Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse2_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
98     real             *vftab;
99     __m128d          dummy_mask,cutoff_mask;
100     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
101     __m128d          one     = _mm_set1_pd(1.0);
102     __m128d          two     = _mm_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_pd(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     krf              = _mm_set1_pd(fr->ic->k_rf);
117     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
118     crf              = _mm_set1_pd(fr->ic->c_rf);
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_vdw->data;
124     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
150
151         fix0             = _mm_setzero_pd();
152         fiy0             = _mm_setzero_pd();
153         fiz0             = _mm_setzero_pd();
154
155         /* Load parameters for i particles */
156         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
157         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
158
159         /* Reset potential sums */
160         velecsum         = _mm_setzero_pd();
161         vvdwsum          = _mm_setzero_pd();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172
173             /* load j atom coordinates */
174             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
175                                               &jx0,&jy0,&jz0);
176
177             /* Calculate displacement vector */
178             dx00             = _mm_sub_pd(ix0,jx0);
179             dy00             = _mm_sub_pd(iy0,jy0);
180             dz00             = _mm_sub_pd(iz0,jz0);
181
182             /* Calculate squared distance and things based on it */
183             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
184
185             rinv00           = gmx_mm_invsqrt_pd(rsq00);
186
187             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
188
189             /* Load parameters for j particles */
190             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
191             vdwjidx0A        = 2*vdwtype[jnrA+0];
192             vdwjidx0B        = 2*vdwtype[jnrB+0];
193
194             /**************************
195              * CALCULATE INTERACTIONS *
196              **************************/
197
198             r00              = _mm_mul_pd(rsq00,rinv00);
199
200             /* Compute parameters for interactions between i and j atoms */
201             qq00             = _mm_mul_pd(iq0,jq0);
202             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
203                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
204
205             /* Calculate table index by multiplying r with table scale and truncate to integer */
206             rt               = _mm_mul_pd(r00,vftabscale);
207             vfitab           = _mm_cvttpd_epi32(rt);
208             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
209             vfitab           = _mm_slli_epi32(vfitab,3);
210
211             /* REACTION-FIELD ELECTROSTATICS */
212             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
213             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
214
215             /* CUBIC SPLINE TABLE DISPERSION */
216             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
217             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
218             GMX_MM_TRANSPOSE2_PD(Y,F);
219             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
220             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
221             GMX_MM_TRANSPOSE2_PD(G,H);
222             Heps             = _mm_mul_pd(vfeps,H);
223             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
224             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
225             vvdw6            = _mm_mul_pd(c6_00,VV);
226             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
227             fvdw6            = _mm_mul_pd(c6_00,FF);
228
229             /* CUBIC SPLINE TABLE REPULSION */
230             vfitab           = _mm_add_epi32(vfitab,ifour);
231             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
232             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
233             GMX_MM_TRANSPOSE2_PD(Y,F);
234             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
235             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
236             GMX_MM_TRANSPOSE2_PD(G,H);
237             Heps             = _mm_mul_pd(vfeps,H);
238             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
239             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
240             vvdw12           = _mm_mul_pd(c12_00,VV);
241             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
242             fvdw12           = _mm_mul_pd(c12_00,FF);
243             vvdw             = _mm_add_pd(vvdw12,vvdw6);
244             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             velecsum         = _mm_add_pd(velecsum,velec);
248             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
249
250             fscal            = _mm_add_pd(felec,fvdw);
251
252             /* Calculate temporary vectorial force */
253             tx               = _mm_mul_pd(fscal,dx00);
254             ty               = _mm_mul_pd(fscal,dy00);
255             tz               = _mm_mul_pd(fscal,dz00);
256
257             /* Update vectorial force */
258             fix0             = _mm_add_pd(fix0,tx);
259             fiy0             = _mm_add_pd(fiy0,ty);
260             fiz0             = _mm_add_pd(fiz0,tz);
261
262             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
263
264             /* Inner loop uses 67 flops */
265         }
266
267         if(jidx<j_index_end)
268         {
269
270             jnrA             = jjnr[jidx];
271             j_coord_offsetA  = DIM*jnrA;
272
273             /* load j atom coordinates */
274             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
275                                               &jx0,&jy0,&jz0);
276
277             /* Calculate displacement vector */
278             dx00             = _mm_sub_pd(ix0,jx0);
279             dy00             = _mm_sub_pd(iy0,jy0);
280             dz00             = _mm_sub_pd(iz0,jz0);
281
282             /* Calculate squared distance and things based on it */
283             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
284
285             rinv00           = gmx_mm_invsqrt_pd(rsq00);
286
287             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
288
289             /* Load parameters for j particles */
290             jq0              = _mm_load_sd(charge+jnrA+0);
291             vdwjidx0A        = 2*vdwtype[jnrA+0];
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             r00              = _mm_mul_pd(rsq00,rinv00);
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq00             = _mm_mul_pd(iq0,jq0);
301             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
302
303             /* Calculate table index by multiplying r with table scale and truncate to integer */
304             rt               = _mm_mul_pd(r00,vftabscale);
305             vfitab           = _mm_cvttpd_epi32(rt);
306             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
307             vfitab           = _mm_slli_epi32(vfitab,3);
308
309             /* REACTION-FIELD ELECTROSTATICS */
310             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
311             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
312
313             /* CUBIC SPLINE TABLE DISPERSION */
314             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
315             F                = _mm_setzero_pd();
316             GMX_MM_TRANSPOSE2_PD(Y,F);
317             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
318             H                = _mm_setzero_pd();
319             GMX_MM_TRANSPOSE2_PD(G,H);
320             Heps             = _mm_mul_pd(vfeps,H);
321             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
322             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
323             vvdw6            = _mm_mul_pd(c6_00,VV);
324             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
325             fvdw6            = _mm_mul_pd(c6_00,FF);
326
327             /* CUBIC SPLINE TABLE REPULSION */
328             vfitab           = _mm_add_epi32(vfitab,ifour);
329             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
330             F                = _mm_setzero_pd();
331             GMX_MM_TRANSPOSE2_PD(Y,F);
332             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
333             H                = _mm_setzero_pd();
334             GMX_MM_TRANSPOSE2_PD(G,H);
335             Heps             = _mm_mul_pd(vfeps,H);
336             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
337             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
338             vvdw12           = _mm_mul_pd(c12_00,VV);
339             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
340             fvdw12           = _mm_mul_pd(c12_00,FF);
341             vvdw             = _mm_add_pd(vvdw12,vvdw6);
342             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
346             velecsum         = _mm_add_pd(velecsum,velec);
347             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
348             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
349
350             fscal            = _mm_add_pd(felec,fvdw);
351
352             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
353
354             /* Calculate temporary vectorial force */
355             tx               = _mm_mul_pd(fscal,dx00);
356             ty               = _mm_mul_pd(fscal,dy00);
357             tz               = _mm_mul_pd(fscal,dz00);
358
359             /* Update vectorial force */
360             fix0             = _mm_add_pd(fix0,tx);
361             fiy0             = _mm_add_pd(fiy0,ty);
362             fiz0             = _mm_add_pd(fiz0,tz);
363
364             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
365
366             /* Inner loop uses 67 flops */
367         }
368
369         /* End of innermost loop */
370
371         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
372                                               f+i_coord_offset,fshift+i_shift_offset);
373
374         ggid                        = gid[iidx];
375         /* Update potential energies */
376         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
377         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
378
379         /* Increment number of inner iterations */
380         inneriter                  += j_index_end - j_index_start;
381
382         /* Outer loop uses 9 flops */
383     }
384
385     /* Increment number of outer iterations */
386     outeriter        += nri;
387
388     /* Update outer/inner flops */
389
390     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*67);
391 }
392 /*
393  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse2_double
394  * Electrostatics interaction: ReactionField
395  * VdW interaction:            CubicSplineTable
396  * Geometry:                   Particle-Particle
397  * Calculate force/pot:        Force
398  */
399 void
400 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse2_double
401                     (t_nblist                    * gmx_restrict       nlist,
402                      rvec                        * gmx_restrict          xx,
403                      rvec                        * gmx_restrict          ff,
404                      t_forcerec                  * gmx_restrict          fr,
405                      t_mdatoms                   * gmx_restrict     mdatoms,
406                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
407                      t_nrnb                      * gmx_restrict        nrnb)
408 {
409     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
410      * just 0 for non-waters.
411      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
412      * jnr indices corresponding to data put in the four positions in the SIMD register.
413      */
414     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
415     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
416     int              jnrA,jnrB;
417     int              j_coord_offsetA,j_coord_offsetB;
418     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
419     real             rcutoff_scalar;
420     real             *shiftvec,*fshift,*x,*f;
421     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
422     int              vdwioffset0;
423     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
424     int              vdwjidx0A,vdwjidx0B;
425     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
426     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
427     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
428     real             *charge;
429     int              nvdwtype;
430     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
431     int              *vdwtype;
432     real             *vdwparam;
433     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
434     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
435     __m128i          vfitab;
436     __m128i          ifour       = _mm_set1_epi32(4);
437     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
438     real             *vftab;
439     __m128d          dummy_mask,cutoff_mask;
440     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
441     __m128d          one     = _mm_set1_pd(1.0);
442     __m128d          two     = _mm_set1_pd(2.0);
443     x                = xx[0];
444     f                = ff[0];
445
446     nri              = nlist->nri;
447     iinr             = nlist->iinr;
448     jindex           = nlist->jindex;
449     jjnr             = nlist->jjnr;
450     shiftidx         = nlist->shift;
451     gid              = nlist->gid;
452     shiftvec         = fr->shift_vec[0];
453     fshift           = fr->fshift[0];
454     facel            = _mm_set1_pd(fr->epsfac);
455     charge           = mdatoms->chargeA;
456     krf              = _mm_set1_pd(fr->ic->k_rf);
457     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
458     crf              = _mm_set1_pd(fr->ic->c_rf);
459     nvdwtype         = fr->ntype;
460     vdwparam         = fr->nbfp;
461     vdwtype          = mdatoms->typeA;
462
463     vftab            = kernel_data->table_vdw->data;
464     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
465
466     /* Avoid stupid compiler warnings */
467     jnrA = jnrB = 0;
468     j_coord_offsetA = 0;
469     j_coord_offsetB = 0;
470
471     outeriter        = 0;
472     inneriter        = 0;
473
474     /* Start outer loop over neighborlists */
475     for(iidx=0; iidx<nri; iidx++)
476     {
477         /* Load shift vector for this list */
478         i_shift_offset   = DIM*shiftidx[iidx];
479
480         /* Load limits for loop over neighbors */
481         j_index_start    = jindex[iidx];
482         j_index_end      = jindex[iidx+1];
483
484         /* Get outer coordinate index */
485         inr              = iinr[iidx];
486         i_coord_offset   = DIM*inr;
487
488         /* Load i particle coords and add shift vector */
489         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
490
491         fix0             = _mm_setzero_pd();
492         fiy0             = _mm_setzero_pd();
493         fiz0             = _mm_setzero_pd();
494
495         /* Load parameters for i particles */
496         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
497         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
498
499         /* Start inner kernel loop */
500         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
501         {
502
503             /* Get j neighbor index, and coordinate index */
504             jnrA             = jjnr[jidx];
505             jnrB             = jjnr[jidx+1];
506             j_coord_offsetA  = DIM*jnrA;
507             j_coord_offsetB  = DIM*jnrB;
508
509             /* load j atom coordinates */
510             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
511                                               &jx0,&jy0,&jz0);
512
513             /* Calculate displacement vector */
514             dx00             = _mm_sub_pd(ix0,jx0);
515             dy00             = _mm_sub_pd(iy0,jy0);
516             dz00             = _mm_sub_pd(iz0,jz0);
517
518             /* Calculate squared distance and things based on it */
519             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
520
521             rinv00           = gmx_mm_invsqrt_pd(rsq00);
522
523             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
524
525             /* Load parameters for j particles */
526             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
527             vdwjidx0A        = 2*vdwtype[jnrA+0];
528             vdwjidx0B        = 2*vdwtype[jnrB+0];
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             r00              = _mm_mul_pd(rsq00,rinv00);
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq00             = _mm_mul_pd(iq0,jq0);
538             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
539                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
540
541             /* Calculate table index by multiplying r with table scale and truncate to integer */
542             rt               = _mm_mul_pd(r00,vftabscale);
543             vfitab           = _mm_cvttpd_epi32(rt);
544             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
545             vfitab           = _mm_slli_epi32(vfitab,3);
546
547             /* REACTION-FIELD ELECTROSTATICS */
548             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
549
550             /* CUBIC SPLINE TABLE DISPERSION */
551             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
552             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
553             GMX_MM_TRANSPOSE2_PD(Y,F);
554             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
555             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
556             GMX_MM_TRANSPOSE2_PD(G,H);
557             Heps             = _mm_mul_pd(vfeps,H);
558             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
559             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
560             fvdw6            = _mm_mul_pd(c6_00,FF);
561
562             /* CUBIC SPLINE TABLE REPULSION */
563             vfitab           = _mm_add_epi32(vfitab,ifour);
564             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
565             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
566             GMX_MM_TRANSPOSE2_PD(Y,F);
567             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
568             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
569             GMX_MM_TRANSPOSE2_PD(G,H);
570             Heps             = _mm_mul_pd(vfeps,H);
571             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
572             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
573             fvdw12           = _mm_mul_pd(c12_00,FF);
574             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
575
576             fscal            = _mm_add_pd(felec,fvdw);
577
578             /* Calculate temporary vectorial force */
579             tx               = _mm_mul_pd(fscal,dx00);
580             ty               = _mm_mul_pd(fscal,dy00);
581             tz               = _mm_mul_pd(fscal,dz00);
582
583             /* Update vectorial force */
584             fix0             = _mm_add_pd(fix0,tx);
585             fiy0             = _mm_add_pd(fiy0,ty);
586             fiz0             = _mm_add_pd(fiz0,tz);
587
588             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
589
590             /* Inner loop uses 54 flops */
591         }
592
593         if(jidx<j_index_end)
594         {
595
596             jnrA             = jjnr[jidx];
597             j_coord_offsetA  = DIM*jnrA;
598
599             /* load j atom coordinates */
600             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
601                                               &jx0,&jy0,&jz0);
602
603             /* Calculate displacement vector */
604             dx00             = _mm_sub_pd(ix0,jx0);
605             dy00             = _mm_sub_pd(iy0,jy0);
606             dz00             = _mm_sub_pd(iz0,jz0);
607
608             /* Calculate squared distance and things based on it */
609             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
610
611             rinv00           = gmx_mm_invsqrt_pd(rsq00);
612
613             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
614
615             /* Load parameters for j particles */
616             jq0              = _mm_load_sd(charge+jnrA+0);
617             vdwjidx0A        = 2*vdwtype[jnrA+0];
618
619             /**************************
620              * CALCULATE INTERACTIONS *
621              **************************/
622
623             r00              = _mm_mul_pd(rsq00,rinv00);
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq00             = _mm_mul_pd(iq0,jq0);
627             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
628
629             /* Calculate table index by multiplying r with table scale and truncate to integer */
630             rt               = _mm_mul_pd(r00,vftabscale);
631             vfitab           = _mm_cvttpd_epi32(rt);
632             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
633             vfitab           = _mm_slli_epi32(vfitab,3);
634
635             /* REACTION-FIELD ELECTROSTATICS */
636             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
637
638             /* CUBIC SPLINE TABLE DISPERSION */
639             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
640             F                = _mm_setzero_pd();
641             GMX_MM_TRANSPOSE2_PD(Y,F);
642             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
643             H                = _mm_setzero_pd();
644             GMX_MM_TRANSPOSE2_PD(G,H);
645             Heps             = _mm_mul_pd(vfeps,H);
646             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
647             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
648             fvdw6            = _mm_mul_pd(c6_00,FF);
649
650             /* CUBIC SPLINE TABLE REPULSION */
651             vfitab           = _mm_add_epi32(vfitab,ifour);
652             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
653             F                = _mm_setzero_pd();
654             GMX_MM_TRANSPOSE2_PD(Y,F);
655             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
656             H                = _mm_setzero_pd();
657             GMX_MM_TRANSPOSE2_PD(G,H);
658             Heps             = _mm_mul_pd(vfeps,H);
659             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
660             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
661             fvdw12           = _mm_mul_pd(c12_00,FF);
662             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
663
664             fscal            = _mm_add_pd(felec,fvdw);
665
666             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
667
668             /* Calculate temporary vectorial force */
669             tx               = _mm_mul_pd(fscal,dx00);
670             ty               = _mm_mul_pd(fscal,dy00);
671             tz               = _mm_mul_pd(fscal,dz00);
672
673             /* Update vectorial force */
674             fix0             = _mm_add_pd(fix0,tx);
675             fiy0             = _mm_add_pd(fiy0,ty);
676             fiz0             = _mm_add_pd(fiz0,tz);
677
678             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
679
680             /* Inner loop uses 54 flops */
681         }
682
683         /* End of innermost loop */
684
685         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
686                                               f+i_coord_offset,fshift+i_shift_offset);
687
688         /* Increment number of inner iterations */
689         inneriter                  += j_index_end - j_index_start;
690
691         /* Outer loop uses 7 flops */
692     }
693
694     /* Increment number of outer iterations */
695     outeriter        += nri;
696
697     /* Update outer/inner flops */
698
699     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*54);
700 }