cdd40f13ddfcda7a3bdb4d6d7294cbc67e6fa65f
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRF_VdwLJ_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse2_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm_set1_pd(fr->ic->k_rf);
113     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
114     crf              = _mm_set1_pd(fr->ic->c_rf);
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
143
144         fix0             = _mm_setzero_pd();
145         fiy0             = _mm_setzero_pd();
146         fiz0             = _mm_setzero_pd();
147
148         /* Load parameters for i particles */
149         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
150         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152         /* Reset potential sums */
153         velecsum         = _mm_setzero_pd();
154         vvdwsum          = _mm_setzero_pd();
155
156         /* Start inner kernel loop */
157         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
158         {
159
160             /* Get j neighbor index, and coordinate index */
161             jnrA             = jjnr[jidx];
162             jnrB             = jjnr[jidx+1];
163             j_coord_offsetA  = DIM*jnrA;
164             j_coord_offsetB  = DIM*jnrB;
165
166             /* load j atom coordinates */
167             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
168                                               &jx0,&jy0,&jz0);
169
170             /* Calculate displacement vector */
171             dx00             = _mm_sub_pd(ix0,jx0);
172             dy00             = _mm_sub_pd(iy0,jy0);
173             dz00             = _mm_sub_pd(iz0,jz0);
174
175             /* Calculate squared distance and things based on it */
176             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
177
178             rinv00           = gmx_mm_invsqrt_pd(rsq00);
179
180             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
181
182             /* Load parameters for j particles */
183             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
184             vdwjidx0A        = 2*vdwtype[jnrA+0];
185             vdwjidx0B        = 2*vdwtype[jnrB+0];
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             /* Compute parameters for interactions between i and j atoms */
192             qq00             = _mm_mul_pd(iq0,jq0);
193             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
194                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
195
196             /* REACTION-FIELD ELECTROSTATICS */
197             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
198             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
199
200             /* LENNARD-JONES DISPERSION/REPULSION */
201
202             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
203             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
204             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
205             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
206             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
207
208             /* Update potential sum for this i atom from the interaction with this j atom. */
209             velecsum         = _mm_add_pd(velecsum,velec);
210             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
211
212             fscal            = _mm_add_pd(felec,fvdw);
213
214             /* Calculate temporary vectorial force */
215             tx               = _mm_mul_pd(fscal,dx00);
216             ty               = _mm_mul_pd(fscal,dy00);
217             tz               = _mm_mul_pd(fscal,dz00);
218
219             /* Update vectorial force */
220             fix0             = _mm_add_pd(fix0,tx);
221             fiy0             = _mm_add_pd(fiy0,ty);
222             fiz0             = _mm_add_pd(fiz0,tz);
223
224             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
225
226             /* Inner loop uses 44 flops */
227         }
228
229         if(jidx<j_index_end)
230         {
231
232             jnrA             = jjnr[jidx];
233             j_coord_offsetA  = DIM*jnrA;
234
235             /* load j atom coordinates */
236             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
237                                               &jx0,&jy0,&jz0);
238
239             /* Calculate displacement vector */
240             dx00             = _mm_sub_pd(ix0,jx0);
241             dy00             = _mm_sub_pd(iy0,jy0);
242             dz00             = _mm_sub_pd(iz0,jz0);
243
244             /* Calculate squared distance and things based on it */
245             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
246
247             rinv00           = gmx_mm_invsqrt_pd(rsq00);
248
249             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
250
251             /* Load parameters for j particles */
252             jq0              = _mm_load_sd(charge+jnrA+0);
253             vdwjidx0A        = 2*vdwtype[jnrA+0];
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             /* Compute parameters for interactions between i and j atoms */
260             qq00             = _mm_mul_pd(iq0,jq0);
261             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
262
263             /* REACTION-FIELD ELECTROSTATICS */
264             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
265             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
266
267             /* LENNARD-JONES DISPERSION/REPULSION */
268
269             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
270             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
271             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
272             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
273             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
277             velecsum         = _mm_add_pd(velecsum,velec);
278             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
279             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
280
281             fscal            = _mm_add_pd(felec,fvdw);
282
283             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm_mul_pd(fscal,dx00);
287             ty               = _mm_mul_pd(fscal,dy00);
288             tz               = _mm_mul_pd(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm_add_pd(fix0,tx);
292             fiy0             = _mm_add_pd(fiy0,ty);
293             fiz0             = _mm_add_pd(fiz0,tz);
294
295             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
296
297             /* Inner loop uses 44 flops */
298         }
299
300         /* End of innermost loop */
301
302         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
303                                               f+i_coord_offset,fshift+i_shift_offset);
304
305         ggid                        = gid[iidx];
306         /* Update potential energies */
307         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
308         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
309
310         /* Increment number of inner iterations */
311         inneriter                  += j_index_end - j_index_start;
312
313         /* Outer loop uses 9 flops */
314     }
315
316     /* Increment number of outer iterations */
317     outeriter        += nri;
318
319     /* Update outer/inner flops */
320
321     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*44);
322 }
323 /*
324  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse2_double
325  * Electrostatics interaction: ReactionField
326  * VdW interaction:            LennardJones
327  * Geometry:                   Particle-Particle
328  * Calculate force/pot:        Force
329  */
330 void
331 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_sse2_double
332                     (t_nblist                    * gmx_restrict       nlist,
333                      rvec                        * gmx_restrict          xx,
334                      rvec                        * gmx_restrict          ff,
335                      t_forcerec                  * gmx_restrict          fr,
336                      t_mdatoms                   * gmx_restrict     mdatoms,
337                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
338                      t_nrnb                      * gmx_restrict        nrnb)
339 {
340     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
341      * just 0 for non-waters.
342      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
343      * jnr indices corresponding to data put in the four positions in the SIMD register.
344      */
345     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
346     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
347     int              jnrA,jnrB;
348     int              j_coord_offsetA,j_coord_offsetB;
349     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
350     real             rcutoff_scalar;
351     real             *shiftvec,*fshift,*x,*f;
352     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
353     int              vdwioffset0;
354     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
355     int              vdwjidx0A,vdwjidx0B;
356     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
357     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
358     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
359     real             *charge;
360     int              nvdwtype;
361     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
362     int              *vdwtype;
363     real             *vdwparam;
364     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
365     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
366     __m128d          dummy_mask,cutoff_mask;
367     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
368     __m128d          one     = _mm_set1_pd(1.0);
369     __m128d          two     = _mm_set1_pd(2.0);
370     x                = xx[0];
371     f                = ff[0];
372
373     nri              = nlist->nri;
374     iinr             = nlist->iinr;
375     jindex           = nlist->jindex;
376     jjnr             = nlist->jjnr;
377     shiftidx         = nlist->shift;
378     gid              = nlist->gid;
379     shiftvec         = fr->shift_vec[0];
380     fshift           = fr->fshift[0];
381     facel            = _mm_set1_pd(fr->epsfac);
382     charge           = mdatoms->chargeA;
383     krf              = _mm_set1_pd(fr->ic->k_rf);
384     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
385     crf              = _mm_set1_pd(fr->ic->c_rf);
386     nvdwtype         = fr->ntype;
387     vdwparam         = fr->nbfp;
388     vdwtype          = mdatoms->typeA;
389
390     /* Avoid stupid compiler warnings */
391     jnrA = jnrB = 0;
392     j_coord_offsetA = 0;
393     j_coord_offsetB = 0;
394
395     outeriter        = 0;
396     inneriter        = 0;
397
398     /* Start outer loop over neighborlists */
399     for(iidx=0; iidx<nri; iidx++)
400     {
401         /* Load shift vector for this list */
402         i_shift_offset   = DIM*shiftidx[iidx];
403
404         /* Load limits for loop over neighbors */
405         j_index_start    = jindex[iidx];
406         j_index_end      = jindex[iidx+1];
407
408         /* Get outer coordinate index */
409         inr              = iinr[iidx];
410         i_coord_offset   = DIM*inr;
411
412         /* Load i particle coords and add shift vector */
413         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
414
415         fix0             = _mm_setzero_pd();
416         fiy0             = _mm_setzero_pd();
417         fiz0             = _mm_setzero_pd();
418
419         /* Load parameters for i particles */
420         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
421         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
422
423         /* Start inner kernel loop */
424         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
425         {
426
427             /* Get j neighbor index, and coordinate index */
428             jnrA             = jjnr[jidx];
429             jnrB             = jjnr[jidx+1];
430             j_coord_offsetA  = DIM*jnrA;
431             j_coord_offsetB  = DIM*jnrB;
432
433             /* load j atom coordinates */
434             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
435                                               &jx0,&jy0,&jz0);
436
437             /* Calculate displacement vector */
438             dx00             = _mm_sub_pd(ix0,jx0);
439             dy00             = _mm_sub_pd(iy0,jy0);
440             dz00             = _mm_sub_pd(iz0,jz0);
441
442             /* Calculate squared distance and things based on it */
443             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
444
445             rinv00           = gmx_mm_invsqrt_pd(rsq00);
446
447             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
448
449             /* Load parameters for j particles */
450             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
451             vdwjidx0A        = 2*vdwtype[jnrA+0];
452             vdwjidx0B        = 2*vdwtype[jnrB+0];
453
454             /**************************
455              * CALCULATE INTERACTIONS *
456              **************************/
457
458             /* Compute parameters for interactions between i and j atoms */
459             qq00             = _mm_mul_pd(iq0,jq0);
460             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
461                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
462
463             /* REACTION-FIELD ELECTROSTATICS */
464             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
465
466             /* LENNARD-JONES DISPERSION/REPULSION */
467
468             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
469             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
470
471             fscal            = _mm_add_pd(felec,fvdw);
472
473             /* Calculate temporary vectorial force */
474             tx               = _mm_mul_pd(fscal,dx00);
475             ty               = _mm_mul_pd(fscal,dy00);
476             tz               = _mm_mul_pd(fscal,dz00);
477
478             /* Update vectorial force */
479             fix0             = _mm_add_pd(fix0,tx);
480             fiy0             = _mm_add_pd(fiy0,ty);
481             fiz0             = _mm_add_pd(fiz0,tz);
482
483             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
484
485             /* Inner loop uses 34 flops */
486         }
487
488         if(jidx<j_index_end)
489         {
490
491             jnrA             = jjnr[jidx];
492             j_coord_offsetA  = DIM*jnrA;
493
494             /* load j atom coordinates */
495             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
496                                               &jx0,&jy0,&jz0);
497
498             /* Calculate displacement vector */
499             dx00             = _mm_sub_pd(ix0,jx0);
500             dy00             = _mm_sub_pd(iy0,jy0);
501             dz00             = _mm_sub_pd(iz0,jz0);
502
503             /* Calculate squared distance and things based on it */
504             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
505
506             rinv00           = gmx_mm_invsqrt_pd(rsq00);
507
508             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
509
510             /* Load parameters for j particles */
511             jq0              = _mm_load_sd(charge+jnrA+0);
512             vdwjidx0A        = 2*vdwtype[jnrA+0];
513
514             /**************************
515              * CALCULATE INTERACTIONS *
516              **************************/
517
518             /* Compute parameters for interactions between i and j atoms */
519             qq00             = _mm_mul_pd(iq0,jq0);
520             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
521
522             /* REACTION-FIELD ELECTROSTATICS */
523             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
524
525             /* LENNARD-JONES DISPERSION/REPULSION */
526
527             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
528             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
529
530             fscal            = _mm_add_pd(felec,fvdw);
531
532             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
533
534             /* Calculate temporary vectorial force */
535             tx               = _mm_mul_pd(fscal,dx00);
536             ty               = _mm_mul_pd(fscal,dy00);
537             tz               = _mm_mul_pd(fscal,dz00);
538
539             /* Update vectorial force */
540             fix0             = _mm_add_pd(fix0,tx);
541             fiy0             = _mm_add_pd(fiy0,ty);
542             fiz0             = _mm_add_pd(fiz0,tz);
543
544             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
545
546             /* Inner loop uses 34 flops */
547         }
548
549         /* End of innermost loop */
550
551         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
552                                               f+i_coord_offset,fshift+i_shift_offset);
553
554         /* Increment number of inner iterations */
555         inneriter                  += j_index_end - j_index_start;
556
557         /* Outer loop uses 7 flops */
558     }
559
560     /* Increment number of outer iterations */
561     outeriter        += nri;
562
563     /* Update outer/inner flops */
564
565     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*34);
566 }