Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRF_VdwLJ_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_sse2_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128d          dummy_mask,cutoff_mask;
105     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
106     __m128d          one     = _mm_set1_pd(1.0);
107     __m128d          two     = _mm_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm_set1_pd(fr->ic->k_rf);
122     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
123     crf              = _mm_set1_pd(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
131     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
132     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
159                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
160
161         fix0             = _mm_setzero_pd();
162         fiy0             = _mm_setzero_pd();
163         fiz0             = _mm_setzero_pd();
164         fix1             = _mm_setzero_pd();
165         fiy1             = _mm_setzero_pd();
166         fiz1             = _mm_setzero_pd();
167         fix2             = _mm_setzero_pd();
168         fiy2             = _mm_setzero_pd();
169         fiz2             = _mm_setzero_pd();
170         fix3             = _mm_setzero_pd();
171         fiy3             = _mm_setzero_pd();
172         fiz3             = _mm_setzero_pd();
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_pd();
176         vvdwsum          = _mm_setzero_pd();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187
188             /* load j atom coordinates */
189             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_pd(ix0,jx0);
194             dy00             = _mm_sub_pd(iy0,jy0);
195             dz00             = _mm_sub_pd(iz0,jz0);
196             dx10             = _mm_sub_pd(ix1,jx0);
197             dy10             = _mm_sub_pd(iy1,jy0);
198             dz10             = _mm_sub_pd(iz1,jz0);
199             dx20             = _mm_sub_pd(ix2,jx0);
200             dy20             = _mm_sub_pd(iy2,jy0);
201             dz20             = _mm_sub_pd(iz2,jz0);
202             dx30             = _mm_sub_pd(ix3,jx0);
203             dy30             = _mm_sub_pd(iy3,jy0);
204             dz30             = _mm_sub_pd(iz3,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
208             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
209             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
210             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
211
212             rinv10           = gmx_mm_invsqrt_pd(rsq10);
213             rinv20           = gmx_mm_invsqrt_pd(rsq20);
214             rinv30           = gmx_mm_invsqrt_pd(rsq30);
215
216             rinvsq00         = gmx_mm_inv_pd(rsq00);
217             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
218             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
219             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
220
221             /* Load parameters for j particles */
222             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
223             vdwjidx0A        = 2*vdwtype[jnrA+0];
224             vdwjidx0B        = 2*vdwtype[jnrB+0];
225
226             fjx0             = _mm_setzero_pd();
227             fjy0             = _mm_setzero_pd();
228             fjz0             = _mm_setzero_pd();
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             /* Compute parameters for interactions between i and j atoms */
235             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
236                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
237
238             /* LENNARD-JONES DISPERSION/REPULSION */
239
240             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
241             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
242             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
243             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
244             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
248
249             fscal            = fvdw;
250
251             /* Calculate temporary vectorial force */
252             tx               = _mm_mul_pd(fscal,dx00);
253             ty               = _mm_mul_pd(fscal,dy00);
254             tz               = _mm_mul_pd(fscal,dz00);
255
256             /* Update vectorial force */
257             fix0             = _mm_add_pd(fix0,tx);
258             fiy0             = _mm_add_pd(fiy0,ty);
259             fiz0             = _mm_add_pd(fiz0,tz);
260
261             fjx0             = _mm_add_pd(fjx0,tx);
262             fjy0             = _mm_add_pd(fjy0,ty);
263             fjz0             = _mm_add_pd(fjz0,tz);
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             /* Compute parameters for interactions between i and j atoms */
270             qq10             = _mm_mul_pd(iq1,jq0);
271
272             /* REACTION-FIELD ELECTROSTATICS */
273             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
274             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velecsum         = _mm_add_pd(velecsum,velec);
278
279             fscal            = felec;
280
281             /* Calculate temporary vectorial force */
282             tx               = _mm_mul_pd(fscal,dx10);
283             ty               = _mm_mul_pd(fscal,dy10);
284             tz               = _mm_mul_pd(fscal,dz10);
285
286             /* Update vectorial force */
287             fix1             = _mm_add_pd(fix1,tx);
288             fiy1             = _mm_add_pd(fiy1,ty);
289             fiz1             = _mm_add_pd(fiz1,tz);
290
291             fjx0             = _mm_add_pd(fjx0,tx);
292             fjy0             = _mm_add_pd(fjy0,ty);
293             fjz0             = _mm_add_pd(fjz0,tz);
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq20             = _mm_mul_pd(iq2,jq0);
301
302             /* REACTION-FIELD ELECTROSTATICS */
303             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
304             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             velecsum         = _mm_add_pd(velecsum,velec);
308
309             fscal            = felec;
310
311             /* Calculate temporary vectorial force */
312             tx               = _mm_mul_pd(fscal,dx20);
313             ty               = _mm_mul_pd(fscal,dy20);
314             tz               = _mm_mul_pd(fscal,dz20);
315
316             /* Update vectorial force */
317             fix2             = _mm_add_pd(fix2,tx);
318             fiy2             = _mm_add_pd(fiy2,ty);
319             fiz2             = _mm_add_pd(fiz2,tz);
320
321             fjx0             = _mm_add_pd(fjx0,tx);
322             fjy0             = _mm_add_pd(fjy0,ty);
323             fjz0             = _mm_add_pd(fjz0,tz);
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             /* Compute parameters for interactions between i and j atoms */
330             qq30             = _mm_mul_pd(iq3,jq0);
331
332             /* REACTION-FIELD ELECTROSTATICS */
333             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
334             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velecsum         = _mm_add_pd(velecsum,velec);
338
339             fscal            = felec;
340
341             /* Calculate temporary vectorial force */
342             tx               = _mm_mul_pd(fscal,dx30);
343             ty               = _mm_mul_pd(fscal,dy30);
344             tz               = _mm_mul_pd(fscal,dz30);
345
346             /* Update vectorial force */
347             fix3             = _mm_add_pd(fix3,tx);
348             fiy3             = _mm_add_pd(fiy3,ty);
349             fiz3             = _mm_add_pd(fiz3,tz);
350
351             fjx0             = _mm_add_pd(fjx0,tx);
352             fjy0             = _mm_add_pd(fjy0,ty);
353             fjz0             = _mm_add_pd(fjz0,tz);
354
355             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
356
357             /* Inner loop uses 131 flops */
358         }
359
360         if(jidx<j_index_end)
361         {
362
363             jnrA             = jjnr[jidx];
364             j_coord_offsetA  = DIM*jnrA;
365
366             /* load j atom coordinates */
367             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
368                                               &jx0,&jy0,&jz0);
369
370             /* Calculate displacement vector */
371             dx00             = _mm_sub_pd(ix0,jx0);
372             dy00             = _mm_sub_pd(iy0,jy0);
373             dz00             = _mm_sub_pd(iz0,jz0);
374             dx10             = _mm_sub_pd(ix1,jx0);
375             dy10             = _mm_sub_pd(iy1,jy0);
376             dz10             = _mm_sub_pd(iz1,jz0);
377             dx20             = _mm_sub_pd(ix2,jx0);
378             dy20             = _mm_sub_pd(iy2,jy0);
379             dz20             = _mm_sub_pd(iz2,jz0);
380             dx30             = _mm_sub_pd(ix3,jx0);
381             dy30             = _mm_sub_pd(iy3,jy0);
382             dz30             = _mm_sub_pd(iz3,jz0);
383
384             /* Calculate squared distance and things based on it */
385             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
386             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
387             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
388             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
389
390             rinv10           = gmx_mm_invsqrt_pd(rsq10);
391             rinv20           = gmx_mm_invsqrt_pd(rsq20);
392             rinv30           = gmx_mm_invsqrt_pd(rsq30);
393
394             rinvsq00         = gmx_mm_inv_pd(rsq00);
395             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
396             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
397             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
398
399             /* Load parameters for j particles */
400             jq0              = _mm_load_sd(charge+jnrA+0);
401             vdwjidx0A        = 2*vdwtype[jnrA+0];
402
403             fjx0             = _mm_setzero_pd();
404             fjy0             = _mm_setzero_pd();
405             fjz0             = _mm_setzero_pd();
406
407             /**************************
408              * CALCULATE INTERACTIONS *
409              **************************/
410
411             /* Compute parameters for interactions between i and j atoms */
412             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
413
414             /* LENNARD-JONES DISPERSION/REPULSION */
415
416             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
417             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
418             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
419             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
420             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
421
422             /* Update potential sum for this i atom from the interaction with this j atom. */
423             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
424             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
425
426             fscal            = fvdw;
427
428             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
429
430             /* Calculate temporary vectorial force */
431             tx               = _mm_mul_pd(fscal,dx00);
432             ty               = _mm_mul_pd(fscal,dy00);
433             tz               = _mm_mul_pd(fscal,dz00);
434
435             /* Update vectorial force */
436             fix0             = _mm_add_pd(fix0,tx);
437             fiy0             = _mm_add_pd(fiy0,ty);
438             fiz0             = _mm_add_pd(fiz0,tz);
439
440             fjx0             = _mm_add_pd(fjx0,tx);
441             fjy0             = _mm_add_pd(fjy0,ty);
442             fjz0             = _mm_add_pd(fjz0,tz);
443
444             /**************************
445              * CALCULATE INTERACTIONS *
446              **************************/
447
448             /* Compute parameters for interactions between i and j atoms */
449             qq10             = _mm_mul_pd(iq1,jq0);
450
451             /* REACTION-FIELD ELECTROSTATICS */
452             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
453             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
454
455             /* Update potential sum for this i atom from the interaction with this j atom. */
456             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
457             velecsum         = _mm_add_pd(velecsum,velec);
458
459             fscal            = felec;
460
461             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
462
463             /* Calculate temporary vectorial force */
464             tx               = _mm_mul_pd(fscal,dx10);
465             ty               = _mm_mul_pd(fscal,dy10);
466             tz               = _mm_mul_pd(fscal,dz10);
467
468             /* Update vectorial force */
469             fix1             = _mm_add_pd(fix1,tx);
470             fiy1             = _mm_add_pd(fiy1,ty);
471             fiz1             = _mm_add_pd(fiz1,tz);
472
473             fjx0             = _mm_add_pd(fjx0,tx);
474             fjy0             = _mm_add_pd(fjy0,ty);
475             fjz0             = _mm_add_pd(fjz0,tz);
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             /* Compute parameters for interactions between i and j atoms */
482             qq20             = _mm_mul_pd(iq2,jq0);
483
484             /* REACTION-FIELD ELECTROSTATICS */
485             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
486             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
487
488             /* Update potential sum for this i atom from the interaction with this j atom. */
489             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
490             velecsum         = _mm_add_pd(velecsum,velec);
491
492             fscal            = felec;
493
494             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
495
496             /* Calculate temporary vectorial force */
497             tx               = _mm_mul_pd(fscal,dx20);
498             ty               = _mm_mul_pd(fscal,dy20);
499             tz               = _mm_mul_pd(fscal,dz20);
500
501             /* Update vectorial force */
502             fix2             = _mm_add_pd(fix2,tx);
503             fiy2             = _mm_add_pd(fiy2,ty);
504             fiz2             = _mm_add_pd(fiz2,tz);
505
506             fjx0             = _mm_add_pd(fjx0,tx);
507             fjy0             = _mm_add_pd(fjy0,ty);
508             fjz0             = _mm_add_pd(fjz0,tz);
509
510             /**************************
511              * CALCULATE INTERACTIONS *
512              **************************/
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq30             = _mm_mul_pd(iq3,jq0);
516
517             /* REACTION-FIELD ELECTROSTATICS */
518             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
519             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
520
521             /* Update potential sum for this i atom from the interaction with this j atom. */
522             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
523             velecsum         = _mm_add_pd(velecsum,velec);
524
525             fscal            = felec;
526
527             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_pd(fscal,dx30);
531             ty               = _mm_mul_pd(fscal,dy30);
532             tz               = _mm_mul_pd(fscal,dz30);
533
534             /* Update vectorial force */
535             fix3             = _mm_add_pd(fix3,tx);
536             fiy3             = _mm_add_pd(fiy3,ty);
537             fiz3             = _mm_add_pd(fiz3,tz);
538
539             fjx0             = _mm_add_pd(fjx0,tx);
540             fjy0             = _mm_add_pd(fjy0,ty);
541             fjz0             = _mm_add_pd(fjz0,tz);
542
543             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
544
545             /* Inner loop uses 131 flops */
546         }
547
548         /* End of innermost loop */
549
550         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
551                                               f+i_coord_offset,fshift+i_shift_offset);
552
553         ggid                        = gid[iidx];
554         /* Update potential energies */
555         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
556         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
557
558         /* Increment number of inner iterations */
559         inneriter                  += j_index_end - j_index_start;
560
561         /* Outer loop uses 26 flops */
562     }
563
564     /* Increment number of outer iterations */
565     outeriter        += nri;
566
567     /* Update outer/inner flops */
568
569     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*131);
570 }
571 /*
572  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_sse2_double
573  * Electrostatics interaction: ReactionField
574  * VdW interaction:            LennardJones
575  * Geometry:                   Water4-Particle
576  * Calculate force/pot:        Force
577  */
578 void
579 nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_sse2_double
580                     (t_nblist                    * gmx_restrict       nlist,
581                      rvec                        * gmx_restrict          xx,
582                      rvec                        * gmx_restrict          ff,
583                      t_forcerec                  * gmx_restrict          fr,
584                      t_mdatoms                   * gmx_restrict     mdatoms,
585                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
586                      t_nrnb                      * gmx_restrict        nrnb)
587 {
588     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
589      * just 0 for non-waters.
590      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
591      * jnr indices corresponding to data put in the four positions in the SIMD register.
592      */
593     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
594     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
595     int              jnrA,jnrB;
596     int              j_coord_offsetA,j_coord_offsetB;
597     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
598     real             rcutoff_scalar;
599     real             *shiftvec,*fshift,*x,*f;
600     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
601     int              vdwioffset0;
602     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
603     int              vdwioffset1;
604     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
605     int              vdwioffset2;
606     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
607     int              vdwioffset3;
608     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
609     int              vdwjidx0A,vdwjidx0B;
610     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
611     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
612     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
613     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
614     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
615     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
616     real             *charge;
617     int              nvdwtype;
618     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
619     int              *vdwtype;
620     real             *vdwparam;
621     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
622     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
623     __m128d          dummy_mask,cutoff_mask;
624     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
625     __m128d          one     = _mm_set1_pd(1.0);
626     __m128d          two     = _mm_set1_pd(2.0);
627     x                = xx[0];
628     f                = ff[0];
629
630     nri              = nlist->nri;
631     iinr             = nlist->iinr;
632     jindex           = nlist->jindex;
633     jjnr             = nlist->jjnr;
634     shiftidx         = nlist->shift;
635     gid              = nlist->gid;
636     shiftvec         = fr->shift_vec[0];
637     fshift           = fr->fshift[0];
638     facel            = _mm_set1_pd(fr->epsfac);
639     charge           = mdatoms->chargeA;
640     krf              = _mm_set1_pd(fr->ic->k_rf);
641     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
642     crf              = _mm_set1_pd(fr->ic->c_rf);
643     nvdwtype         = fr->ntype;
644     vdwparam         = fr->nbfp;
645     vdwtype          = mdatoms->typeA;
646
647     /* Setup water-specific parameters */
648     inr              = nlist->iinr[0];
649     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
650     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
651     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
652     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
653
654     /* Avoid stupid compiler warnings */
655     jnrA = jnrB = 0;
656     j_coord_offsetA = 0;
657     j_coord_offsetB = 0;
658
659     outeriter        = 0;
660     inneriter        = 0;
661
662     /* Start outer loop over neighborlists */
663     for(iidx=0; iidx<nri; iidx++)
664     {
665         /* Load shift vector for this list */
666         i_shift_offset   = DIM*shiftidx[iidx];
667
668         /* Load limits for loop over neighbors */
669         j_index_start    = jindex[iidx];
670         j_index_end      = jindex[iidx+1];
671
672         /* Get outer coordinate index */
673         inr              = iinr[iidx];
674         i_coord_offset   = DIM*inr;
675
676         /* Load i particle coords and add shift vector */
677         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
678                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
679
680         fix0             = _mm_setzero_pd();
681         fiy0             = _mm_setzero_pd();
682         fiz0             = _mm_setzero_pd();
683         fix1             = _mm_setzero_pd();
684         fiy1             = _mm_setzero_pd();
685         fiz1             = _mm_setzero_pd();
686         fix2             = _mm_setzero_pd();
687         fiy2             = _mm_setzero_pd();
688         fiz2             = _mm_setzero_pd();
689         fix3             = _mm_setzero_pd();
690         fiy3             = _mm_setzero_pd();
691         fiz3             = _mm_setzero_pd();
692
693         /* Start inner kernel loop */
694         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
695         {
696
697             /* Get j neighbor index, and coordinate index */
698             jnrA             = jjnr[jidx];
699             jnrB             = jjnr[jidx+1];
700             j_coord_offsetA  = DIM*jnrA;
701             j_coord_offsetB  = DIM*jnrB;
702
703             /* load j atom coordinates */
704             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
705                                               &jx0,&jy0,&jz0);
706
707             /* Calculate displacement vector */
708             dx00             = _mm_sub_pd(ix0,jx0);
709             dy00             = _mm_sub_pd(iy0,jy0);
710             dz00             = _mm_sub_pd(iz0,jz0);
711             dx10             = _mm_sub_pd(ix1,jx0);
712             dy10             = _mm_sub_pd(iy1,jy0);
713             dz10             = _mm_sub_pd(iz1,jz0);
714             dx20             = _mm_sub_pd(ix2,jx0);
715             dy20             = _mm_sub_pd(iy2,jy0);
716             dz20             = _mm_sub_pd(iz2,jz0);
717             dx30             = _mm_sub_pd(ix3,jx0);
718             dy30             = _mm_sub_pd(iy3,jy0);
719             dz30             = _mm_sub_pd(iz3,jz0);
720
721             /* Calculate squared distance and things based on it */
722             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
723             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
724             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
725             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
726
727             rinv10           = gmx_mm_invsqrt_pd(rsq10);
728             rinv20           = gmx_mm_invsqrt_pd(rsq20);
729             rinv30           = gmx_mm_invsqrt_pd(rsq30);
730
731             rinvsq00         = gmx_mm_inv_pd(rsq00);
732             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
733             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
734             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
735
736             /* Load parameters for j particles */
737             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
738             vdwjidx0A        = 2*vdwtype[jnrA+0];
739             vdwjidx0B        = 2*vdwtype[jnrB+0];
740
741             fjx0             = _mm_setzero_pd();
742             fjy0             = _mm_setzero_pd();
743             fjz0             = _mm_setzero_pd();
744
745             /**************************
746              * CALCULATE INTERACTIONS *
747              **************************/
748
749             /* Compute parameters for interactions between i and j atoms */
750             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
751                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
752
753             /* LENNARD-JONES DISPERSION/REPULSION */
754
755             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
756             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
757
758             fscal            = fvdw;
759
760             /* Calculate temporary vectorial force */
761             tx               = _mm_mul_pd(fscal,dx00);
762             ty               = _mm_mul_pd(fscal,dy00);
763             tz               = _mm_mul_pd(fscal,dz00);
764
765             /* Update vectorial force */
766             fix0             = _mm_add_pd(fix0,tx);
767             fiy0             = _mm_add_pd(fiy0,ty);
768             fiz0             = _mm_add_pd(fiz0,tz);
769
770             fjx0             = _mm_add_pd(fjx0,tx);
771             fjy0             = _mm_add_pd(fjy0,ty);
772             fjz0             = _mm_add_pd(fjz0,tz);
773
774             /**************************
775              * CALCULATE INTERACTIONS *
776              **************************/
777
778             /* Compute parameters for interactions between i and j atoms */
779             qq10             = _mm_mul_pd(iq1,jq0);
780
781             /* REACTION-FIELD ELECTROSTATICS */
782             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
783
784             fscal            = felec;
785
786             /* Calculate temporary vectorial force */
787             tx               = _mm_mul_pd(fscal,dx10);
788             ty               = _mm_mul_pd(fscal,dy10);
789             tz               = _mm_mul_pd(fscal,dz10);
790
791             /* Update vectorial force */
792             fix1             = _mm_add_pd(fix1,tx);
793             fiy1             = _mm_add_pd(fiy1,ty);
794             fiz1             = _mm_add_pd(fiz1,tz);
795
796             fjx0             = _mm_add_pd(fjx0,tx);
797             fjy0             = _mm_add_pd(fjy0,ty);
798             fjz0             = _mm_add_pd(fjz0,tz);
799
800             /**************************
801              * CALCULATE INTERACTIONS *
802              **************************/
803
804             /* Compute parameters for interactions between i and j atoms */
805             qq20             = _mm_mul_pd(iq2,jq0);
806
807             /* REACTION-FIELD ELECTROSTATICS */
808             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
809
810             fscal            = felec;
811
812             /* Calculate temporary vectorial force */
813             tx               = _mm_mul_pd(fscal,dx20);
814             ty               = _mm_mul_pd(fscal,dy20);
815             tz               = _mm_mul_pd(fscal,dz20);
816
817             /* Update vectorial force */
818             fix2             = _mm_add_pd(fix2,tx);
819             fiy2             = _mm_add_pd(fiy2,ty);
820             fiz2             = _mm_add_pd(fiz2,tz);
821
822             fjx0             = _mm_add_pd(fjx0,tx);
823             fjy0             = _mm_add_pd(fjy0,ty);
824             fjz0             = _mm_add_pd(fjz0,tz);
825
826             /**************************
827              * CALCULATE INTERACTIONS *
828              **************************/
829
830             /* Compute parameters for interactions between i and j atoms */
831             qq30             = _mm_mul_pd(iq3,jq0);
832
833             /* REACTION-FIELD ELECTROSTATICS */
834             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
835
836             fscal            = felec;
837
838             /* Calculate temporary vectorial force */
839             tx               = _mm_mul_pd(fscal,dx30);
840             ty               = _mm_mul_pd(fscal,dy30);
841             tz               = _mm_mul_pd(fscal,dz30);
842
843             /* Update vectorial force */
844             fix3             = _mm_add_pd(fix3,tx);
845             fiy3             = _mm_add_pd(fiy3,ty);
846             fiz3             = _mm_add_pd(fiz3,tz);
847
848             fjx0             = _mm_add_pd(fjx0,tx);
849             fjy0             = _mm_add_pd(fjy0,ty);
850             fjz0             = _mm_add_pd(fjz0,tz);
851
852             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
853
854             /* Inner loop uses 111 flops */
855         }
856
857         if(jidx<j_index_end)
858         {
859
860             jnrA             = jjnr[jidx];
861             j_coord_offsetA  = DIM*jnrA;
862
863             /* load j atom coordinates */
864             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
865                                               &jx0,&jy0,&jz0);
866
867             /* Calculate displacement vector */
868             dx00             = _mm_sub_pd(ix0,jx0);
869             dy00             = _mm_sub_pd(iy0,jy0);
870             dz00             = _mm_sub_pd(iz0,jz0);
871             dx10             = _mm_sub_pd(ix1,jx0);
872             dy10             = _mm_sub_pd(iy1,jy0);
873             dz10             = _mm_sub_pd(iz1,jz0);
874             dx20             = _mm_sub_pd(ix2,jx0);
875             dy20             = _mm_sub_pd(iy2,jy0);
876             dz20             = _mm_sub_pd(iz2,jz0);
877             dx30             = _mm_sub_pd(ix3,jx0);
878             dy30             = _mm_sub_pd(iy3,jy0);
879             dz30             = _mm_sub_pd(iz3,jz0);
880
881             /* Calculate squared distance and things based on it */
882             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
883             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
884             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
885             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
886
887             rinv10           = gmx_mm_invsqrt_pd(rsq10);
888             rinv20           = gmx_mm_invsqrt_pd(rsq20);
889             rinv30           = gmx_mm_invsqrt_pd(rsq30);
890
891             rinvsq00         = gmx_mm_inv_pd(rsq00);
892             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
893             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
894             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
895
896             /* Load parameters for j particles */
897             jq0              = _mm_load_sd(charge+jnrA+0);
898             vdwjidx0A        = 2*vdwtype[jnrA+0];
899
900             fjx0             = _mm_setzero_pd();
901             fjy0             = _mm_setzero_pd();
902             fjz0             = _mm_setzero_pd();
903
904             /**************************
905              * CALCULATE INTERACTIONS *
906              **************************/
907
908             /* Compute parameters for interactions between i and j atoms */
909             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
910
911             /* LENNARD-JONES DISPERSION/REPULSION */
912
913             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
914             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
915
916             fscal            = fvdw;
917
918             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
919
920             /* Calculate temporary vectorial force */
921             tx               = _mm_mul_pd(fscal,dx00);
922             ty               = _mm_mul_pd(fscal,dy00);
923             tz               = _mm_mul_pd(fscal,dz00);
924
925             /* Update vectorial force */
926             fix0             = _mm_add_pd(fix0,tx);
927             fiy0             = _mm_add_pd(fiy0,ty);
928             fiz0             = _mm_add_pd(fiz0,tz);
929
930             fjx0             = _mm_add_pd(fjx0,tx);
931             fjy0             = _mm_add_pd(fjy0,ty);
932             fjz0             = _mm_add_pd(fjz0,tz);
933
934             /**************************
935              * CALCULATE INTERACTIONS *
936              **************************/
937
938             /* Compute parameters for interactions between i and j atoms */
939             qq10             = _mm_mul_pd(iq1,jq0);
940
941             /* REACTION-FIELD ELECTROSTATICS */
942             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
943
944             fscal            = felec;
945
946             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
947
948             /* Calculate temporary vectorial force */
949             tx               = _mm_mul_pd(fscal,dx10);
950             ty               = _mm_mul_pd(fscal,dy10);
951             tz               = _mm_mul_pd(fscal,dz10);
952
953             /* Update vectorial force */
954             fix1             = _mm_add_pd(fix1,tx);
955             fiy1             = _mm_add_pd(fiy1,ty);
956             fiz1             = _mm_add_pd(fiz1,tz);
957
958             fjx0             = _mm_add_pd(fjx0,tx);
959             fjy0             = _mm_add_pd(fjy0,ty);
960             fjz0             = _mm_add_pd(fjz0,tz);
961
962             /**************************
963              * CALCULATE INTERACTIONS *
964              **************************/
965
966             /* Compute parameters for interactions between i and j atoms */
967             qq20             = _mm_mul_pd(iq2,jq0);
968
969             /* REACTION-FIELD ELECTROSTATICS */
970             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
971
972             fscal            = felec;
973
974             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
975
976             /* Calculate temporary vectorial force */
977             tx               = _mm_mul_pd(fscal,dx20);
978             ty               = _mm_mul_pd(fscal,dy20);
979             tz               = _mm_mul_pd(fscal,dz20);
980
981             /* Update vectorial force */
982             fix2             = _mm_add_pd(fix2,tx);
983             fiy2             = _mm_add_pd(fiy2,ty);
984             fiz2             = _mm_add_pd(fiz2,tz);
985
986             fjx0             = _mm_add_pd(fjx0,tx);
987             fjy0             = _mm_add_pd(fjy0,ty);
988             fjz0             = _mm_add_pd(fjz0,tz);
989
990             /**************************
991              * CALCULATE INTERACTIONS *
992              **************************/
993
994             /* Compute parameters for interactions between i and j atoms */
995             qq30             = _mm_mul_pd(iq3,jq0);
996
997             /* REACTION-FIELD ELECTROSTATICS */
998             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
999
1000             fscal            = felec;
1001
1002             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1003
1004             /* Calculate temporary vectorial force */
1005             tx               = _mm_mul_pd(fscal,dx30);
1006             ty               = _mm_mul_pd(fscal,dy30);
1007             tz               = _mm_mul_pd(fscal,dz30);
1008
1009             /* Update vectorial force */
1010             fix3             = _mm_add_pd(fix3,tx);
1011             fiy3             = _mm_add_pd(fiy3,ty);
1012             fiz3             = _mm_add_pd(fiz3,tz);
1013
1014             fjx0             = _mm_add_pd(fjx0,tx);
1015             fjy0             = _mm_add_pd(fjy0,ty);
1016             fjz0             = _mm_add_pd(fjz0,tz);
1017
1018             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1019
1020             /* Inner loop uses 111 flops */
1021         }
1022
1023         /* End of innermost loop */
1024
1025         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1026                                               f+i_coord_offset,fshift+i_shift_offset);
1027
1028         /* Increment number of inner iterations */
1029         inneriter                  += j_index_end - j_index_start;
1030
1031         /* Outer loop uses 24 flops */
1032     }
1033
1034     /* Increment number of outer iterations */
1035     outeriter        += nri;
1036
1037     /* Update outer/inner flops */
1038
1039     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*111);
1040 }