Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRF_VdwLJ_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_sse2_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d          dummy_mask,cutoff_mask;
102     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103     __m128d          one     = _mm_set1_pd(1.0);
104     __m128d          two     = _mm_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_pd(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     krf              = _mm_set1_pd(fr->ic->k_rf);
119     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
120     crf              = _mm_set1_pd(fr->ic->c_rf);
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
128     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
129     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
130     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
156                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
157
158         fix0             = _mm_setzero_pd();
159         fiy0             = _mm_setzero_pd();
160         fiz0             = _mm_setzero_pd();
161         fix1             = _mm_setzero_pd();
162         fiy1             = _mm_setzero_pd();
163         fiz1             = _mm_setzero_pd();
164         fix2             = _mm_setzero_pd();
165         fiy2             = _mm_setzero_pd();
166         fiz2             = _mm_setzero_pd();
167
168         /* Reset potential sums */
169         velecsum         = _mm_setzero_pd();
170         vvdwsum          = _mm_setzero_pd();
171
172         /* Start inner kernel loop */
173         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
174         {
175
176             /* Get j neighbor index, and coordinate index */
177             jnrA             = jjnr[jidx];
178             jnrB             = jjnr[jidx+1];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181
182             /* load j atom coordinates */
183             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
184                                               &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm_sub_pd(ix0,jx0);
188             dy00             = _mm_sub_pd(iy0,jy0);
189             dz00             = _mm_sub_pd(iz0,jz0);
190             dx10             = _mm_sub_pd(ix1,jx0);
191             dy10             = _mm_sub_pd(iy1,jy0);
192             dz10             = _mm_sub_pd(iz1,jz0);
193             dx20             = _mm_sub_pd(ix2,jx0);
194             dy20             = _mm_sub_pd(iy2,jy0);
195             dz20             = _mm_sub_pd(iz2,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
199             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
200             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
201
202             rinv00           = gmx_mm_invsqrt_pd(rsq00);
203             rinv10           = gmx_mm_invsqrt_pd(rsq10);
204             rinv20           = gmx_mm_invsqrt_pd(rsq20);
205
206             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
207             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
208             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
209
210             /* Load parameters for j particles */
211             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214
215             fjx0             = _mm_setzero_pd();
216             fjy0             = _mm_setzero_pd();
217             fjz0             = _mm_setzero_pd();
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             /* Compute parameters for interactions between i and j atoms */
224             qq00             = _mm_mul_pd(iq0,jq0);
225             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
226                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
227
228             /* REACTION-FIELD ELECTROSTATICS */
229             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
230             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
231
232             /* LENNARD-JONES DISPERSION/REPULSION */
233
234             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
235             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
236             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
237             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
238             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
239
240             /* Update potential sum for this i atom from the interaction with this j atom. */
241             velecsum         = _mm_add_pd(velecsum,velec);
242             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
243
244             fscal            = _mm_add_pd(felec,fvdw);
245
246             /* Calculate temporary vectorial force */
247             tx               = _mm_mul_pd(fscal,dx00);
248             ty               = _mm_mul_pd(fscal,dy00);
249             tz               = _mm_mul_pd(fscal,dz00);
250
251             /* Update vectorial force */
252             fix0             = _mm_add_pd(fix0,tx);
253             fiy0             = _mm_add_pd(fiy0,ty);
254             fiz0             = _mm_add_pd(fiz0,tz);
255
256             fjx0             = _mm_add_pd(fjx0,tx);
257             fjy0             = _mm_add_pd(fjy0,ty);
258             fjz0             = _mm_add_pd(fjz0,tz);
259
260             /**************************
261              * CALCULATE INTERACTIONS *
262              **************************/
263
264             /* Compute parameters for interactions between i and j atoms */
265             qq10             = _mm_mul_pd(iq1,jq0);
266
267             /* REACTION-FIELD ELECTROSTATICS */
268             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
269             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
270
271             /* Update potential sum for this i atom from the interaction with this j atom. */
272             velecsum         = _mm_add_pd(velecsum,velec);
273
274             fscal            = felec;
275
276             /* Calculate temporary vectorial force */
277             tx               = _mm_mul_pd(fscal,dx10);
278             ty               = _mm_mul_pd(fscal,dy10);
279             tz               = _mm_mul_pd(fscal,dz10);
280
281             /* Update vectorial force */
282             fix1             = _mm_add_pd(fix1,tx);
283             fiy1             = _mm_add_pd(fiy1,ty);
284             fiz1             = _mm_add_pd(fiz1,tz);
285
286             fjx0             = _mm_add_pd(fjx0,tx);
287             fjy0             = _mm_add_pd(fjy0,ty);
288             fjz0             = _mm_add_pd(fjz0,tz);
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq20             = _mm_mul_pd(iq2,jq0);
296
297             /* REACTION-FIELD ELECTROSTATICS */
298             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
299             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
300
301             /* Update potential sum for this i atom from the interaction with this j atom. */
302             velecsum         = _mm_add_pd(velecsum,velec);
303
304             fscal            = felec;
305
306             /* Calculate temporary vectorial force */
307             tx               = _mm_mul_pd(fscal,dx20);
308             ty               = _mm_mul_pd(fscal,dy20);
309             tz               = _mm_mul_pd(fscal,dz20);
310
311             /* Update vectorial force */
312             fix2             = _mm_add_pd(fix2,tx);
313             fiy2             = _mm_add_pd(fiy2,ty);
314             fiz2             = _mm_add_pd(fiz2,tz);
315
316             fjx0             = _mm_add_pd(fjx0,tx);
317             fjy0             = _mm_add_pd(fjy0,ty);
318             fjz0             = _mm_add_pd(fjz0,tz);
319
320             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
321
322             /* Inner loop uses 111 flops */
323         }
324
325         if(jidx<j_index_end)
326         {
327
328             jnrA             = jjnr[jidx];
329             j_coord_offsetA  = DIM*jnrA;
330
331             /* load j atom coordinates */
332             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
333                                               &jx0,&jy0,&jz0);
334
335             /* Calculate displacement vector */
336             dx00             = _mm_sub_pd(ix0,jx0);
337             dy00             = _mm_sub_pd(iy0,jy0);
338             dz00             = _mm_sub_pd(iz0,jz0);
339             dx10             = _mm_sub_pd(ix1,jx0);
340             dy10             = _mm_sub_pd(iy1,jy0);
341             dz10             = _mm_sub_pd(iz1,jz0);
342             dx20             = _mm_sub_pd(ix2,jx0);
343             dy20             = _mm_sub_pd(iy2,jy0);
344             dz20             = _mm_sub_pd(iz2,jz0);
345
346             /* Calculate squared distance and things based on it */
347             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
348             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
349             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
350
351             rinv00           = gmx_mm_invsqrt_pd(rsq00);
352             rinv10           = gmx_mm_invsqrt_pd(rsq10);
353             rinv20           = gmx_mm_invsqrt_pd(rsq20);
354
355             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
356             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
357             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
358
359             /* Load parameters for j particles */
360             jq0              = _mm_load_sd(charge+jnrA+0);
361             vdwjidx0A        = 2*vdwtype[jnrA+0];
362
363             fjx0             = _mm_setzero_pd();
364             fjy0             = _mm_setzero_pd();
365             fjz0             = _mm_setzero_pd();
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq00             = _mm_mul_pd(iq0,jq0);
373             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
374
375             /* REACTION-FIELD ELECTROSTATICS */
376             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
377             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
378
379             /* LENNARD-JONES DISPERSION/REPULSION */
380
381             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
382             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
383             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
384             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
385             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
389             velecsum         = _mm_add_pd(velecsum,velec);
390             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
391             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
392
393             fscal            = _mm_add_pd(felec,fvdw);
394
395             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
396
397             /* Calculate temporary vectorial force */
398             tx               = _mm_mul_pd(fscal,dx00);
399             ty               = _mm_mul_pd(fscal,dy00);
400             tz               = _mm_mul_pd(fscal,dz00);
401
402             /* Update vectorial force */
403             fix0             = _mm_add_pd(fix0,tx);
404             fiy0             = _mm_add_pd(fiy0,ty);
405             fiz0             = _mm_add_pd(fiz0,tz);
406
407             fjx0             = _mm_add_pd(fjx0,tx);
408             fjy0             = _mm_add_pd(fjy0,ty);
409             fjz0             = _mm_add_pd(fjz0,tz);
410
411             /**************************
412              * CALCULATE INTERACTIONS *
413              **************************/
414
415             /* Compute parameters for interactions between i and j atoms */
416             qq10             = _mm_mul_pd(iq1,jq0);
417
418             /* REACTION-FIELD ELECTROSTATICS */
419             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
420             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
421
422             /* Update potential sum for this i atom from the interaction with this j atom. */
423             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
424             velecsum         = _mm_add_pd(velecsum,velec);
425
426             fscal            = felec;
427
428             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
429
430             /* Calculate temporary vectorial force */
431             tx               = _mm_mul_pd(fscal,dx10);
432             ty               = _mm_mul_pd(fscal,dy10);
433             tz               = _mm_mul_pd(fscal,dz10);
434
435             /* Update vectorial force */
436             fix1             = _mm_add_pd(fix1,tx);
437             fiy1             = _mm_add_pd(fiy1,ty);
438             fiz1             = _mm_add_pd(fiz1,tz);
439
440             fjx0             = _mm_add_pd(fjx0,tx);
441             fjy0             = _mm_add_pd(fjy0,ty);
442             fjz0             = _mm_add_pd(fjz0,tz);
443
444             /**************************
445              * CALCULATE INTERACTIONS *
446              **************************/
447
448             /* Compute parameters for interactions between i and j atoms */
449             qq20             = _mm_mul_pd(iq2,jq0);
450
451             /* REACTION-FIELD ELECTROSTATICS */
452             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
453             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
454
455             /* Update potential sum for this i atom from the interaction with this j atom. */
456             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
457             velecsum         = _mm_add_pd(velecsum,velec);
458
459             fscal            = felec;
460
461             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
462
463             /* Calculate temporary vectorial force */
464             tx               = _mm_mul_pd(fscal,dx20);
465             ty               = _mm_mul_pd(fscal,dy20);
466             tz               = _mm_mul_pd(fscal,dz20);
467
468             /* Update vectorial force */
469             fix2             = _mm_add_pd(fix2,tx);
470             fiy2             = _mm_add_pd(fiy2,ty);
471             fiz2             = _mm_add_pd(fiz2,tz);
472
473             fjx0             = _mm_add_pd(fjx0,tx);
474             fjy0             = _mm_add_pd(fjy0,ty);
475             fjz0             = _mm_add_pd(fjz0,tz);
476
477             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
478
479             /* Inner loop uses 111 flops */
480         }
481
482         /* End of innermost loop */
483
484         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
485                                               f+i_coord_offset,fshift+i_shift_offset);
486
487         ggid                        = gid[iidx];
488         /* Update potential energies */
489         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
490         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
491
492         /* Increment number of inner iterations */
493         inneriter                  += j_index_end - j_index_start;
494
495         /* Outer loop uses 20 flops */
496     }
497
498     /* Increment number of outer iterations */
499     outeriter        += nri;
500
501     /* Update outer/inner flops */
502
503     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*111);
504 }
505 /*
506  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_sse2_double
507  * Electrostatics interaction: ReactionField
508  * VdW interaction:            LennardJones
509  * Geometry:                   Water3-Particle
510  * Calculate force/pot:        Force
511  */
512 void
513 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_sse2_double
514                     (t_nblist                    * gmx_restrict       nlist,
515                      rvec                        * gmx_restrict          xx,
516                      rvec                        * gmx_restrict          ff,
517                      t_forcerec                  * gmx_restrict          fr,
518                      t_mdatoms                   * gmx_restrict     mdatoms,
519                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
520                      t_nrnb                      * gmx_restrict        nrnb)
521 {
522     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
523      * just 0 for non-waters.
524      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
525      * jnr indices corresponding to data put in the four positions in the SIMD register.
526      */
527     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
528     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
529     int              jnrA,jnrB;
530     int              j_coord_offsetA,j_coord_offsetB;
531     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
532     real             rcutoff_scalar;
533     real             *shiftvec,*fshift,*x,*f;
534     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
535     int              vdwioffset0;
536     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
537     int              vdwioffset1;
538     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
539     int              vdwioffset2;
540     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
541     int              vdwjidx0A,vdwjidx0B;
542     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
543     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
544     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
545     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
546     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
547     real             *charge;
548     int              nvdwtype;
549     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
550     int              *vdwtype;
551     real             *vdwparam;
552     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
553     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
554     __m128d          dummy_mask,cutoff_mask;
555     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
556     __m128d          one     = _mm_set1_pd(1.0);
557     __m128d          two     = _mm_set1_pd(2.0);
558     x                = xx[0];
559     f                = ff[0];
560
561     nri              = nlist->nri;
562     iinr             = nlist->iinr;
563     jindex           = nlist->jindex;
564     jjnr             = nlist->jjnr;
565     shiftidx         = nlist->shift;
566     gid              = nlist->gid;
567     shiftvec         = fr->shift_vec[0];
568     fshift           = fr->fshift[0];
569     facel            = _mm_set1_pd(fr->epsfac);
570     charge           = mdatoms->chargeA;
571     krf              = _mm_set1_pd(fr->ic->k_rf);
572     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
573     crf              = _mm_set1_pd(fr->ic->c_rf);
574     nvdwtype         = fr->ntype;
575     vdwparam         = fr->nbfp;
576     vdwtype          = mdatoms->typeA;
577
578     /* Setup water-specific parameters */
579     inr              = nlist->iinr[0];
580     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
581     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
582     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
583     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
584
585     /* Avoid stupid compiler warnings */
586     jnrA = jnrB = 0;
587     j_coord_offsetA = 0;
588     j_coord_offsetB = 0;
589
590     outeriter        = 0;
591     inneriter        = 0;
592
593     /* Start outer loop over neighborlists */
594     for(iidx=0; iidx<nri; iidx++)
595     {
596         /* Load shift vector for this list */
597         i_shift_offset   = DIM*shiftidx[iidx];
598
599         /* Load limits for loop over neighbors */
600         j_index_start    = jindex[iidx];
601         j_index_end      = jindex[iidx+1];
602
603         /* Get outer coordinate index */
604         inr              = iinr[iidx];
605         i_coord_offset   = DIM*inr;
606
607         /* Load i particle coords and add shift vector */
608         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
609                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
610
611         fix0             = _mm_setzero_pd();
612         fiy0             = _mm_setzero_pd();
613         fiz0             = _mm_setzero_pd();
614         fix1             = _mm_setzero_pd();
615         fiy1             = _mm_setzero_pd();
616         fiz1             = _mm_setzero_pd();
617         fix2             = _mm_setzero_pd();
618         fiy2             = _mm_setzero_pd();
619         fiz2             = _mm_setzero_pd();
620
621         /* Start inner kernel loop */
622         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
623         {
624
625             /* Get j neighbor index, and coordinate index */
626             jnrA             = jjnr[jidx];
627             jnrB             = jjnr[jidx+1];
628             j_coord_offsetA  = DIM*jnrA;
629             j_coord_offsetB  = DIM*jnrB;
630
631             /* load j atom coordinates */
632             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
633                                               &jx0,&jy0,&jz0);
634
635             /* Calculate displacement vector */
636             dx00             = _mm_sub_pd(ix0,jx0);
637             dy00             = _mm_sub_pd(iy0,jy0);
638             dz00             = _mm_sub_pd(iz0,jz0);
639             dx10             = _mm_sub_pd(ix1,jx0);
640             dy10             = _mm_sub_pd(iy1,jy0);
641             dz10             = _mm_sub_pd(iz1,jz0);
642             dx20             = _mm_sub_pd(ix2,jx0);
643             dy20             = _mm_sub_pd(iy2,jy0);
644             dz20             = _mm_sub_pd(iz2,jz0);
645
646             /* Calculate squared distance and things based on it */
647             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
648             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
649             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
650
651             rinv00           = gmx_mm_invsqrt_pd(rsq00);
652             rinv10           = gmx_mm_invsqrt_pd(rsq10);
653             rinv20           = gmx_mm_invsqrt_pd(rsq20);
654
655             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
656             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
657             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
658
659             /* Load parameters for j particles */
660             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
661             vdwjidx0A        = 2*vdwtype[jnrA+0];
662             vdwjidx0B        = 2*vdwtype[jnrB+0];
663
664             fjx0             = _mm_setzero_pd();
665             fjy0             = _mm_setzero_pd();
666             fjz0             = _mm_setzero_pd();
667
668             /**************************
669              * CALCULATE INTERACTIONS *
670              **************************/
671
672             /* Compute parameters for interactions between i and j atoms */
673             qq00             = _mm_mul_pd(iq0,jq0);
674             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
675                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
676
677             /* REACTION-FIELD ELECTROSTATICS */
678             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
679
680             /* LENNARD-JONES DISPERSION/REPULSION */
681
682             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
683             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
684
685             fscal            = _mm_add_pd(felec,fvdw);
686
687             /* Calculate temporary vectorial force */
688             tx               = _mm_mul_pd(fscal,dx00);
689             ty               = _mm_mul_pd(fscal,dy00);
690             tz               = _mm_mul_pd(fscal,dz00);
691
692             /* Update vectorial force */
693             fix0             = _mm_add_pd(fix0,tx);
694             fiy0             = _mm_add_pd(fiy0,ty);
695             fiz0             = _mm_add_pd(fiz0,tz);
696
697             fjx0             = _mm_add_pd(fjx0,tx);
698             fjy0             = _mm_add_pd(fjy0,ty);
699             fjz0             = _mm_add_pd(fjz0,tz);
700
701             /**************************
702              * CALCULATE INTERACTIONS *
703              **************************/
704
705             /* Compute parameters for interactions between i and j atoms */
706             qq10             = _mm_mul_pd(iq1,jq0);
707
708             /* REACTION-FIELD ELECTROSTATICS */
709             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
710
711             fscal            = felec;
712
713             /* Calculate temporary vectorial force */
714             tx               = _mm_mul_pd(fscal,dx10);
715             ty               = _mm_mul_pd(fscal,dy10);
716             tz               = _mm_mul_pd(fscal,dz10);
717
718             /* Update vectorial force */
719             fix1             = _mm_add_pd(fix1,tx);
720             fiy1             = _mm_add_pd(fiy1,ty);
721             fiz1             = _mm_add_pd(fiz1,tz);
722
723             fjx0             = _mm_add_pd(fjx0,tx);
724             fjy0             = _mm_add_pd(fjy0,ty);
725             fjz0             = _mm_add_pd(fjz0,tz);
726
727             /**************************
728              * CALCULATE INTERACTIONS *
729              **************************/
730
731             /* Compute parameters for interactions between i and j atoms */
732             qq20             = _mm_mul_pd(iq2,jq0);
733
734             /* REACTION-FIELD ELECTROSTATICS */
735             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
736
737             fscal            = felec;
738
739             /* Calculate temporary vectorial force */
740             tx               = _mm_mul_pd(fscal,dx20);
741             ty               = _mm_mul_pd(fscal,dy20);
742             tz               = _mm_mul_pd(fscal,dz20);
743
744             /* Update vectorial force */
745             fix2             = _mm_add_pd(fix2,tx);
746             fiy2             = _mm_add_pd(fiy2,ty);
747             fiz2             = _mm_add_pd(fiz2,tz);
748
749             fjx0             = _mm_add_pd(fjx0,tx);
750             fjy0             = _mm_add_pd(fjy0,ty);
751             fjz0             = _mm_add_pd(fjz0,tz);
752
753             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
754
755             /* Inner loop uses 91 flops */
756         }
757
758         if(jidx<j_index_end)
759         {
760
761             jnrA             = jjnr[jidx];
762             j_coord_offsetA  = DIM*jnrA;
763
764             /* load j atom coordinates */
765             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
766                                               &jx0,&jy0,&jz0);
767
768             /* Calculate displacement vector */
769             dx00             = _mm_sub_pd(ix0,jx0);
770             dy00             = _mm_sub_pd(iy0,jy0);
771             dz00             = _mm_sub_pd(iz0,jz0);
772             dx10             = _mm_sub_pd(ix1,jx0);
773             dy10             = _mm_sub_pd(iy1,jy0);
774             dz10             = _mm_sub_pd(iz1,jz0);
775             dx20             = _mm_sub_pd(ix2,jx0);
776             dy20             = _mm_sub_pd(iy2,jy0);
777             dz20             = _mm_sub_pd(iz2,jz0);
778
779             /* Calculate squared distance and things based on it */
780             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
781             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
782             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
783
784             rinv00           = gmx_mm_invsqrt_pd(rsq00);
785             rinv10           = gmx_mm_invsqrt_pd(rsq10);
786             rinv20           = gmx_mm_invsqrt_pd(rsq20);
787
788             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
789             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
790             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
791
792             /* Load parameters for j particles */
793             jq0              = _mm_load_sd(charge+jnrA+0);
794             vdwjidx0A        = 2*vdwtype[jnrA+0];
795
796             fjx0             = _mm_setzero_pd();
797             fjy0             = _mm_setzero_pd();
798             fjz0             = _mm_setzero_pd();
799
800             /**************************
801              * CALCULATE INTERACTIONS *
802              **************************/
803
804             /* Compute parameters for interactions between i and j atoms */
805             qq00             = _mm_mul_pd(iq0,jq0);
806             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
807
808             /* REACTION-FIELD ELECTROSTATICS */
809             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
810
811             /* LENNARD-JONES DISPERSION/REPULSION */
812
813             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
814             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
815
816             fscal            = _mm_add_pd(felec,fvdw);
817
818             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
819
820             /* Calculate temporary vectorial force */
821             tx               = _mm_mul_pd(fscal,dx00);
822             ty               = _mm_mul_pd(fscal,dy00);
823             tz               = _mm_mul_pd(fscal,dz00);
824
825             /* Update vectorial force */
826             fix0             = _mm_add_pd(fix0,tx);
827             fiy0             = _mm_add_pd(fiy0,ty);
828             fiz0             = _mm_add_pd(fiz0,tz);
829
830             fjx0             = _mm_add_pd(fjx0,tx);
831             fjy0             = _mm_add_pd(fjy0,ty);
832             fjz0             = _mm_add_pd(fjz0,tz);
833
834             /**************************
835              * CALCULATE INTERACTIONS *
836              **************************/
837
838             /* Compute parameters for interactions between i and j atoms */
839             qq10             = _mm_mul_pd(iq1,jq0);
840
841             /* REACTION-FIELD ELECTROSTATICS */
842             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
843
844             fscal            = felec;
845
846             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
847
848             /* Calculate temporary vectorial force */
849             tx               = _mm_mul_pd(fscal,dx10);
850             ty               = _mm_mul_pd(fscal,dy10);
851             tz               = _mm_mul_pd(fscal,dz10);
852
853             /* Update vectorial force */
854             fix1             = _mm_add_pd(fix1,tx);
855             fiy1             = _mm_add_pd(fiy1,ty);
856             fiz1             = _mm_add_pd(fiz1,tz);
857
858             fjx0             = _mm_add_pd(fjx0,tx);
859             fjy0             = _mm_add_pd(fjy0,ty);
860             fjz0             = _mm_add_pd(fjz0,tz);
861
862             /**************************
863              * CALCULATE INTERACTIONS *
864              **************************/
865
866             /* Compute parameters for interactions between i and j atoms */
867             qq20             = _mm_mul_pd(iq2,jq0);
868
869             /* REACTION-FIELD ELECTROSTATICS */
870             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
871
872             fscal            = felec;
873
874             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
875
876             /* Calculate temporary vectorial force */
877             tx               = _mm_mul_pd(fscal,dx20);
878             ty               = _mm_mul_pd(fscal,dy20);
879             tz               = _mm_mul_pd(fscal,dz20);
880
881             /* Update vectorial force */
882             fix2             = _mm_add_pd(fix2,tx);
883             fiy2             = _mm_add_pd(fiy2,ty);
884             fiz2             = _mm_add_pd(fiz2,tz);
885
886             fjx0             = _mm_add_pd(fjx0,tx);
887             fjy0             = _mm_add_pd(fjy0,ty);
888             fjz0             = _mm_add_pd(fjz0,tz);
889
890             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
891
892             /* Inner loop uses 91 flops */
893         }
894
895         /* End of innermost loop */
896
897         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
898                                               f+i_coord_offset,fshift+i_shift_offset);
899
900         /* Increment number of inner iterations */
901         inneriter                  += j_index_end - j_index_start;
902
903         /* Outer loop uses 18 flops */
904     }
905
906     /* Increment number of outer iterations */
907     outeriter        += nri;
908
909     /* Update outer/inner flops */
910
911     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*91);
912 }