Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse2_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     krf              = _mm_set1_pd(fr->ic->k_rf);
121     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
122     crf              = _mm_set1_pd(fr->ic->c_rf);
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
133     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
134     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
162
163         fix0             = _mm_setzero_pd();
164         fiy0             = _mm_setzero_pd();
165         fiz0             = _mm_setzero_pd();
166         fix1             = _mm_setzero_pd();
167         fiy1             = _mm_setzero_pd();
168         fiz1             = _mm_setzero_pd();
169         fix2             = _mm_setzero_pd();
170         fiy2             = _mm_setzero_pd();
171         fiz2             = _mm_setzero_pd();
172
173         /* Reset potential sums */
174         velecsum         = _mm_setzero_pd();
175         vvdwsum          = _mm_setzero_pd();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm_sub_pd(ix0,jx0);
193             dy00             = _mm_sub_pd(iy0,jy0);
194             dz00             = _mm_sub_pd(iz0,jz0);
195             dx10             = _mm_sub_pd(ix1,jx0);
196             dy10             = _mm_sub_pd(iy1,jy0);
197             dz10             = _mm_sub_pd(iz1,jz0);
198             dx20             = _mm_sub_pd(ix2,jx0);
199             dy20             = _mm_sub_pd(iy2,jy0);
200             dz20             = _mm_sub_pd(iz2,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
204             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
205             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
206
207             rinv00           = gmx_mm_invsqrt_pd(rsq00);
208             rinv10           = gmx_mm_invsqrt_pd(rsq10);
209             rinv20           = gmx_mm_invsqrt_pd(rsq20);
210
211             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
212             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
213             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219
220             fjx0             = _mm_setzero_pd();
221             fjy0             = _mm_setzero_pd();
222             fjz0             = _mm_setzero_pd();
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             r00              = _mm_mul_pd(rsq00,rinv00);
229
230             /* Compute parameters for interactions between i and j atoms */
231             qq00             = _mm_mul_pd(iq0,jq0);
232             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
233                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
234
235             /* Calculate table index by multiplying r with table scale and truncate to integer */
236             rt               = _mm_mul_pd(r00,vftabscale);
237             vfitab           = _mm_cvttpd_epi32(rt);
238             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
239             vfitab           = _mm_slli_epi32(vfitab,3);
240
241             /* REACTION-FIELD ELECTROSTATICS */
242             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
243             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
244
245             /* CUBIC SPLINE TABLE DISPERSION */
246             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
247             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
248             GMX_MM_TRANSPOSE2_PD(Y,F);
249             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
250             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
251             GMX_MM_TRANSPOSE2_PD(G,H);
252             Heps             = _mm_mul_pd(vfeps,H);
253             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
254             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
255             vvdw6            = _mm_mul_pd(c6_00,VV);
256             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
257             fvdw6            = _mm_mul_pd(c6_00,FF);
258
259             /* CUBIC SPLINE TABLE REPULSION */
260             vfitab           = _mm_add_epi32(vfitab,ifour);
261             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
262             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
263             GMX_MM_TRANSPOSE2_PD(Y,F);
264             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
265             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
266             GMX_MM_TRANSPOSE2_PD(G,H);
267             Heps             = _mm_mul_pd(vfeps,H);
268             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
269             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
270             vvdw12           = _mm_mul_pd(c12_00,VV);
271             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
272             fvdw12           = _mm_mul_pd(c12_00,FF);
273             vvdw             = _mm_add_pd(vvdw12,vvdw6);
274             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velecsum         = _mm_add_pd(velecsum,velec);
278             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
279
280             fscal            = _mm_add_pd(felec,fvdw);
281
282             /* Calculate temporary vectorial force */
283             tx               = _mm_mul_pd(fscal,dx00);
284             ty               = _mm_mul_pd(fscal,dy00);
285             tz               = _mm_mul_pd(fscal,dz00);
286
287             /* Update vectorial force */
288             fix0             = _mm_add_pd(fix0,tx);
289             fiy0             = _mm_add_pd(fiy0,ty);
290             fiz0             = _mm_add_pd(fiz0,tz);
291
292             fjx0             = _mm_add_pd(fjx0,tx);
293             fjy0             = _mm_add_pd(fjy0,ty);
294             fjz0             = _mm_add_pd(fjz0,tz);
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq10             = _mm_mul_pd(iq1,jq0);
302
303             /* REACTION-FIELD ELECTROSTATICS */
304             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
305             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velecsum         = _mm_add_pd(velecsum,velec);
309
310             fscal            = felec;
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm_mul_pd(fscal,dx10);
314             ty               = _mm_mul_pd(fscal,dy10);
315             tz               = _mm_mul_pd(fscal,dz10);
316
317             /* Update vectorial force */
318             fix1             = _mm_add_pd(fix1,tx);
319             fiy1             = _mm_add_pd(fiy1,ty);
320             fiz1             = _mm_add_pd(fiz1,tz);
321
322             fjx0             = _mm_add_pd(fjx0,tx);
323             fjy0             = _mm_add_pd(fjy0,ty);
324             fjz0             = _mm_add_pd(fjz0,tz);
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq20             = _mm_mul_pd(iq2,jq0);
332
333             /* REACTION-FIELD ELECTROSTATICS */
334             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
335             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
336
337             /* Update potential sum for this i atom from the interaction with this j atom. */
338             velecsum         = _mm_add_pd(velecsum,velec);
339
340             fscal            = felec;
341
342             /* Calculate temporary vectorial force */
343             tx               = _mm_mul_pd(fscal,dx20);
344             ty               = _mm_mul_pd(fscal,dy20);
345             tz               = _mm_mul_pd(fscal,dz20);
346
347             /* Update vectorial force */
348             fix2             = _mm_add_pd(fix2,tx);
349             fiy2             = _mm_add_pd(fiy2,ty);
350             fiz2             = _mm_add_pd(fiz2,tz);
351
352             fjx0             = _mm_add_pd(fjx0,tx);
353             fjy0             = _mm_add_pd(fjy0,ty);
354             fjz0             = _mm_add_pd(fjz0,tz);
355
356             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
357
358             /* Inner loop uses 134 flops */
359         }
360
361         if(jidx<j_index_end)
362         {
363
364             jnrA             = jjnr[jidx];
365             j_coord_offsetA  = DIM*jnrA;
366
367             /* load j atom coordinates */
368             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
369                                               &jx0,&jy0,&jz0);
370
371             /* Calculate displacement vector */
372             dx00             = _mm_sub_pd(ix0,jx0);
373             dy00             = _mm_sub_pd(iy0,jy0);
374             dz00             = _mm_sub_pd(iz0,jz0);
375             dx10             = _mm_sub_pd(ix1,jx0);
376             dy10             = _mm_sub_pd(iy1,jy0);
377             dz10             = _mm_sub_pd(iz1,jz0);
378             dx20             = _mm_sub_pd(ix2,jx0);
379             dy20             = _mm_sub_pd(iy2,jy0);
380             dz20             = _mm_sub_pd(iz2,jz0);
381
382             /* Calculate squared distance and things based on it */
383             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
384             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
385             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
386
387             rinv00           = gmx_mm_invsqrt_pd(rsq00);
388             rinv10           = gmx_mm_invsqrt_pd(rsq10);
389             rinv20           = gmx_mm_invsqrt_pd(rsq20);
390
391             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
392             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
393             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
394
395             /* Load parameters for j particles */
396             jq0              = _mm_load_sd(charge+jnrA+0);
397             vdwjidx0A        = 2*vdwtype[jnrA+0];
398
399             fjx0             = _mm_setzero_pd();
400             fjy0             = _mm_setzero_pd();
401             fjz0             = _mm_setzero_pd();
402
403             /**************************
404              * CALCULATE INTERACTIONS *
405              **************************/
406
407             r00              = _mm_mul_pd(rsq00,rinv00);
408
409             /* Compute parameters for interactions between i and j atoms */
410             qq00             = _mm_mul_pd(iq0,jq0);
411             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
412
413             /* Calculate table index by multiplying r with table scale and truncate to integer */
414             rt               = _mm_mul_pd(r00,vftabscale);
415             vfitab           = _mm_cvttpd_epi32(rt);
416             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
417             vfitab           = _mm_slli_epi32(vfitab,3);
418
419             /* REACTION-FIELD ELECTROSTATICS */
420             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
421             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
422
423             /* CUBIC SPLINE TABLE DISPERSION */
424             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
425             F                = _mm_setzero_pd();
426             GMX_MM_TRANSPOSE2_PD(Y,F);
427             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
428             H                = _mm_setzero_pd();
429             GMX_MM_TRANSPOSE2_PD(G,H);
430             Heps             = _mm_mul_pd(vfeps,H);
431             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
432             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
433             vvdw6            = _mm_mul_pd(c6_00,VV);
434             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
435             fvdw6            = _mm_mul_pd(c6_00,FF);
436
437             /* CUBIC SPLINE TABLE REPULSION */
438             vfitab           = _mm_add_epi32(vfitab,ifour);
439             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
440             F                = _mm_setzero_pd();
441             GMX_MM_TRANSPOSE2_PD(Y,F);
442             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
443             H                = _mm_setzero_pd();
444             GMX_MM_TRANSPOSE2_PD(G,H);
445             Heps             = _mm_mul_pd(vfeps,H);
446             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
447             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
448             vvdw12           = _mm_mul_pd(c12_00,VV);
449             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
450             fvdw12           = _mm_mul_pd(c12_00,FF);
451             vvdw             = _mm_add_pd(vvdw12,vvdw6);
452             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
453
454             /* Update potential sum for this i atom from the interaction with this j atom. */
455             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
456             velecsum         = _mm_add_pd(velecsum,velec);
457             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
458             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
459
460             fscal            = _mm_add_pd(felec,fvdw);
461
462             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
463
464             /* Calculate temporary vectorial force */
465             tx               = _mm_mul_pd(fscal,dx00);
466             ty               = _mm_mul_pd(fscal,dy00);
467             tz               = _mm_mul_pd(fscal,dz00);
468
469             /* Update vectorial force */
470             fix0             = _mm_add_pd(fix0,tx);
471             fiy0             = _mm_add_pd(fiy0,ty);
472             fiz0             = _mm_add_pd(fiz0,tz);
473
474             fjx0             = _mm_add_pd(fjx0,tx);
475             fjy0             = _mm_add_pd(fjy0,ty);
476             fjz0             = _mm_add_pd(fjz0,tz);
477
478             /**************************
479              * CALCULATE INTERACTIONS *
480              **************************/
481
482             /* Compute parameters for interactions between i and j atoms */
483             qq10             = _mm_mul_pd(iq1,jq0);
484
485             /* REACTION-FIELD ELECTROSTATICS */
486             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
487             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
488
489             /* Update potential sum for this i atom from the interaction with this j atom. */
490             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
491             velecsum         = _mm_add_pd(velecsum,velec);
492
493             fscal            = felec;
494
495             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
496
497             /* Calculate temporary vectorial force */
498             tx               = _mm_mul_pd(fscal,dx10);
499             ty               = _mm_mul_pd(fscal,dy10);
500             tz               = _mm_mul_pd(fscal,dz10);
501
502             /* Update vectorial force */
503             fix1             = _mm_add_pd(fix1,tx);
504             fiy1             = _mm_add_pd(fiy1,ty);
505             fiz1             = _mm_add_pd(fiz1,tz);
506
507             fjx0             = _mm_add_pd(fjx0,tx);
508             fjy0             = _mm_add_pd(fjy0,ty);
509             fjz0             = _mm_add_pd(fjz0,tz);
510
511             /**************************
512              * CALCULATE INTERACTIONS *
513              **************************/
514
515             /* Compute parameters for interactions between i and j atoms */
516             qq20             = _mm_mul_pd(iq2,jq0);
517
518             /* REACTION-FIELD ELECTROSTATICS */
519             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
520             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
521
522             /* Update potential sum for this i atom from the interaction with this j atom. */
523             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
524             velecsum         = _mm_add_pd(velecsum,velec);
525
526             fscal            = felec;
527
528             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
529
530             /* Calculate temporary vectorial force */
531             tx               = _mm_mul_pd(fscal,dx20);
532             ty               = _mm_mul_pd(fscal,dy20);
533             tz               = _mm_mul_pd(fscal,dz20);
534
535             /* Update vectorial force */
536             fix2             = _mm_add_pd(fix2,tx);
537             fiy2             = _mm_add_pd(fiy2,ty);
538             fiz2             = _mm_add_pd(fiz2,tz);
539
540             fjx0             = _mm_add_pd(fjx0,tx);
541             fjy0             = _mm_add_pd(fjy0,ty);
542             fjz0             = _mm_add_pd(fjz0,tz);
543
544             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
545
546             /* Inner loop uses 134 flops */
547         }
548
549         /* End of innermost loop */
550
551         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
552                                               f+i_coord_offset,fshift+i_shift_offset);
553
554         ggid                        = gid[iidx];
555         /* Update potential energies */
556         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
557         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
558
559         /* Increment number of inner iterations */
560         inneriter                  += j_index_end - j_index_start;
561
562         /* Outer loop uses 20 flops */
563     }
564
565     /* Increment number of outer iterations */
566     outeriter        += nri;
567
568     /* Update outer/inner flops */
569
570     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*134);
571 }
572 /*
573  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse2_double
574  * Electrostatics interaction: ReactionField
575  * VdW interaction:            CubicSplineTable
576  * Geometry:                   Water3-Particle
577  * Calculate force/pot:        Force
578  */
579 void
580 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_sse2_double
581                     (t_nblist                    * gmx_restrict       nlist,
582                      rvec                        * gmx_restrict          xx,
583                      rvec                        * gmx_restrict          ff,
584                      t_forcerec                  * gmx_restrict          fr,
585                      t_mdatoms                   * gmx_restrict     mdatoms,
586                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
587                      t_nrnb                      * gmx_restrict        nrnb)
588 {
589     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
590      * just 0 for non-waters.
591      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
592      * jnr indices corresponding to data put in the four positions in the SIMD register.
593      */
594     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
595     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
596     int              jnrA,jnrB;
597     int              j_coord_offsetA,j_coord_offsetB;
598     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
599     real             rcutoff_scalar;
600     real             *shiftvec,*fshift,*x,*f;
601     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
602     int              vdwioffset0;
603     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
604     int              vdwioffset1;
605     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
606     int              vdwioffset2;
607     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
608     int              vdwjidx0A,vdwjidx0B;
609     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
610     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
611     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
612     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
613     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
614     real             *charge;
615     int              nvdwtype;
616     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
617     int              *vdwtype;
618     real             *vdwparam;
619     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
620     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
621     __m128i          vfitab;
622     __m128i          ifour       = _mm_set1_epi32(4);
623     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
624     real             *vftab;
625     __m128d          dummy_mask,cutoff_mask;
626     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
627     __m128d          one     = _mm_set1_pd(1.0);
628     __m128d          two     = _mm_set1_pd(2.0);
629     x                = xx[0];
630     f                = ff[0];
631
632     nri              = nlist->nri;
633     iinr             = nlist->iinr;
634     jindex           = nlist->jindex;
635     jjnr             = nlist->jjnr;
636     shiftidx         = nlist->shift;
637     gid              = nlist->gid;
638     shiftvec         = fr->shift_vec[0];
639     fshift           = fr->fshift[0];
640     facel            = _mm_set1_pd(fr->epsfac);
641     charge           = mdatoms->chargeA;
642     krf              = _mm_set1_pd(fr->ic->k_rf);
643     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
644     crf              = _mm_set1_pd(fr->ic->c_rf);
645     nvdwtype         = fr->ntype;
646     vdwparam         = fr->nbfp;
647     vdwtype          = mdatoms->typeA;
648
649     vftab            = kernel_data->table_vdw->data;
650     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
651
652     /* Setup water-specific parameters */
653     inr              = nlist->iinr[0];
654     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
655     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
656     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
657     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
658
659     /* Avoid stupid compiler warnings */
660     jnrA = jnrB = 0;
661     j_coord_offsetA = 0;
662     j_coord_offsetB = 0;
663
664     outeriter        = 0;
665     inneriter        = 0;
666
667     /* Start outer loop over neighborlists */
668     for(iidx=0; iidx<nri; iidx++)
669     {
670         /* Load shift vector for this list */
671         i_shift_offset   = DIM*shiftidx[iidx];
672
673         /* Load limits for loop over neighbors */
674         j_index_start    = jindex[iidx];
675         j_index_end      = jindex[iidx+1];
676
677         /* Get outer coordinate index */
678         inr              = iinr[iidx];
679         i_coord_offset   = DIM*inr;
680
681         /* Load i particle coords and add shift vector */
682         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
683                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
684
685         fix0             = _mm_setzero_pd();
686         fiy0             = _mm_setzero_pd();
687         fiz0             = _mm_setzero_pd();
688         fix1             = _mm_setzero_pd();
689         fiy1             = _mm_setzero_pd();
690         fiz1             = _mm_setzero_pd();
691         fix2             = _mm_setzero_pd();
692         fiy2             = _mm_setzero_pd();
693         fiz2             = _mm_setzero_pd();
694
695         /* Start inner kernel loop */
696         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
697         {
698
699             /* Get j neighbor index, and coordinate index */
700             jnrA             = jjnr[jidx];
701             jnrB             = jjnr[jidx+1];
702             j_coord_offsetA  = DIM*jnrA;
703             j_coord_offsetB  = DIM*jnrB;
704
705             /* load j atom coordinates */
706             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
707                                               &jx0,&jy0,&jz0);
708
709             /* Calculate displacement vector */
710             dx00             = _mm_sub_pd(ix0,jx0);
711             dy00             = _mm_sub_pd(iy0,jy0);
712             dz00             = _mm_sub_pd(iz0,jz0);
713             dx10             = _mm_sub_pd(ix1,jx0);
714             dy10             = _mm_sub_pd(iy1,jy0);
715             dz10             = _mm_sub_pd(iz1,jz0);
716             dx20             = _mm_sub_pd(ix2,jx0);
717             dy20             = _mm_sub_pd(iy2,jy0);
718             dz20             = _mm_sub_pd(iz2,jz0);
719
720             /* Calculate squared distance and things based on it */
721             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
722             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
723             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
724
725             rinv00           = gmx_mm_invsqrt_pd(rsq00);
726             rinv10           = gmx_mm_invsqrt_pd(rsq10);
727             rinv20           = gmx_mm_invsqrt_pd(rsq20);
728
729             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
730             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
731             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
732
733             /* Load parameters for j particles */
734             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
735             vdwjidx0A        = 2*vdwtype[jnrA+0];
736             vdwjidx0B        = 2*vdwtype[jnrB+0];
737
738             fjx0             = _mm_setzero_pd();
739             fjy0             = _mm_setzero_pd();
740             fjz0             = _mm_setzero_pd();
741
742             /**************************
743              * CALCULATE INTERACTIONS *
744              **************************/
745
746             r00              = _mm_mul_pd(rsq00,rinv00);
747
748             /* Compute parameters for interactions between i and j atoms */
749             qq00             = _mm_mul_pd(iq0,jq0);
750             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
751                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
752
753             /* Calculate table index by multiplying r with table scale and truncate to integer */
754             rt               = _mm_mul_pd(r00,vftabscale);
755             vfitab           = _mm_cvttpd_epi32(rt);
756             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
757             vfitab           = _mm_slli_epi32(vfitab,3);
758
759             /* REACTION-FIELD ELECTROSTATICS */
760             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
761
762             /* CUBIC SPLINE TABLE DISPERSION */
763             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
764             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
765             GMX_MM_TRANSPOSE2_PD(Y,F);
766             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
767             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
768             GMX_MM_TRANSPOSE2_PD(G,H);
769             Heps             = _mm_mul_pd(vfeps,H);
770             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
771             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
772             fvdw6            = _mm_mul_pd(c6_00,FF);
773
774             /* CUBIC SPLINE TABLE REPULSION */
775             vfitab           = _mm_add_epi32(vfitab,ifour);
776             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
777             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
778             GMX_MM_TRANSPOSE2_PD(Y,F);
779             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
780             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
781             GMX_MM_TRANSPOSE2_PD(G,H);
782             Heps             = _mm_mul_pd(vfeps,H);
783             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
784             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
785             fvdw12           = _mm_mul_pd(c12_00,FF);
786             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
787
788             fscal            = _mm_add_pd(felec,fvdw);
789
790             /* Calculate temporary vectorial force */
791             tx               = _mm_mul_pd(fscal,dx00);
792             ty               = _mm_mul_pd(fscal,dy00);
793             tz               = _mm_mul_pd(fscal,dz00);
794
795             /* Update vectorial force */
796             fix0             = _mm_add_pd(fix0,tx);
797             fiy0             = _mm_add_pd(fiy0,ty);
798             fiz0             = _mm_add_pd(fiz0,tz);
799
800             fjx0             = _mm_add_pd(fjx0,tx);
801             fjy0             = _mm_add_pd(fjy0,ty);
802             fjz0             = _mm_add_pd(fjz0,tz);
803
804             /**************************
805              * CALCULATE INTERACTIONS *
806              **************************/
807
808             /* Compute parameters for interactions between i and j atoms */
809             qq10             = _mm_mul_pd(iq1,jq0);
810
811             /* REACTION-FIELD ELECTROSTATICS */
812             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
813
814             fscal            = felec;
815
816             /* Calculate temporary vectorial force */
817             tx               = _mm_mul_pd(fscal,dx10);
818             ty               = _mm_mul_pd(fscal,dy10);
819             tz               = _mm_mul_pd(fscal,dz10);
820
821             /* Update vectorial force */
822             fix1             = _mm_add_pd(fix1,tx);
823             fiy1             = _mm_add_pd(fiy1,ty);
824             fiz1             = _mm_add_pd(fiz1,tz);
825
826             fjx0             = _mm_add_pd(fjx0,tx);
827             fjy0             = _mm_add_pd(fjy0,ty);
828             fjz0             = _mm_add_pd(fjz0,tz);
829
830             /**************************
831              * CALCULATE INTERACTIONS *
832              **************************/
833
834             /* Compute parameters for interactions between i and j atoms */
835             qq20             = _mm_mul_pd(iq2,jq0);
836
837             /* REACTION-FIELD ELECTROSTATICS */
838             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
839
840             fscal            = felec;
841
842             /* Calculate temporary vectorial force */
843             tx               = _mm_mul_pd(fscal,dx20);
844             ty               = _mm_mul_pd(fscal,dy20);
845             tz               = _mm_mul_pd(fscal,dz20);
846
847             /* Update vectorial force */
848             fix2             = _mm_add_pd(fix2,tx);
849             fiy2             = _mm_add_pd(fiy2,ty);
850             fiz2             = _mm_add_pd(fiz2,tz);
851
852             fjx0             = _mm_add_pd(fjx0,tx);
853             fjy0             = _mm_add_pd(fjy0,ty);
854             fjz0             = _mm_add_pd(fjz0,tz);
855
856             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
857
858             /* Inner loop uses 111 flops */
859         }
860
861         if(jidx<j_index_end)
862         {
863
864             jnrA             = jjnr[jidx];
865             j_coord_offsetA  = DIM*jnrA;
866
867             /* load j atom coordinates */
868             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
869                                               &jx0,&jy0,&jz0);
870
871             /* Calculate displacement vector */
872             dx00             = _mm_sub_pd(ix0,jx0);
873             dy00             = _mm_sub_pd(iy0,jy0);
874             dz00             = _mm_sub_pd(iz0,jz0);
875             dx10             = _mm_sub_pd(ix1,jx0);
876             dy10             = _mm_sub_pd(iy1,jy0);
877             dz10             = _mm_sub_pd(iz1,jz0);
878             dx20             = _mm_sub_pd(ix2,jx0);
879             dy20             = _mm_sub_pd(iy2,jy0);
880             dz20             = _mm_sub_pd(iz2,jz0);
881
882             /* Calculate squared distance and things based on it */
883             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
884             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
885             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
886
887             rinv00           = gmx_mm_invsqrt_pd(rsq00);
888             rinv10           = gmx_mm_invsqrt_pd(rsq10);
889             rinv20           = gmx_mm_invsqrt_pd(rsq20);
890
891             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
892             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
893             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
894
895             /* Load parameters for j particles */
896             jq0              = _mm_load_sd(charge+jnrA+0);
897             vdwjidx0A        = 2*vdwtype[jnrA+0];
898
899             fjx0             = _mm_setzero_pd();
900             fjy0             = _mm_setzero_pd();
901             fjz0             = _mm_setzero_pd();
902
903             /**************************
904              * CALCULATE INTERACTIONS *
905              **************************/
906
907             r00              = _mm_mul_pd(rsq00,rinv00);
908
909             /* Compute parameters for interactions between i and j atoms */
910             qq00             = _mm_mul_pd(iq0,jq0);
911             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
912
913             /* Calculate table index by multiplying r with table scale and truncate to integer */
914             rt               = _mm_mul_pd(r00,vftabscale);
915             vfitab           = _mm_cvttpd_epi32(rt);
916             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
917             vfitab           = _mm_slli_epi32(vfitab,3);
918
919             /* REACTION-FIELD ELECTROSTATICS */
920             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
921
922             /* CUBIC SPLINE TABLE DISPERSION */
923             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
924             F                = _mm_setzero_pd();
925             GMX_MM_TRANSPOSE2_PD(Y,F);
926             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
927             H                = _mm_setzero_pd();
928             GMX_MM_TRANSPOSE2_PD(G,H);
929             Heps             = _mm_mul_pd(vfeps,H);
930             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
931             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
932             fvdw6            = _mm_mul_pd(c6_00,FF);
933
934             /* CUBIC SPLINE TABLE REPULSION */
935             vfitab           = _mm_add_epi32(vfitab,ifour);
936             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
937             F                = _mm_setzero_pd();
938             GMX_MM_TRANSPOSE2_PD(Y,F);
939             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
940             H                = _mm_setzero_pd();
941             GMX_MM_TRANSPOSE2_PD(G,H);
942             Heps             = _mm_mul_pd(vfeps,H);
943             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
944             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
945             fvdw12           = _mm_mul_pd(c12_00,FF);
946             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
947
948             fscal            = _mm_add_pd(felec,fvdw);
949
950             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
951
952             /* Calculate temporary vectorial force */
953             tx               = _mm_mul_pd(fscal,dx00);
954             ty               = _mm_mul_pd(fscal,dy00);
955             tz               = _mm_mul_pd(fscal,dz00);
956
957             /* Update vectorial force */
958             fix0             = _mm_add_pd(fix0,tx);
959             fiy0             = _mm_add_pd(fiy0,ty);
960             fiz0             = _mm_add_pd(fiz0,tz);
961
962             fjx0             = _mm_add_pd(fjx0,tx);
963             fjy0             = _mm_add_pd(fjy0,ty);
964             fjz0             = _mm_add_pd(fjz0,tz);
965
966             /**************************
967              * CALCULATE INTERACTIONS *
968              **************************/
969
970             /* Compute parameters for interactions between i and j atoms */
971             qq10             = _mm_mul_pd(iq1,jq0);
972
973             /* REACTION-FIELD ELECTROSTATICS */
974             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
975
976             fscal            = felec;
977
978             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
979
980             /* Calculate temporary vectorial force */
981             tx               = _mm_mul_pd(fscal,dx10);
982             ty               = _mm_mul_pd(fscal,dy10);
983             tz               = _mm_mul_pd(fscal,dz10);
984
985             /* Update vectorial force */
986             fix1             = _mm_add_pd(fix1,tx);
987             fiy1             = _mm_add_pd(fiy1,ty);
988             fiz1             = _mm_add_pd(fiz1,tz);
989
990             fjx0             = _mm_add_pd(fjx0,tx);
991             fjy0             = _mm_add_pd(fjy0,ty);
992             fjz0             = _mm_add_pd(fjz0,tz);
993
994             /**************************
995              * CALCULATE INTERACTIONS *
996              **************************/
997
998             /* Compute parameters for interactions between i and j atoms */
999             qq20             = _mm_mul_pd(iq2,jq0);
1000
1001             /* REACTION-FIELD ELECTROSTATICS */
1002             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1003
1004             fscal            = felec;
1005
1006             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1007
1008             /* Calculate temporary vectorial force */
1009             tx               = _mm_mul_pd(fscal,dx20);
1010             ty               = _mm_mul_pd(fscal,dy20);
1011             tz               = _mm_mul_pd(fscal,dz20);
1012
1013             /* Update vectorial force */
1014             fix2             = _mm_add_pd(fix2,tx);
1015             fiy2             = _mm_add_pd(fiy2,ty);
1016             fiz2             = _mm_add_pd(fiz2,tz);
1017
1018             fjx0             = _mm_add_pd(fjx0,tx);
1019             fjy0             = _mm_add_pd(fjy0,ty);
1020             fjz0             = _mm_add_pd(fjz0,tz);
1021
1022             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1023
1024             /* Inner loop uses 111 flops */
1025         }
1026
1027         /* End of innermost loop */
1028
1029         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1030                                               f+i_coord_offset,fshift+i_shift_offset);
1031
1032         /* Increment number of inner iterations */
1033         inneriter                  += j_index_end - j_index_start;
1034
1035         /* Outer loop uses 18 flops */
1036     }
1037
1038     /* Increment number of outer iterations */
1039     outeriter        += nri;
1040
1041     /* Update outer/inner flops */
1042
1043     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*111);
1044 }