3de6e18775e289c98c05f0eeecf7a55b8e27fe5b
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse2_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114     krf              = _mm_set1_pd(fr->ic->k_rf);
115     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
116     crf              = _mm_set1_pd(fr->ic->c_rf);
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_vdw->data;
122     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
148
149         fix0             = _mm_setzero_pd();
150         fiy0             = _mm_setzero_pd();
151         fiz0             = _mm_setzero_pd();
152
153         /* Load parameters for i particles */
154         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
155         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
156
157         /* Reset potential sums */
158         velecsum         = _mm_setzero_pd();
159         vvdwsum          = _mm_setzero_pd();
160
161         /* Start inner kernel loop */
162         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
163         {
164
165             /* Get j neighbor index, and coordinate index */
166             jnrA             = jjnr[jidx];
167             jnrB             = jjnr[jidx+1];
168             j_coord_offsetA  = DIM*jnrA;
169             j_coord_offsetB  = DIM*jnrB;
170
171             /* load j atom coordinates */
172             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
173                                               &jx0,&jy0,&jz0);
174
175             /* Calculate displacement vector */
176             dx00             = _mm_sub_pd(ix0,jx0);
177             dy00             = _mm_sub_pd(iy0,jy0);
178             dz00             = _mm_sub_pd(iz0,jz0);
179
180             /* Calculate squared distance and things based on it */
181             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
182
183             rinv00           = gmx_mm_invsqrt_pd(rsq00);
184
185             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
186
187             /* Load parameters for j particles */
188             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
189             vdwjidx0A        = 2*vdwtype[jnrA+0];
190             vdwjidx0B        = 2*vdwtype[jnrB+0];
191
192             /**************************
193              * CALCULATE INTERACTIONS *
194              **************************/
195
196             r00              = _mm_mul_pd(rsq00,rinv00);
197
198             /* Compute parameters for interactions between i and j atoms */
199             qq00             = _mm_mul_pd(iq0,jq0);
200             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
201                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
202
203             /* Calculate table index by multiplying r with table scale and truncate to integer */
204             rt               = _mm_mul_pd(r00,vftabscale);
205             vfitab           = _mm_cvttpd_epi32(rt);
206             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
207             vfitab           = _mm_slli_epi32(vfitab,3);
208
209             /* REACTION-FIELD ELECTROSTATICS */
210             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
211             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
212
213             /* CUBIC SPLINE TABLE DISPERSION */
214             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
215             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
216             GMX_MM_TRANSPOSE2_PD(Y,F);
217             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
218             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
219             GMX_MM_TRANSPOSE2_PD(G,H);
220             Heps             = _mm_mul_pd(vfeps,H);
221             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
222             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
223             vvdw6            = _mm_mul_pd(c6_00,VV);
224             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
225             fvdw6            = _mm_mul_pd(c6_00,FF);
226
227             /* CUBIC SPLINE TABLE REPULSION */
228             vfitab           = _mm_add_epi32(vfitab,ifour);
229             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
230             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
231             GMX_MM_TRANSPOSE2_PD(Y,F);
232             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
233             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
234             GMX_MM_TRANSPOSE2_PD(G,H);
235             Heps             = _mm_mul_pd(vfeps,H);
236             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
237             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
238             vvdw12           = _mm_mul_pd(c12_00,VV);
239             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
240             fvdw12           = _mm_mul_pd(c12_00,FF);
241             vvdw             = _mm_add_pd(vvdw12,vvdw6);
242             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             velecsum         = _mm_add_pd(velecsum,velec);
246             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
247
248             fscal            = _mm_add_pd(felec,fvdw);
249
250             /* Calculate temporary vectorial force */
251             tx               = _mm_mul_pd(fscal,dx00);
252             ty               = _mm_mul_pd(fscal,dy00);
253             tz               = _mm_mul_pd(fscal,dz00);
254
255             /* Update vectorial force */
256             fix0             = _mm_add_pd(fix0,tx);
257             fiy0             = _mm_add_pd(fiy0,ty);
258             fiz0             = _mm_add_pd(fiz0,tz);
259
260             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
261
262             /* Inner loop uses 67 flops */
263         }
264
265         if(jidx<j_index_end)
266         {
267
268             jnrA             = jjnr[jidx];
269             j_coord_offsetA  = DIM*jnrA;
270
271             /* load j atom coordinates */
272             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
273                                               &jx0,&jy0,&jz0);
274
275             /* Calculate displacement vector */
276             dx00             = _mm_sub_pd(ix0,jx0);
277             dy00             = _mm_sub_pd(iy0,jy0);
278             dz00             = _mm_sub_pd(iz0,jz0);
279
280             /* Calculate squared distance and things based on it */
281             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
282
283             rinv00           = gmx_mm_invsqrt_pd(rsq00);
284
285             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
286
287             /* Load parameters for j particles */
288             jq0              = _mm_load_sd(charge+jnrA+0);
289             vdwjidx0A        = 2*vdwtype[jnrA+0];
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             r00              = _mm_mul_pd(rsq00,rinv00);
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq00             = _mm_mul_pd(iq0,jq0);
299             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
300
301             /* Calculate table index by multiplying r with table scale and truncate to integer */
302             rt               = _mm_mul_pd(r00,vftabscale);
303             vfitab           = _mm_cvttpd_epi32(rt);
304             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
305             vfitab           = _mm_slli_epi32(vfitab,3);
306
307             /* REACTION-FIELD ELECTROSTATICS */
308             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
309             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
310
311             /* CUBIC SPLINE TABLE DISPERSION */
312             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
313             F                = _mm_setzero_pd();
314             GMX_MM_TRANSPOSE2_PD(Y,F);
315             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
316             H                = _mm_setzero_pd();
317             GMX_MM_TRANSPOSE2_PD(G,H);
318             Heps             = _mm_mul_pd(vfeps,H);
319             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
320             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
321             vvdw6            = _mm_mul_pd(c6_00,VV);
322             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
323             fvdw6            = _mm_mul_pd(c6_00,FF);
324
325             /* CUBIC SPLINE TABLE REPULSION */
326             vfitab           = _mm_add_epi32(vfitab,ifour);
327             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
328             F                = _mm_setzero_pd();
329             GMX_MM_TRANSPOSE2_PD(Y,F);
330             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
331             H                = _mm_setzero_pd();
332             GMX_MM_TRANSPOSE2_PD(G,H);
333             Heps             = _mm_mul_pd(vfeps,H);
334             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
335             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
336             vvdw12           = _mm_mul_pd(c12_00,VV);
337             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
338             fvdw12           = _mm_mul_pd(c12_00,FF);
339             vvdw             = _mm_add_pd(vvdw12,vvdw6);
340             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
344             velecsum         = _mm_add_pd(velecsum,velec);
345             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
346             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
347
348             fscal            = _mm_add_pd(felec,fvdw);
349
350             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
351
352             /* Calculate temporary vectorial force */
353             tx               = _mm_mul_pd(fscal,dx00);
354             ty               = _mm_mul_pd(fscal,dy00);
355             tz               = _mm_mul_pd(fscal,dz00);
356
357             /* Update vectorial force */
358             fix0             = _mm_add_pd(fix0,tx);
359             fiy0             = _mm_add_pd(fiy0,ty);
360             fiz0             = _mm_add_pd(fiz0,tz);
361
362             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
363
364             /* Inner loop uses 67 flops */
365         }
366
367         /* End of innermost loop */
368
369         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
370                                               f+i_coord_offset,fshift+i_shift_offset);
371
372         ggid                        = gid[iidx];
373         /* Update potential energies */
374         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
375         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
376
377         /* Increment number of inner iterations */
378         inneriter                  += j_index_end - j_index_start;
379
380         /* Outer loop uses 9 flops */
381     }
382
383     /* Increment number of outer iterations */
384     outeriter        += nri;
385
386     /* Update outer/inner flops */
387
388     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*67);
389 }
390 /*
391  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse2_double
392  * Electrostatics interaction: ReactionField
393  * VdW interaction:            CubicSplineTable
394  * Geometry:                   Particle-Particle
395  * Calculate force/pot:        Force
396  */
397 void
398 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_sse2_double
399                     (t_nblist                    * gmx_restrict       nlist,
400                      rvec                        * gmx_restrict          xx,
401                      rvec                        * gmx_restrict          ff,
402                      t_forcerec                  * gmx_restrict          fr,
403                      t_mdatoms                   * gmx_restrict     mdatoms,
404                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
405                      t_nrnb                      * gmx_restrict        nrnb)
406 {
407     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
408      * just 0 for non-waters.
409      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
410      * jnr indices corresponding to data put in the four positions in the SIMD register.
411      */
412     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
413     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
414     int              jnrA,jnrB;
415     int              j_coord_offsetA,j_coord_offsetB;
416     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
417     real             rcutoff_scalar;
418     real             *shiftvec,*fshift,*x,*f;
419     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
420     int              vdwioffset0;
421     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
422     int              vdwjidx0A,vdwjidx0B;
423     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
424     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
425     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
426     real             *charge;
427     int              nvdwtype;
428     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
429     int              *vdwtype;
430     real             *vdwparam;
431     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
432     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
433     __m128i          vfitab;
434     __m128i          ifour       = _mm_set1_epi32(4);
435     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
436     real             *vftab;
437     __m128d          dummy_mask,cutoff_mask;
438     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
439     __m128d          one     = _mm_set1_pd(1.0);
440     __m128d          two     = _mm_set1_pd(2.0);
441     x                = xx[0];
442     f                = ff[0];
443
444     nri              = nlist->nri;
445     iinr             = nlist->iinr;
446     jindex           = nlist->jindex;
447     jjnr             = nlist->jjnr;
448     shiftidx         = nlist->shift;
449     gid              = nlist->gid;
450     shiftvec         = fr->shift_vec[0];
451     fshift           = fr->fshift[0];
452     facel            = _mm_set1_pd(fr->epsfac);
453     charge           = mdatoms->chargeA;
454     krf              = _mm_set1_pd(fr->ic->k_rf);
455     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
456     crf              = _mm_set1_pd(fr->ic->c_rf);
457     nvdwtype         = fr->ntype;
458     vdwparam         = fr->nbfp;
459     vdwtype          = mdatoms->typeA;
460
461     vftab            = kernel_data->table_vdw->data;
462     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
463
464     /* Avoid stupid compiler warnings */
465     jnrA = jnrB = 0;
466     j_coord_offsetA = 0;
467     j_coord_offsetB = 0;
468
469     outeriter        = 0;
470     inneriter        = 0;
471
472     /* Start outer loop over neighborlists */
473     for(iidx=0; iidx<nri; iidx++)
474     {
475         /* Load shift vector for this list */
476         i_shift_offset   = DIM*shiftidx[iidx];
477
478         /* Load limits for loop over neighbors */
479         j_index_start    = jindex[iidx];
480         j_index_end      = jindex[iidx+1];
481
482         /* Get outer coordinate index */
483         inr              = iinr[iidx];
484         i_coord_offset   = DIM*inr;
485
486         /* Load i particle coords and add shift vector */
487         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
488
489         fix0             = _mm_setzero_pd();
490         fiy0             = _mm_setzero_pd();
491         fiz0             = _mm_setzero_pd();
492
493         /* Load parameters for i particles */
494         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
495         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
496
497         /* Start inner kernel loop */
498         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
499         {
500
501             /* Get j neighbor index, and coordinate index */
502             jnrA             = jjnr[jidx];
503             jnrB             = jjnr[jidx+1];
504             j_coord_offsetA  = DIM*jnrA;
505             j_coord_offsetB  = DIM*jnrB;
506
507             /* load j atom coordinates */
508             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
509                                               &jx0,&jy0,&jz0);
510
511             /* Calculate displacement vector */
512             dx00             = _mm_sub_pd(ix0,jx0);
513             dy00             = _mm_sub_pd(iy0,jy0);
514             dz00             = _mm_sub_pd(iz0,jz0);
515
516             /* Calculate squared distance and things based on it */
517             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
518
519             rinv00           = gmx_mm_invsqrt_pd(rsq00);
520
521             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
522
523             /* Load parameters for j particles */
524             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
525             vdwjidx0A        = 2*vdwtype[jnrA+0];
526             vdwjidx0B        = 2*vdwtype[jnrB+0];
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             r00              = _mm_mul_pd(rsq00,rinv00);
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq00             = _mm_mul_pd(iq0,jq0);
536             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
537                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
538
539             /* Calculate table index by multiplying r with table scale and truncate to integer */
540             rt               = _mm_mul_pd(r00,vftabscale);
541             vfitab           = _mm_cvttpd_epi32(rt);
542             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
543             vfitab           = _mm_slli_epi32(vfitab,3);
544
545             /* REACTION-FIELD ELECTROSTATICS */
546             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
547
548             /* CUBIC SPLINE TABLE DISPERSION */
549             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
550             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
551             GMX_MM_TRANSPOSE2_PD(Y,F);
552             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
553             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
554             GMX_MM_TRANSPOSE2_PD(G,H);
555             Heps             = _mm_mul_pd(vfeps,H);
556             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
557             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
558             fvdw6            = _mm_mul_pd(c6_00,FF);
559
560             /* CUBIC SPLINE TABLE REPULSION */
561             vfitab           = _mm_add_epi32(vfitab,ifour);
562             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
563             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
564             GMX_MM_TRANSPOSE2_PD(Y,F);
565             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
566             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
567             GMX_MM_TRANSPOSE2_PD(G,H);
568             Heps             = _mm_mul_pd(vfeps,H);
569             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
570             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
571             fvdw12           = _mm_mul_pd(c12_00,FF);
572             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
573
574             fscal            = _mm_add_pd(felec,fvdw);
575
576             /* Calculate temporary vectorial force */
577             tx               = _mm_mul_pd(fscal,dx00);
578             ty               = _mm_mul_pd(fscal,dy00);
579             tz               = _mm_mul_pd(fscal,dz00);
580
581             /* Update vectorial force */
582             fix0             = _mm_add_pd(fix0,tx);
583             fiy0             = _mm_add_pd(fiy0,ty);
584             fiz0             = _mm_add_pd(fiz0,tz);
585
586             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
587
588             /* Inner loop uses 54 flops */
589         }
590
591         if(jidx<j_index_end)
592         {
593
594             jnrA             = jjnr[jidx];
595             j_coord_offsetA  = DIM*jnrA;
596
597             /* load j atom coordinates */
598             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
599                                               &jx0,&jy0,&jz0);
600
601             /* Calculate displacement vector */
602             dx00             = _mm_sub_pd(ix0,jx0);
603             dy00             = _mm_sub_pd(iy0,jy0);
604             dz00             = _mm_sub_pd(iz0,jz0);
605
606             /* Calculate squared distance and things based on it */
607             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
608
609             rinv00           = gmx_mm_invsqrt_pd(rsq00);
610
611             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
612
613             /* Load parameters for j particles */
614             jq0              = _mm_load_sd(charge+jnrA+0);
615             vdwjidx0A        = 2*vdwtype[jnrA+0];
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             r00              = _mm_mul_pd(rsq00,rinv00);
622
623             /* Compute parameters for interactions between i and j atoms */
624             qq00             = _mm_mul_pd(iq0,jq0);
625             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
626
627             /* Calculate table index by multiplying r with table scale and truncate to integer */
628             rt               = _mm_mul_pd(r00,vftabscale);
629             vfitab           = _mm_cvttpd_epi32(rt);
630             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
631             vfitab           = _mm_slli_epi32(vfitab,3);
632
633             /* REACTION-FIELD ELECTROSTATICS */
634             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
635
636             /* CUBIC SPLINE TABLE DISPERSION */
637             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
638             F                = _mm_setzero_pd();
639             GMX_MM_TRANSPOSE2_PD(Y,F);
640             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
641             H                = _mm_setzero_pd();
642             GMX_MM_TRANSPOSE2_PD(G,H);
643             Heps             = _mm_mul_pd(vfeps,H);
644             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
645             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
646             fvdw6            = _mm_mul_pd(c6_00,FF);
647
648             /* CUBIC SPLINE TABLE REPULSION */
649             vfitab           = _mm_add_epi32(vfitab,ifour);
650             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
651             F                = _mm_setzero_pd();
652             GMX_MM_TRANSPOSE2_PD(Y,F);
653             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
654             H                = _mm_setzero_pd();
655             GMX_MM_TRANSPOSE2_PD(G,H);
656             Heps             = _mm_mul_pd(vfeps,H);
657             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
658             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
659             fvdw12           = _mm_mul_pd(c12_00,FF);
660             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
661
662             fscal            = _mm_add_pd(felec,fvdw);
663
664             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
665
666             /* Calculate temporary vectorial force */
667             tx               = _mm_mul_pd(fscal,dx00);
668             ty               = _mm_mul_pd(fscal,dy00);
669             tz               = _mm_mul_pd(fscal,dz00);
670
671             /* Update vectorial force */
672             fix0             = _mm_add_pd(fix0,tx);
673             fiy0             = _mm_add_pd(fiy0,ty);
674             fiz0             = _mm_add_pd(fiz0,tz);
675
676             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
677
678             /* Inner loop uses 54 flops */
679         }
680
681         /* End of innermost loop */
682
683         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
684                                               f+i_coord_offset,fshift+i_shift_offset);
685
686         /* Increment number of inner iterations */
687         inneriter                  += j_index_end - j_index_start;
688
689         /* Outer loop uses 7 flops */
690     }
691
692     /* Increment number of outer iterations */
693     outeriter        += nri;
694
695     /* Update outer/inner flops */
696
697     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*54);
698 }