Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_sse2_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
99     real             rswitch_scalar,d_scalar;
100     __m128d          dummy_mask,cutoff_mask;
101     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102     __m128d          one     = _mm_set1_pd(1.0);
103     __m128d          two     = _mm_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_pd(fr->ic->epsfac);
116     charge           = mdatoms->chargeA;
117     krf              = _mm_set1_pd(fr->ic->k_rf);
118     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
119     crf              = _mm_set1_pd(fr->ic->c_rf);
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
127     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
128     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
129     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
130
131     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
132     rcutoff_scalar   = fr->ic->rcoulomb;
133     rcutoff          = _mm_set1_pd(rcutoff_scalar);
134     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
135
136     rswitch_scalar   = fr->ic->rvdw_switch;
137     rswitch          = _mm_set1_pd(rswitch_scalar);
138     /* Setup switch parameters */
139     d_scalar         = rcutoff_scalar-rswitch_scalar;
140     d                = _mm_set1_pd(d_scalar);
141     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
142     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
143     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
144     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
145     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
146     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
173
174         fix0             = _mm_setzero_pd();
175         fiy0             = _mm_setzero_pd();
176         fiz0             = _mm_setzero_pd();
177         fix1             = _mm_setzero_pd();
178         fiy1             = _mm_setzero_pd();
179         fiz1             = _mm_setzero_pd();
180         fix2             = _mm_setzero_pd();
181         fiy2             = _mm_setzero_pd();
182         fiz2             = _mm_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_pd();
186         vvdwsum          = _mm_setzero_pd();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_pd(ix0,jx0);
204             dy00             = _mm_sub_pd(iy0,jy0);
205             dz00             = _mm_sub_pd(iz0,jz0);
206             dx10             = _mm_sub_pd(ix1,jx0);
207             dy10             = _mm_sub_pd(iy1,jy0);
208             dz10             = _mm_sub_pd(iz1,jz0);
209             dx20             = _mm_sub_pd(ix2,jx0);
210             dy20             = _mm_sub_pd(iy2,jy0);
211             dz20             = _mm_sub_pd(iz2,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
215             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
216             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
217
218             rinv00           = sse2_invsqrt_d(rsq00);
219             rinv10           = sse2_invsqrt_d(rsq10);
220             rinv20           = sse2_invsqrt_d(rsq20);
221
222             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
223             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
224             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230
231             fjx0             = _mm_setzero_pd();
232             fjy0             = _mm_setzero_pd();
233             fjz0             = _mm_setzero_pd();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             if (gmx_mm_any_lt(rsq00,rcutoff2))
240             {
241
242             r00              = _mm_mul_pd(rsq00,rinv00);
243
244             /* Compute parameters for interactions between i and j atoms */
245             qq00             = _mm_mul_pd(iq0,jq0);
246             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
247                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
248
249             /* REACTION-FIELD ELECTROSTATICS */
250             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
251             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
252
253             /* LENNARD-JONES DISPERSION/REPULSION */
254
255             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
256             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
257             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
258             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
259             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
260
261             d                = _mm_sub_pd(r00,rswitch);
262             d                = _mm_max_pd(d,_mm_setzero_pd());
263             d2               = _mm_mul_pd(d,d);
264             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
265
266             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
267
268             /* Evaluate switch function */
269             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
270             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
271             vvdw             = _mm_mul_pd(vvdw,sw);
272             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velec            = _mm_and_pd(velec,cutoff_mask);
276             velecsum         = _mm_add_pd(velecsum,velec);
277             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
278             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
279
280             fscal            = _mm_add_pd(felec,fvdw);
281
282             fscal            = _mm_and_pd(fscal,cutoff_mask);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm_mul_pd(fscal,dx00);
286             ty               = _mm_mul_pd(fscal,dy00);
287             tz               = _mm_mul_pd(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm_add_pd(fix0,tx);
291             fiy0             = _mm_add_pd(fiy0,ty);
292             fiz0             = _mm_add_pd(fiz0,tz);
293
294             fjx0             = _mm_add_pd(fjx0,tx);
295             fjy0             = _mm_add_pd(fjy0,ty);
296             fjz0             = _mm_add_pd(fjz0,tz);
297
298             }
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             if (gmx_mm_any_lt(rsq10,rcutoff2))
305             {
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq10             = _mm_mul_pd(iq1,jq0);
309
310             /* REACTION-FIELD ELECTROSTATICS */
311             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
312             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
313
314             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
315
316             /* Update potential sum for this i atom from the interaction with this j atom. */
317             velec            = _mm_and_pd(velec,cutoff_mask);
318             velecsum         = _mm_add_pd(velecsum,velec);
319
320             fscal            = felec;
321
322             fscal            = _mm_and_pd(fscal,cutoff_mask);
323
324             /* Calculate temporary vectorial force */
325             tx               = _mm_mul_pd(fscal,dx10);
326             ty               = _mm_mul_pd(fscal,dy10);
327             tz               = _mm_mul_pd(fscal,dz10);
328
329             /* Update vectorial force */
330             fix1             = _mm_add_pd(fix1,tx);
331             fiy1             = _mm_add_pd(fiy1,ty);
332             fiz1             = _mm_add_pd(fiz1,tz);
333
334             fjx0             = _mm_add_pd(fjx0,tx);
335             fjy0             = _mm_add_pd(fjy0,ty);
336             fjz0             = _mm_add_pd(fjz0,tz);
337
338             }
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             if (gmx_mm_any_lt(rsq20,rcutoff2))
345             {
346
347             /* Compute parameters for interactions between i and j atoms */
348             qq20             = _mm_mul_pd(iq2,jq0);
349
350             /* REACTION-FIELD ELECTROSTATICS */
351             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
352             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
353
354             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velec            = _mm_and_pd(velec,cutoff_mask);
358             velecsum         = _mm_add_pd(velecsum,velec);
359
360             fscal            = felec;
361
362             fscal            = _mm_and_pd(fscal,cutoff_mask);
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm_mul_pd(fscal,dx20);
366             ty               = _mm_mul_pd(fscal,dy20);
367             tz               = _mm_mul_pd(fscal,dz20);
368
369             /* Update vectorial force */
370             fix2             = _mm_add_pd(fix2,tx);
371             fiy2             = _mm_add_pd(fiy2,ty);
372             fiz2             = _mm_add_pd(fiz2,tz);
373
374             fjx0             = _mm_add_pd(fjx0,tx);
375             fjy0             = _mm_add_pd(fjy0,ty);
376             fjz0             = _mm_add_pd(fjz0,tz);
377
378             }
379
380             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
381
382             /* Inner loop uses 145 flops */
383         }
384
385         if(jidx<j_index_end)
386         {
387
388             jnrA             = jjnr[jidx];
389             j_coord_offsetA  = DIM*jnrA;
390
391             /* load j atom coordinates */
392             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
393                                               &jx0,&jy0,&jz0);
394
395             /* Calculate displacement vector */
396             dx00             = _mm_sub_pd(ix0,jx0);
397             dy00             = _mm_sub_pd(iy0,jy0);
398             dz00             = _mm_sub_pd(iz0,jz0);
399             dx10             = _mm_sub_pd(ix1,jx0);
400             dy10             = _mm_sub_pd(iy1,jy0);
401             dz10             = _mm_sub_pd(iz1,jz0);
402             dx20             = _mm_sub_pd(ix2,jx0);
403             dy20             = _mm_sub_pd(iy2,jy0);
404             dz20             = _mm_sub_pd(iz2,jz0);
405
406             /* Calculate squared distance and things based on it */
407             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
408             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
409             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
410
411             rinv00           = sse2_invsqrt_d(rsq00);
412             rinv10           = sse2_invsqrt_d(rsq10);
413             rinv20           = sse2_invsqrt_d(rsq20);
414
415             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
416             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
417             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
418
419             /* Load parameters for j particles */
420             jq0              = _mm_load_sd(charge+jnrA+0);
421             vdwjidx0A        = 2*vdwtype[jnrA+0];
422
423             fjx0             = _mm_setzero_pd();
424             fjy0             = _mm_setzero_pd();
425             fjz0             = _mm_setzero_pd();
426
427             /**************************
428              * CALCULATE INTERACTIONS *
429              **************************/
430
431             if (gmx_mm_any_lt(rsq00,rcutoff2))
432             {
433
434             r00              = _mm_mul_pd(rsq00,rinv00);
435
436             /* Compute parameters for interactions between i and j atoms */
437             qq00             = _mm_mul_pd(iq0,jq0);
438             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
439
440             /* REACTION-FIELD ELECTROSTATICS */
441             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
442             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
443
444             /* LENNARD-JONES DISPERSION/REPULSION */
445
446             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
447             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
448             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
449             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
450             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
451
452             d                = _mm_sub_pd(r00,rswitch);
453             d                = _mm_max_pd(d,_mm_setzero_pd());
454             d2               = _mm_mul_pd(d,d);
455             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
456
457             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
458
459             /* Evaluate switch function */
460             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
461             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
462             vvdw             = _mm_mul_pd(vvdw,sw);
463             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
464
465             /* Update potential sum for this i atom from the interaction with this j atom. */
466             velec            = _mm_and_pd(velec,cutoff_mask);
467             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
468             velecsum         = _mm_add_pd(velecsum,velec);
469             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
470             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
471             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
472
473             fscal            = _mm_add_pd(felec,fvdw);
474
475             fscal            = _mm_and_pd(fscal,cutoff_mask);
476
477             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
478
479             /* Calculate temporary vectorial force */
480             tx               = _mm_mul_pd(fscal,dx00);
481             ty               = _mm_mul_pd(fscal,dy00);
482             tz               = _mm_mul_pd(fscal,dz00);
483
484             /* Update vectorial force */
485             fix0             = _mm_add_pd(fix0,tx);
486             fiy0             = _mm_add_pd(fiy0,ty);
487             fiz0             = _mm_add_pd(fiz0,tz);
488
489             fjx0             = _mm_add_pd(fjx0,tx);
490             fjy0             = _mm_add_pd(fjy0,ty);
491             fjz0             = _mm_add_pd(fjz0,tz);
492
493             }
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             if (gmx_mm_any_lt(rsq10,rcutoff2))
500             {
501
502             /* Compute parameters for interactions between i and j atoms */
503             qq10             = _mm_mul_pd(iq1,jq0);
504
505             /* REACTION-FIELD ELECTROSTATICS */
506             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
507             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
508
509             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
510
511             /* Update potential sum for this i atom from the interaction with this j atom. */
512             velec            = _mm_and_pd(velec,cutoff_mask);
513             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
514             velecsum         = _mm_add_pd(velecsum,velec);
515
516             fscal            = felec;
517
518             fscal            = _mm_and_pd(fscal,cutoff_mask);
519
520             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
521
522             /* Calculate temporary vectorial force */
523             tx               = _mm_mul_pd(fscal,dx10);
524             ty               = _mm_mul_pd(fscal,dy10);
525             tz               = _mm_mul_pd(fscal,dz10);
526
527             /* Update vectorial force */
528             fix1             = _mm_add_pd(fix1,tx);
529             fiy1             = _mm_add_pd(fiy1,ty);
530             fiz1             = _mm_add_pd(fiz1,tz);
531
532             fjx0             = _mm_add_pd(fjx0,tx);
533             fjy0             = _mm_add_pd(fjy0,ty);
534             fjz0             = _mm_add_pd(fjz0,tz);
535
536             }
537
538             /**************************
539              * CALCULATE INTERACTIONS *
540              **************************/
541
542             if (gmx_mm_any_lt(rsq20,rcutoff2))
543             {
544
545             /* Compute parameters for interactions between i and j atoms */
546             qq20             = _mm_mul_pd(iq2,jq0);
547
548             /* REACTION-FIELD ELECTROSTATICS */
549             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
550             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
551
552             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
553
554             /* Update potential sum for this i atom from the interaction with this j atom. */
555             velec            = _mm_and_pd(velec,cutoff_mask);
556             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
557             velecsum         = _mm_add_pd(velecsum,velec);
558
559             fscal            = felec;
560
561             fscal            = _mm_and_pd(fscal,cutoff_mask);
562
563             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
564
565             /* Calculate temporary vectorial force */
566             tx               = _mm_mul_pd(fscal,dx20);
567             ty               = _mm_mul_pd(fscal,dy20);
568             tz               = _mm_mul_pd(fscal,dz20);
569
570             /* Update vectorial force */
571             fix2             = _mm_add_pd(fix2,tx);
572             fiy2             = _mm_add_pd(fiy2,ty);
573             fiz2             = _mm_add_pd(fiz2,tz);
574
575             fjx0             = _mm_add_pd(fjx0,tx);
576             fjy0             = _mm_add_pd(fjy0,ty);
577             fjz0             = _mm_add_pd(fjz0,tz);
578
579             }
580
581             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
582
583             /* Inner loop uses 145 flops */
584         }
585
586         /* End of innermost loop */
587
588         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
589                                               f+i_coord_offset,fshift+i_shift_offset);
590
591         ggid                        = gid[iidx];
592         /* Update potential energies */
593         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
594         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
595
596         /* Increment number of inner iterations */
597         inneriter                  += j_index_end - j_index_start;
598
599         /* Outer loop uses 20 flops */
600     }
601
602     /* Increment number of outer iterations */
603     outeriter        += nri;
604
605     /* Update outer/inner flops */
606
607     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
608 }
609 /*
610  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_double
611  * Electrostatics interaction: ReactionField
612  * VdW interaction:            LennardJones
613  * Geometry:                   Water3-Particle
614  * Calculate force/pot:        Force
615  */
616 void
617 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_double
618                     (t_nblist                    * gmx_restrict       nlist,
619                      rvec                        * gmx_restrict          xx,
620                      rvec                        * gmx_restrict          ff,
621                      struct t_forcerec           * gmx_restrict          fr,
622                      t_mdatoms                   * gmx_restrict     mdatoms,
623                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
624                      t_nrnb                      * gmx_restrict        nrnb)
625 {
626     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
627      * just 0 for non-waters.
628      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
629      * jnr indices corresponding to data put in the four positions in the SIMD register.
630      */
631     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
632     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
633     int              jnrA,jnrB;
634     int              j_coord_offsetA,j_coord_offsetB;
635     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
636     real             rcutoff_scalar;
637     real             *shiftvec,*fshift,*x,*f;
638     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
639     int              vdwioffset0;
640     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
641     int              vdwioffset1;
642     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
643     int              vdwioffset2;
644     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
645     int              vdwjidx0A,vdwjidx0B;
646     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
647     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
648     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
649     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
650     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
651     real             *charge;
652     int              nvdwtype;
653     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
654     int              *vdwtype;
655     real             *vdwparam;
656     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
657     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
658     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
659     real             rswitch_scalar,d_scalar;
660     __m128d          dummy_mask,cutoff_mask;
661     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
662     __m128d          one     = _mm_set1_pd(1.0);
663     __m128d          two     = _mm_set1_pd(2.0);
664     x                = xx[0];
665     f                = ff[0];
666
667     nri              = nlist->nri;
668     iinr             = nlist->iinr;
669     jindex           = nlist->jindex;
670     jjnr             = nlist->jjnr;
671     shiftidx         = nlist->shift;
672     gid              = nlist->gid;
673     shiftvec         = fr->shift_vec[0];
674     fshift           = fr->fshift[0];
675     facel            = _mm_set1_pd(fr->ic->epsfac);
676     charge           = mdatoms->chargeA;
677     krf              = _mm_set1_pd(fr->ic->k_rf);
678     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
679     crf              = _mm_set1_pd(fr->ic->c_rf);
680     nvdwtype         = fr->ntype;
681     vdwparam         = fr->nbfp;
682     vdwtype          = mdatoms->typeA;
683
684     /* Setup water-specific parameters */
685     inr              = nlist->iinr[0];
686     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
687     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
688     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
689     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
690
691     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
692     rcutoff_scalar   = fr->ic->rcoulomb;
693     rcutoff          = _mm_set1_pd(rcutoff_scalar);
694     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
695
696     rswitch_scalar   = fr->ic->rvdw_switch;
697     rswitch          = _mm_set1_pd(rswitch_scalar);
698     /* Setup switch parameters */
699     d_scalar         = rcutoff_scalar-rswitch_scalar;
700     d                = _mm_set1_pd(d_scalar);
701     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
702     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
703     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
704     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
705     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
706     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
707
708     /* Avoid stupid compiler warnings */
709     jnrA = jnrB = 0;
710     j_coord_offsetA = 0;
711     j_coord_offsetB = 0;
712
713     outeriter        = 0;
714     inneriter        = 0;
715
716     /* Start outer loop over neighborlists */
717     for(iidx=0; iidx<nri; iidx++)
718     {
719         /* Load shift vector for this list */
720         i_shift_offset   = DIM*shiftidx[iidx];
721
722         /* Load limits for loop over neighbors */
723         j_index_start    = jindex[iidx];
724         j_index_end      = jindex[iidx+1];
725
726         /* Get outer coordinate index */
727         inr              = iinr[iidx];
728         i_coord_offset   = DIM*inr;
729
730         /* Load i particle coords and add shift vector */
731         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
732                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
733
734         fix0             = _mm_setzero_pd();
735         fiy0             = _mm_setzero_pd();
736         fiz0             = _mm_setzero_pd();
737         fix1             = _mm_setzero_pd();
738         fiy1             = _mm_setzero_pd();
739         fiz1             = _mm_setzero_pd();
740         fix2             = _mm_setzero_pd();
741         fiy2             = _mm_setzero_pd();
742         fiz2             = _mm_setzero_pd();
743
744         /* Start inner kernel loop */
745         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
746         {
747
748             /* Get j neighbor index, and coordinate index */
749             jnrA             = jjnr[jidx];
750             jnrB             = jjnr[jidx+1];
751             j_coord_offsetA  = DIM*jnrA;
752             j_coord_offsetB  = DIM*jnrB;
753
754             /* load j atom coordinates */
755             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
756                                               &jx0,&jy0,&jz0);
757
758             /* Calculate displacement vector */
759             dx00             = _mm_sub_pd(ix0,jx0);
760             dy00             = _mm_sub_pd(iy0,jy0);
761             dz00             = _mm_sub_pd(iz0,jz0);
762             dx10             = _mm_sub_pd(ix1,jx0);
763             dy10             = _mm_sub_pd(iy1,jy0);
764             dz10             = _mm_sub_pd(iz1,jz0);
765             dx20             = _mm_sub_pd(ix2,jx0);
766             dy20             = _mm_sub_pd(iy2,jy0);
767             dz20             = _mm_sub_pd(iz2,jz0);
768
769             /* Calculate squared distance and things based on it */
770             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
771             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
772             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
773
774             rinv00           = sse2_invsqrt_d(rsq00);
775             rinv10           = sse2_invsqrt_d(rsq10);
776             rinv20           = sse2_invsqrt_d(rsq20);
777
778             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
779             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
780             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
781
782             /* Load parameters for j particles */
783             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
784             vdwjidx0A        = 2*vdwtype[jnrA+0];
785             vdwjidx0B        = 2*vdwtype[jnrB+0];
786
787             fjx0             = _mm_setzero_pd();
788             fjy0             = _mm_setzero_pd();
789             fjz0             = _mm_setzero_pd();
790
791             /**************************
792              * CALCULATE INTERACTIONS *
793              **************************/
794
795             if (gmx_mm_any_lt(rsq00,rcutoff2))
796             {
797
798             r00              = _mm_mul_pd(rsq00,rinv00);
799
800             /* Compute parameters for interactions between i and j atoms */
801             qq00             = _mm_mul_pd(iq0,jq0);
802             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
803                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
804
805             /* REACTION-FIELD ELECTROSTATICS */
806             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
807
808             /* LENNARD-JONES DISPERSION/REPULSION */
809
810             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
811             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
812             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
813             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
814             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
815
816             d                = _mm_sub_pd(r00,rswitch);
817             d                = _mm_max_pd(d,_mm_setzero_pd());
818             d2               = _mm_mul_pd(d,d);
819             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
820
821             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
822
823             /* Evaluate switch function */
824             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
825             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
826             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
827
828             fscal            = _mm_add_pd(felec,fvdw);
829
830             fscal            = _mm_and_pd(fscal,cutoff_mask);
831
832             /* Calculate temporary vectorial force */
833             tx               = _mm_mul_pd(fscal,dx00);
834             ty               = _mm_mul_pd(fscal,dy00);
835             tz               = _mm_mul_pd(fscal,dz00);
836
837             /* Update vectorial force */
838             fix0             = _mm_add_pd(fix0,tx);
839             fiy0             = _mm_add_pd(fiy0,ty);
840             fiz0             = _mm_add_pd(fiz0,tz);
841
842             fjx0             = _mm_add_pd(fjx0,tx);
843             fjy0             = _mm_add_pd(fjy0,ty);
844             fjz0             = _mm_add_pd(fjz0,tz);
845
846             }
847
848             /**************************
849              * CALCULATE INTERACTIONS *
850              **************************/
851
852             if (gmx_mm_any_lt(rsq10,rcutoff2))
853             {
854
855             /* Compute parameters for interactions between i and j atoms */
856             qq10             = _mm_mul_pd(iq1,jq0);
857
858             /* REACTION-FIELD ELECTROSTATICS */
859             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
860
861             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
862
863             fscal            = felec;
864
865             fscal            = _mm_and_pd(fscal,cutoff_mask);
866
867             /* Calculate temporary vectorial force */
868             tx               = _mm_mul_pd(fscal,dx10);
869             ty               = _mm_mul_pd(fscal,dy10);
870             tz               = _mm_mul_pd(fscal,dz10);
871
872             /* Update vectorial force */
873             fix1             = _mm_add_pd(fix1,tx);
874             fiy1             = _mm_add_pd(fiy1,ty);
875             fiz1             = _mm_add_pd(fiz1,tz);
876
877             fjx0             = _mm_add_pd(fjx0,tx);
878             fjy0             = _mm_add_pd(fjy0,ty);
879             fjz0             = _mm_add_pd(fjz0,tz);
880
881             }
882
883             /**************************
884              * CALCULATE INTERACTIONS *
885              **************************/
886
887             if (gmx_mm_any_lt(rsq20,rcutoff2))
888             {
889
890             /* Compute parameters for interactions between i and j atoms */
891             qq20             = _mm_mul_pd(iq2,jq0);
892
893             /* REACTION-FIELD ELECTROSTATICS */
894             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
895
896             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
897
898             fscal            = felec;
899
900             fscal            = _mm_and_pd(fscal,cutoff_mask);
901
902             /* Calculate temporary vectorial force */
903             tx               = _mm_mul_pd(fscal,dx20);
904             ty               = _mm_mul_pd(fscal,dy20);
905             tz               = _mm_mul_pd(fscal,dz20);
906
907             /* Update vectorial force */
908             fix2             = _mm_add_pd(fix2,tx);
909             fiy2             = _mm_add_pd(fiy2,ty);
910             fiz2             = _mm_add_pd(fiz2,tz);
911
912             fjx0             = _mm_add_pd(fjx0,tx);
913             fjy0             = _mm_add_pd(fjy0,ty);
914             fjz0             = _mm_add_pd(fjz0,tz);
915
916             }
917
918             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
919
920             /* Inner loop uses 124 flops */
921         }
922
923         if(jidx<j_index_end)
924         {
925
926             jnrA             = jjnr[jidx];
927             j_coord_offsetA  = DIM*jnrA;
928
929             /* load j atom coordinates */
930             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
931                                               &jx0,&jy0,&jz0);
932
933             /* Calculate displacement vector */
934             dx00             = _mm_sub_pd(ix0,jx0);
935             dy00             = _mm_sub_pd(iy0,jy0);
936             dz00             = _mm_sub_pd(iz0,jz0);
937             dx10             = _mm_sub_pd(ix1,jx0);
938             dy10             = _mm_sub_pd(iy1,jy0);
939             dz10             = _mm_sub_pd(iz1,jz0);
940             dx20             = _mm_sub_pd(ix2,jx0);
941             dy20             = _mm_sub_pd(iy2,jy0);
942             dz20             = _mm_sub_pd(iz2,jz0);
943
944             /* Calculate squared distance and things based on it */
945             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
946             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
947             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
948
949             rinv00           = sse2_invsqrt_d(rsq00);
950             rinv10           = sse2_invsqrt_d(rsq10);
951             rinv20           = sse2_invsqrt_d(rsq20);
952
953             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
954             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
955             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
956
957             /* Load parameters for j particles */
958             jq0              = _mm_load_sd(charge+jnrA+0);
959             vdwjidx0A        = 2*vdwtype[jnrA+0];
960
961             fjx0             = _mm_setzero_pd();
962             fjy0             = _mm_setzero_pd();
963             fjz0             = _mm_setzero_pd();
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             if (gmx_mm_any_lt(rsq00,rcutoff2))
970             {
971
972             r00              = _mm_mul_pd(rsq00,rinv00);
973
974             /* Compute parameters for interactions between i and j atoms */
975             qq00             = _mm_mul_pd(iq0,jq0);
976             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
977
978             /* REACTION-FIELD ELECTROSTATICS */
979             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
980
981             /* LENNARD-JONES DISPERSION/REPULSION */
982
983             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
984             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
985             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
986             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
987             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
988
989             d                = _mm_sub_pd(r00,rswitch);
990             d                = _mm_max_pd(d,_mm_setzero_pd());
991             d2               = _mm_mul_pd(d,d);
992             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
993
994             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
995
996             /* Evaluate switch function */
997             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
998             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
999             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1000
1001             fscal            = _mm_add_pd(felec,fvdw);
1002
1003             fscal            = _mm_and_pd(fscal,cutoff_mask);
1004
1005             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1006
1007             /* Calculate temporary vectorial force */
1008             tx               = _mm_mul_pd(fscal,dx00);
1009             ty               = _mm_mul_pd(fscal,dy00);
1010             tz               = _mm_mul_pd(fscal,dz00);
1011
1012             /* Update vectorial force */
1013             fix0             = _mm_add_pd(fix0,tx);
1014             fiy0             = _mm_add_pd(fiy0,ty);
1015             fiz0             = _mm_add_pd(fiz0,tz);
1016
1017             fjx0             = _mm_add_pd(fjx0,tx);
1018             fjy0             = _mm_add_pd(fjy0,ty);
1019             fjz0             = _mm_add_pd(fjz0,tz);
1020
1021             }
1022
1023             /**************************
1024              * CALCULATE INTERACTIONS *
1025              **************************/
1026
1027             if (gmx_mm_any_lt(rsq10,rcutoff2))
1028             {
1029
1030             /* Compute parameters for interactions between i and j atoms */
1031             qq10             = _mm_mul_pd(iq1,jq0);
1032
1033             /* REACTION-FIELD ELECTROSTATICS */
1034             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1035
1036             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1037
1038             fscal            = felec;
1039
1040             fscal            = _mm_and_pd(fscal,cutoff_mask);
1041
1042             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1043
1044             /* Calculate temporary vectorial force */
1045             tx               = _mm_mul_pd(fscal,dx10);
1046             ty               = _mm_mul_pd(fscal,dy10);
1047             tz               = _mm_mul_pd(fscal,dz10);
1048
1049             /* Update vectorial force */
1050             fix1             = _mm_add_pd(fix1,tx);
1051             fiy1             = _mm_add_pd(fiy1,ty);
1052             fiz1             = _mm_add_pd(fiz1,tz);
1053
1054             fjx0             = _mm_add_pd(fjx0,tx);
1055             fjy0             = _mm_add_pd(fjy0,ty);
1056             fjz0             = _mm_add_pd(fjz0,tz);
1057
1058             }
1059
1060             /**************************
1061              * CALCULATE INTERACTIONS *
1062              **************************/
1063
1064             if (gmx_mm_any_lt(rsq20,rcutoff2))
1065             {
1066
1067             /* Compute parameters for interactions between i and j atoms */
1068             qq20             = _mm_mul_pd(iq2,jq0);
1069
1070             /* REACTION-FIELD ELECTROSTATICS */
1071             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1072
1073             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1074
1075             fscal            = felec;
1076
1077             fscal            = _mm_and_pd(fscal,cutoff_mask);
1078
1079             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1080
1081             /* Calculate temporary vectorial force */
1082             tx               = _mm_mul_pd(fscal,dx20);
1083             ty               = _mm_mul_pd(fscal,dy20);
1084             tz               = _mm_mul_pd(fscal,dz20);
1085
1086             /* Update vectorial force */
1087             fix2             = _mm_add_pd(fix2,tx);
1088             fiy2             = _mm_add_pd(fiy2,ty);
1089             fiz2             = _mm_add_pd(fiz2,tz);
1090
1091             fjx0             = _mm_add_pd(fjx0,tx);
1092             fjy0             = _mm_add_pd(fjy0,ty);
1093             fjz0             = _mm_add_pd(fjz0,tz);
1094
1095             }
1096
1097             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1098
1099             /* Inner loop uses 124 flops */
1100         }
1101
1102         /* End of innermost loop */
1103
1104         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1105                                               f+i_coord_offset,fshift+i_shift_offset);
1106
1107         /* Increment number of inner iterations */
1108         inneriter                  += j_index_end - j_index_start;
1109
1110         /* Outer loop uses 18 flops */
1111     }
1112
1113     /* Increment number of outer iterations */
1114     outeriter        += nri;
1115
1116     /* Update outer/inner flops */
1117
1118     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*124);
1119 }