atoms */
803             qq20             = _mm_mul_pd(iq2,jq0);
804
805             /* REACTION-FIELD ELECTROSTATICS */
806             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
807
808             fscal            = felec;
809
810             /* Calculate temporary vectorial force */
811             tx               = _mm_mul_pd(fscal,dx20);
812             ty               = _mm_mul_pd(fscal,dy20);
813             tz               = _mm_mul_pd(fscal,dz20);
814
815             /* Update vectorial force */
816             fix2             = _mm_add_pd(fix2,tx);
817             fiy2             = _mm_add_pd(fiy2,ty);
818             fiz2             = _mm_add_pd(fiz2,tz);
819
820             fjx0             = _mm_add_pd(fjx0,tx);
821             fjy0             = _mm_add_pd(fjy0,ty);
822             fjz0             = _mm_add_pd(fjz0,tz);
823
824             /**************************
825              * CALCULATE INTERACTIONS *
826              **************************/
827
828             /* Compute parameters for interactions between i and j atoms */
829             qq30             = _mm_mul_pd(iq3,jq0);
830
831             /* REACTION-FIELD ELECTROSTATICS */
832             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
833
834             fscal            = felec;
835
836             /* Calculate temporary vectorial force */
837             tx               = _mm_mul_pd(fscal,dx30);
838             ty               = _mm_mul_pd(fscal,dy30);
839             tz               = _mm_mul_pd(fscal,dz30);
840
841             /* Update vectorial force */
842             fix3             = _mm_add_pd(fix3,tx);
843             fiy3             = _mm_add_pd(fiy3,ty);
844             fiz3             = _mm_add_pd(fiz3,tz);
845
846             fjx0             = _mm_add_pd(fjx0,tx);
847             fjy0             = _mm_add_pd(fjy0,ty);
848             fjz0             = _mm_add_pd(fjz0,tz);
849
850             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
851
852             /* Inner loop uses 111 flops */
853         }
854
855         if(jidx<j_index_end)
856         {
857
858             jnrA             = jjnr[jidx];
859             j_coord_offsetA  = DIM*jnrA;
860
861             /* load j atom coordinates */
862             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
863                                               &jx0,&jy0,&jz0);
864
865             /* Calculate displacement vector */
866             dx00             = _mm_sub_pd(ix0,jx0);
867             dy00             = _mm_sub_pd(iy0,jy0);
868             dz00             = _mm_sub_pd(iz0,jz0);
869             dx10             = _mm_sub_pd(ix1,jx0);
870             dy10             = _mm_sub_pd(iy1,jy0);
871             dz10             = _mm_sub_pd(iz1,jz0);
872             dx20             = _mm_sub_pd(ix2,jx0);
873             dy20             = _mm_sub_pd(iy2,jy0);
874             dz20             = _mm_sub_pd(iz2,jz0);
875             dx30             = _mm_sub_pd(ix3,jx0);
876             dy30             = _mm_sub_pd(iy3,jy0);
877             dz30             = _mm_sub_pd(iz3,jz0);
878
879             /* Calculate squared distance and things based on it */
880             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
881             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
882             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
883             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
884
885             rinv10           = gmx_mm_invsqrt_pd(rsq10);
886             rinv20           = gmx_mm_invsqrt_pd(rsq20);
887             rinv30           = gmx_mm_invsqrt_pd(rsq30);
888
889             rinvsq00         = gmx_mm_inv_pd(rsq00);
890             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
891             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
892             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
893
894             /* Load parameters for j particles */
895             jq0              = _mm_load_sd(charge+jnrA+0);
896             vdwjidx0A        = 2*vdwtype[jnrA+0];
897
898             fjx0             = _mm_setzero_pd();
899             fjy0             = _mm_setzero_pd();
900             fjz0             = _mm_setzero_pd();
901
902             /**************************
903              * CALCULATE INTERACTIONS *
904              **************************/
905
906             /* Compute parameters for interactions between i and j atoms */
907             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
908
909             /* LENNARD-JONES DISPERSION/REPULSION */
910
911             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
912             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
913
914             fscal            = fvdw;
915
916             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
917
918             /* Calculate temporary vectorial force */
919             tx               = _mm_mul_pd(fscal,dx00);
920             ty               = _mm_mul_pd(fscal,dy00);
921             tz               = _mm_mul_pd(fscal,dz00);
922
923             /* Update vectorial force */
924             fix0             = _mm_add_pd(fix0,tx);
925             fiy0             = _mm_add_pd(fiy0,ty);
926             fiz0             = _mm_add_pd(fiz0,tz);
927
928             fjx0             = _mm_add_pd(fjx0,tx);
929             fjy0             = _mm_add_pd(fjy0,ty);
930             fjz0             = _mm_add_pd(fjz0,tz);
931
932             /**************************
933              * CALCULATE INTERACTIONS *
934              **************************/
935
936             /* Compute parameters for interactions between i and j atoms */
937             qq10             = _mm_mul_pd(iq1,jq0);
938
939             /* REACTION-FIELD ELECTROSTATICS */
940             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
941
942             fscal            = felec;
943
944             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
945
946             /* Calculate temporary vectorial force */
947             tx               = _mm_mul_pd(fscal,dx10);
948             ty               = _mm_mul_pd(fscal,dy10);
949             tz               = _mm_mul_pd(fscal,dz10);
950
951             /* Update vectorial force */
952             fix1             = _mm_add_pd(fix1,tx);
953             fiy1             = _mm_add_pd(fiy1,ty);
954             fiz1             = _mm_add_pd(fiz1,tz);
955
956             fjx0             = _mm_add_pd(fjx0,tx);
957             fjy0             = _mm_add_pd(fjy0,ty);
958             fjz0             = _mm_add_pd(fjz0,tz);
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             /* Compute parameters for interactions between i and j atoms */
965             qq20             = _mm_mul_pd(iq2,jq0);
966
967             /* REACTION-FIELD ELECTROSTATICS */
968             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
969
970             fscal            = felec;
971
972             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
973
974             /* Calculate temporary vectorial force */
975             tx               = _mm_mul_pd(fscal,dx20);
976             ty               = _mm_mul_pd(fscal,dy20);
977             tz               = _mm_mul_pd(fscal,dz20);
978
979             /* Update vectorial force */
980             fix2             = _mm_add_pd(fix2,tx);
981             fiy2             = _mm_add_pd(fiy2,ty);
982             fiz2             = _mm_add_pd(fiz2,tz);
983
984             fjx0             = _mm_add_pd(fjx0,tx);
985             fjy0             = _mm_add_pd(fjy0,ty);
986             fjz0             = _mm_add_pd(fjz0,tz);
987
988             /**************************
989              * CALCULATE INTERACTIONS *
990              **************************/
991
992             /* Compute parameters for interactions between i and j atoms */
993             qq30             = _mm_mul_pd(iq3,jq0);
994
995             /* REACTION-FIELD ELECTROSTATICS */
996             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
997
998             fscal            = felec;
999
1000             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1001
1002             /* Calculate temporary vectorial force */
1003             tx               = _mm_mul_pd(fscal,dx30);
1004             ty               = _mm_mul_pd(fscal,dy30);
1005             tz               = _mm_mul_pd(fscal,dz30);
1006
1007             /* Update vectorial force */
1008             fix3             = _mm_add_pd(fix3,tx);
1009             fiy3             = _mm_add_pd(fiy3,ty);
1010             fiz3             = _mm_add_pd(fiz3,tz);
1011
1012             fjx0             = _mm_add_pd(fjx0,tx);
1013             fjy0             = _mm_add_pd(fjy0,ty);
1014             fjz0             = _mm_add_pd(fjz0,tz);
1015
1016             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1017
1018             /* Inner loop uses 111 flops */
1019         }
1020
1021         /* End of innermost loop */
1022
1023         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1024                                               f+i_coord_offset,fshift+i_shift_offset);
1025
1026         /* Increment number of inner iterations */
1027         inneriter                  += j_index_end - j_index_start;
1028
1029         /* Outer loop uses 24 flops */
1030     }
1031
1032     /* Increment number of outer iterations */
1033     outeriter        += nri;
1034
1035     /* Update outer/inner flops */
1036
1037     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*111);
1038 }