Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
100     real             rswitch_scalar,d_scalar;
101     __m128d          dummy_mask,cutoff_mask;
102     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103     __m128d          one     = _mm_set1_pd(1.0);
104     __m128d          two     = _mm_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_pd(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     krf              = _mm_set1_pd(fr->ic->k_rf);
119     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
120     crf              = _mm_set1_pd(fr->ic->c_rf);
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
128     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
129     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
130     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
131
132     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
133     rcutoff_scalar   = fr->rcoulomb;
134     rcutoff          = _mm_set1_pd(rcutoff_scalar);
135     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
136
137     rswitch_scalar   = fr->rvdw_switch;
138     rswitch          = _mm_set1_pd(rswitch_scalar);
139     /* Setup switch parameters */
140     d_scalar         = rcutoff_scalar-rswitch_scalar;
141     d                = _mm_set1_pd(d_scalar);
142     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
143     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
144     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
145     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
146     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
147     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
148
149     /* Avoid stupid compiler warnings */
150     jnrA = jnrB = 0;
151     j_coord_offsetA = 0;
152     j_coord_offsetB = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
174
175         fix0             = _mm_setzero_pd();
176         fiy0             = _mm_setzero_pd();
177         fiz0             = _mm_setzero_pd();
178         fix1             = _mm_setzero_pd();
179         fiy1             = _mm_setzero_pd();
180         fiz1             = _mm_setzero_pd();
181         fix2             = _mm_setzero_pd();
182         fiy2             = _mm_setzero_pd();
183         fiz2             = _mm_setzero_pd();
184
185         /* Reset potential sums */
186         velecsum         = _mm_setzero_pd();
187         vvdwsum          = _mm_setzero_pd();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198
199             /* load j atom coordinates */
200             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_pd(ix0,jx0);
205             dy00             = _mm_sub_pd(iy0,jy0);
206             dz00             = _mm_sub_pd(iz0,jz0);
207             dx10             = _mm_sub_pd(ix1,jx0);
208             dy10             = _mm_sub_pd(iy1,jy0);
209             dz10             = _mm_sub_pd(iz1,jz0);
210             dx20             = _mm_sub_pd(ix2,jx0);
211             dy20             = _mm_sub_pd(iy2,jy0);
212             dz20             = _mm_sub_pd(iz2,jz0);
213
214             /* Calculate squared distance and things based on it */
215             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
216             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
217             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
218
219             rinv00           = gmx_mm_invsqrt_pd(rsq00);
220             rinv10           = gmx_mm_invsqrt_pd(rsq10);
221             rinv20           = gmx_mm_invsqrt_pd(rsq20);
222
223             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
224             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
225             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
229             vdwjidx0A        = 2*vdwtype[jnrA+0];
230             vdwjidx0B        = 2*vdwtype[jnrB+0];
231
232             fjx0             = _mm_setzero_pd();
233             fjy0             = _mm_setzero_pd();
234             fjz0             = _mm_setzero_pd();
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             if (gmx_mm_any_lt(rsq00,rcutoff2))
241             {
242
243             r00              = _mm_mul_pd(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             qq00             = _mm_mul_pd(iq0,jq0);
247             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
249
250             /* REACTION-FIELD ELECTROSTATICS */
251             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
252             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
253
254             /* LENNARD-JONES DISPERSION/REPULSION */
255
256             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
257             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
258             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
259             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
260             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
261
262             d                = _mm_sub_pd(r00,rswitch);
263             d                = _mm_max_pd(d,_mm_setzero_pd());
264             d2               = _mm_mul_pd(d,d);
265             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
266
267             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
268
269             /* Evaluate switch function */
270             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
271             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
272             vvdw             = _mm_mul_pd(vvdw,sw);
273             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velec            = _mm_and_pd(velec,cutoff_mask);
277             velecsum         = _mm_add_pd(velecsum,velec);
278             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
279             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
280
281             fscal            = _mm_add_pd(felec,fvdw);
282
283             fscal            = _mm_and_pd(fscal,cutoff_mask);
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm_mul_pd(fscal,dx00);
287             ty               = _mm_mul_pd(fscal,dy00);
288             tz               = _mm_mul_pd(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm_add_pd(fix0,tx);
292             fiy0             = _mm_add_pd(fiy0,ty);
293             fiz0             = _mm_add_pd(fiz0,tz);
294
295             fjx0             = _mm_add_pd(fjx0,tx);
296             fjy0             = _mm_add_pd(fjy0,ty);
297             fjz0             = _mm_add_pd(fjz0,tz);
298
299             }
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             if (gmx_mm_any_lt(rsq10,rcutoff2))
306             {
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq10             = _mm_mul_pd(iq1,jq0);
310
311             /* REACTION-FIELD ELECTROSTATICS */
312             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
313             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
314
315             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velec            = _mm_and_pd(velec,cutoff_mask);
319             velecsum         = _mm_add_pd(velecsum,velec);
320
321             fscal            = felec;
322
323             fscal            = _mm_and_pd(fscal,cutoff_mask);
324
325             /* Calculate temporary vectorial force */
326             tx               = _mm_mul_pd(fscal,dx10);
327             ty               = _mm_mul_pd(fscal,dy10);
328             tz               = _mm_mul_pd(fscal,dz10);
329
330             /* Update vectorial force */
331             fix1             = _mm_add_pd(fix1,tx);
332             fiy1             = _mm_add_pd(fiy1,ty);
333             fiz1             = _mm_add_pd(fiz1,tz);
334
335             fjx0             = _mm_add_pd(fjx0,tx);
336             fjy0             = _mm_add_pd(fjy0,ty);
337             fjz0             = _mm_add_pd(fjz0,tz);
338
339             }
340
341             /**************************
342              * CALCULATE INTERACTIONS *
343              **************************/
344
345             if (gmx_mm_any_lt(rsq20,rcutoff2))
346             {
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq20             = _mm_mul_pd(iq2,jq0);
350
351             /* REACTION-FIELD ELECTROSTATICS */
352             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
353             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
354
355             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velec            = _mm_and_pd(velec,cutoff_mask);
359             velecsum         = _mm_add_pd(velecsum,velec);
360
361             fscal            = felec;
362
363             fscal            = _mm_and_pd(fscal,cutoff_mask);
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm_mul_pd(fscal,dx20);
367             ty               = _mm_mul_pd(fscal,dy20);
368             tz               = _mm_mul_pd(fscal,dz20);
369
370             /* Update vectorial force */
371             fix2             = _mm_add_pd(fix2,tx);
372             fiy2             = _mm_add_pd(fiy2,ty);
373             fiz2             = _mm_add_pd(fiz2,tz);
374
375             fjx0             = _mm_add_pd(fjx0,tx);
376             fjy0             = _mm_add_pd(fjy0,ty);
377             fjz0             = _mm_add_pd(fjz0,tz);
378
379             }
380
381             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
382
383             /* Inner loop uses 145 flops */
384         }
385
386         if(jidx<j_index_end)
387         {
388
389             jnrA             = jjnr[jidx];
390             j_coord_offsetA  = DIM*jnrA;
391
392             /* load j atom coordinates */
393             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
394                                               &jx0,&jy0,&jz0);
395
396             /* Calculate displacement vector */
397             dx00             = _mm_sub_pd(ix0,jx0);
398             dy00             = _mm_sub_pd(iy0,jy0);
399             dz00             = _mm_sub_pd(iz0,jz0);
400             dx10             = _mm_sub_pd(ix1,jx0);
401             dy10             = _mm_sub_pd(iy1,jy0);
402             dz10             = _mm_sub_pd(iz1,jz0);
403             dx20             = _mm_sub_pd(ix2,jx0);
404             dy20             = _mm_sub_pd(iy2,jy0);
405             dz20             = _mm_sub_pd(iz2,jz0);
406
407             /* Calculate squared distance and things based on it */
408             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
409             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
410             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
411
412             rinv00           = gmx_mm_invsqrt_pd(rsq00);
413             rinv10           = gmx_mm_invsqrt_pd(rsq10);
414             rinv20           = gmx_mm_invsqrt_pd(rsq20);
415
416             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
417             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
418             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
419
420             /* Load parameters for j particles */
421             jq0              = _mm_load_sd(charge+jnrA+0);
422             vdwjidx0A        = 2*vdwtype[jnrA+0];
423
424             fjx0             = _mm_setzero_pd();
425             fjy0             = _mm_setzero_pd();
426             fjz0             = _mm_setzero_pd();
427
428             /**************************
429              * CALCULATE INTERACTIONS *
430              **************************/
431
432             if (gmx_mm_any_lt(rsq00,rcutoff2))
433             {
434
435             r00              = _mm_mul_pd(rsq00,rinv00);
436
437             /* Compute parameters for interactions between i and j atoms */
438             qq00             = _mm_mul_pd(iq0,jq0);
439             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
440
441             /* REACTION-FIELD ELECTROSTATICS */
442             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
443             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
444
445             /* LENNARD-JONES DISPERSION/REPULSION */
446
447             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
448             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
449             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
450             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
451             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
452
453             d                = _mm_sub_pd(r00,rswitch);
454             d                = _mm_max_pd(d,_mm_setzero_pd());
455             d2               = _mm_mul_pd(d,d);
456             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
457
458             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
459
460             /* Evaluate switch function */
461             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
462             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
463             vvdw             = _mm_mul_pd(vvdw,sw);
464             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
465
466             /* Update potential sum for this i atom from the interaction with this j atom. */
467             velec            = _mm_and_pd(velec,cutoff_mask);
468             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
469             velecsum         = _mm_add_pd(velecsum,velec);
470             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
471             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
472             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
473
474             fscal            = _mm_add_pd(felec,fvdw);
475
476             fscal            = _mm_and_pd(fscal,cutoff_mask);
477
478             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
479
480             /* Calculate temporary vectorial force */
481             tx               = _mm_mul_pd(fscal,dx00);
482             ty               = _mm_mul_pd(fscal,dy00);
483             tz               = _mm_mul_pd(fscal,dz00);
484
485             /* Update vectorial force */
486             fix0             = _mm_add_pd(fix0,tx);
487             fiy0             = _mm_add_pd(fiy0,ty);
488             fiz0             = _mm_add_pd(fiz0,tz);
489
490             fjx0             = _mm_add_pd(fjx0,tx);
491             fjy0             = _mm_add_pd(fjy0,ty);
492             fjz0             = _mm_add_pd(fjz0,tz);
493
494             }
495
496             /**************************
497              * CALCULATE INTERACTIONS *
498              **************************/
499
500             if (gmx_mm_any_lt(rsq10,rcutoff2))
501             {
502
503             /* Compute parameters for interactions between i and j atoms */
504             qq10             = _mm_mul_pd(iq1,jq0);
505
506             /* REACTION-FIELD ELECTROSTATICS */
507             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
508             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
509
510             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
511
512             /* Update potential sum for this i atom from the interaction with this j atom. */
513             velec            = _mm_and_pd(velec,cutoff_mask);
514             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
515             velecsum         = _mm_add_pd(velecsum,velec);
516
517             fscal            = felec;
518
519             fscal            = _mm_and_pd(fscal,cutoff_mask);
520
521             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
522
523             /* Calculate temporary vectorial force */
524             tx               = _mm_mul_pd(fscal,dx10);
525             ty               = _mm_mul_pd(fscal,dy10);
526             tz               = _mm_mul_pd(fscal,dz10);
527
528             /* Update vectorial force */
529             fix1             = _mm_add_pd(fix1,tx);
530             fiy1             = _mm_add_pd(fiy1,ty);
531             fiz1             = _mm_add_pd(fiz1,tz);
532
533             fjx0             = _mm_add_pd(fjx0,tx);
534             fjy0             = _mm_add_pd(fjy0,ty);
535             fjz0             = _mm_add_pd(fjz0,tz);
536
537             }
538
539             /**************************
540              * CALCULATE INTERACTIONS *
541              **************************/
542
543             if (gmx_mm_any_lt(rsq20,rcutoff2))
544             {
545
546             /* Compute parameters for interactions between i and j atoms */
547             qq20             = _mm_mul_pd(iq2,jq0);
548
549             /* REACTION-FIELD ELECTROSTATICS */
550             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
551             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
552
553             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
554
555             /* Update potential sum for this i atom from the interaction with this j atom. */
556             velec            = _mm_and_pd(velec,cutoff_mask);
557             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
558             velecsum         = _mm_add_pd(velecsum,velec);
559
560             fscal            = felec;
561
562             fscal            = _mm_and_pd(fscal,cutoff_mask);
563
564             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
565
566             /* Calculate temporary vectorial force */
567             tx               = _mm_mul_pd(fscal,dx20);
568             ty               = _mm_mul_pd(fscal,dy20);
569             tz               = _mm_mul_pd(fscal,dz20);
570
571             /* Update vectorial force */
572             fix2             = _mm_add_pd(fix2,tx);
573             fiy2             = _mm_add_pd(fiy2,ty);
574             fiz2             = _mm_add_pd(fiz2,tz);
575
576             fjx0             = _mm_add_pd(fjx0,tx);
577             fjy0             = _mm_add_pd(fjy0,ty);
578             fjz0             = _mm_add_pd(fjz0,tz);
579
580             }
581
582             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
583
584             /* Inner loop uses 145 flops */
585         }
586
587         /* End of innermost loop */
588
589         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
590                                               f+i_coord_offset,fshift+i_shift_offset);
591
592         ggid                        = gid[iidx];
593         /* Update potential energies */
594         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
595         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
596
597         /* Increment number of inner iterations */
598         inneriter                  += j_index_end - j_index_start;
599
600         /* Outer loop uses 20 flops */
601     }
602
603     /* Increment number of outer iterations */
604     outeriter        += nri;
605
606     /* Update outer/inner flops */
607
608     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*145);
609 }
610 /*
611  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_double
612  * Electrostatics interaction: ReactionField
613  * VdW interaction:            LennardJones
614  * Geometry:                   Water3-Particle
615  * Calculate force/pot:        Force
616  */
617 void
618 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse2_double
619                     (t_nblist                    * gmx_restrict       nlist,
620                      rvec                        * gmx_restrict          xx,
621                      rvec                        * gmx_restrict          ff,
622                      t_forcerec                  * gmx_restrict          fr,
623                      t_mdatoms                   * gmx_restrict     mdatoms,
624                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
625                      t_nrnb                      * gmx_restrict        nrnb)
626 {
627     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
628      * just 0 for non-waters.
629      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
630      * jnr indices corresponding to data put in the four positions in the SIMD register.
631      */
632     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
633     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
634     int              jnrA,jnrB;
635     int              j_coord_offsetA,j_coord_offsetB;
636     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
637     real             rcutoff_scalar;
638     real             *shiftvec,*fshift,*x,*f;
639     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
640     int              vdwioffset0;
641     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
642     int              vdwioffset1;
643     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
644     int              vdwioffset2;
645     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
646     int              vdwjidx0A,vdwjidx0B;
647     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
648     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
649     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
650     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
651     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
652     real             *charge;
653     int              nvdwtype;
654     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
655     int              *vdwtype;
656     real             *vdwparam;
657     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
658     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
659     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
660     real             rswitch_scalar,d_scalar;
661     __m128d          dummy_mask,cutoff_mask;
662     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
663     __m128d          one     = _mm_set1_pd(1.0);
664     __m128d          two     = _mm_set1_pd(2.0);
665     x                = xx[0];
666     f                = ff[0];
667
668     nri              = nlist->nri;
669     iinr             = nlist->iinr;
670     jindex           = nlist->jindex;
671     jjnr             = nlist->jjnr;
672     shiftidx         = nlist->shift;
673     gid              = nlist->gid;
674     shiftvec         = fr->shift_vec[0];
675     fshift           = fr->fshift[0];
676     facel            = _mm_set1_pd(fr->epsfac);
677     charge           = mdatoms->chargeA;
678     krf              = _mm_set1_pd(fr->ic->k_rf);
679     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
680     crf              = _mm_set1_pd(fr->ic->c_rf);
681     nvdwtype         = fr->ntype;
682     vdwparam         = fr->nbfp;
683     vdwtype          = mdatoms->typeA;
684
685     /* Setup water-specific parameters */
686     inr              = nlist->iinr[0];
687     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
688     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
689     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
690     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
691
692     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
693     rcutoff_scalar   = fr->rcoulomb;
694     rcutoff          = _mm_set1_pd(rcutoff_scalar);
695     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
696
697     rswitch_scalar   = fr->rvdw_switch;
698     rswitch          = _mm_set1_pd(rswitch_scalar);
699     /* Setup switch parameters */
700     d_scalar         = rcutoff_scalar-rswitch_scalar;
701     d                = _mm_set1_pd(d_scalar);
702     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
703     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
704     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
705     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
706     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
707     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
708
709     /* Avoid stupid compiler warnings */
710     jnrA = jnrB = 0;
711     j_coord_offsetA = 0;
712     j_coord_offsetB = 0;
713
714     outeriter        = 0;
715     inneriter        = 0;
716
717     /* Start outer loop over neighborlists */
718     for(iidx=0; iidx<nri; iidx++)
719     {
720         /* Load shift vector for this list */
721         i_shift_offset   = DIM*shiftidx[iidx];
722
723         /* Load limits for loop over neighbors */
724         j_index_start    = jindex[iidx];
725         j_index_end      = jindex[iidx+1];
726
727         /* Get outer coordinate index */
728         inr              = iinr[iidx];
729         i_coord_offset   = DIM*inr;
730
731         /* Load i particle coords and add shift vector */
732         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
733                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
734
735         fix0             = _mm_setzero_pd();
736         fiy0             = _mm_setzero_pd();
737         fiz0             = _mm_setzero_pd();
738         fix1             = _mm_setzero_pd();
739         fiy1             = _mm_setzero_pd();
740         fiz1             = _mm_setzero_pd();
741         fix2             = _mm_setzero_pd();
742         fiy2             = _mm_setzero_pd();
743         fiz2             = _mm_setzero_pd();
744
745         /* Start inner kernel loop */
746         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
747         {
748
749             /* Get j neighbor index, and coordinate index */
750             jnrA             = jjnr[jidx];
751             jnrB             = jjnr[jidx+1];
752             j_coord_offsetA  = DIM*jnrA;
753             j_coord_offsetB  = DIM*jnrB;
754
755             /* load j atom coordinates */
756             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
757                                               &jx0,&jy0,&jz0);
758
759             /* Calculate displacement vector */
760             dx00             = _mm_sub_pd(ix0,jx0);
761             dy00             = _mm_sub_pd(iy0,jy0);
762             dz00             = _mm_sub_pd(iz0,jz0);
763             dx10             = _mm_sub_pd(ix1,jx0);
764             dy10             = _mm_sub_pd(iy1,jy0);
765             dz10             = _mm_sub_pd(iz1,jz0);
766             dx20             = _mm_sub_pd(ix2,jx0);
767             dy20             = _mm_sub_pd(iy2,jy0);
768             dz20             = _mm_sub_pd(iz2,jz0);
769
770             /* Calculate squared distance and things based on it */
771             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
772             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
773             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
774
775             rinv00           = gmx_mm_invsqrt_pd(rsq00);
776             rinv10           = gmx_mm_invsqrt_pd(rsq10);
777             rinv20           = gmx_mm_invsqrt_pd(rsq20);
778
779             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
780             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
781             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
782
783             /* Load parameters for j particles */
784             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
785             vdwjidx0A        = 2*vdwtype[jnrA+0];
786             vdwjidx0B        = 2*vdwtype[jnrB+0];
787
788             fjx0             = _mm_setzero_pd();
789             fjy0             = _mm_setzero_pd();
790             fjz0             = _mm_setzero_pd();
791
792             /**************************
793              * CALCULATE INTERACTIONS *
794              **************************/
795
796             if (gmx_mm_any_lt(rsq00,rcutoff2))
797             {
798
799             r00              = _mm_mul_pd(rsq00,rinv00);
800
801             /* Compute parameters for interactions between i and j atoms */
802             qq00             = _mm_mul_pd(iq0,jq0);
803             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
804                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
805
806             /* REACTION-FIELD ELECTROSTATICS */
807             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
808
809             /* LENNARD-JONES DISPERSION/REPULSION */
810
811             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
812             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
813             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
814             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
815             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
816
817             d                = _mm_sub_pd(r00,rswitch);
818             d                = _mm_max_pd(d,_mm_setzero_pd());
819             d2               = _mm_mul_pd(d,d);
820             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
821
822             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
823
824             /* Evaluate switch function */
825             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
826             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
827             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
828
829             fscal            = _mm_add_pd(felec,fvdw);
830
831             fscal            = _mm_and_pd(fscal,cutoff_mask);
832
833             /* Calculate temporary vectorial force */
834             tx               = _mm_mul_pd(fscal,dx00);
835             ty               = _mm_mul_pd(fscal,dy00);
836             tz               = _mm_mul_pd(fscal,dz00);
837
838             /* Update vectorial force */
839             fix0             = _mm_add_pd(fix0,tx);
840             fiy0             = _mm_add_pd(fiy0,ty);
841             fiz0             = _mm_add_pd(fiz0,tz);
842
843             fjx0             = _mm_add_pd(fjx0,tx);
844             fjy0             = _mm_add_pd(fjy0,ty);
845             fjz0             = _mm_add_pd(fjz0,tz);
846
847             }
848
849             /**************************
850              * CALCULATE INTERACTIONS *
851              **************************/
852
853             if (gmx_mm_any_lt(rsq10,rcutoff2))
854             {
855
856             /* Compute parameters for interactions between i and j atoms */
857             qq10             = _mm_mul_pd(iq1,jq0);
858
859             /* REACTION-FIELD ELECTROSTATICS */
860             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
861
862             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
863
864             fscal            = felec;
865
866             fscal            = _mm_and_pd(fscal,cutoff_mask);
867
868             /* Calculate temporary vectorial force */
869             tx               = _mm_mul_pd(fscal,dx10);
870             ty               = _mm_mul_pd(fscal,dy10);
871             tz               = _mm_mul_pd(fscal,dz10);
872
873             /* Update vectorial force */
874             fix1             = _mm_add_pd(fix1,tx);
875             fiy1             = _mm_add_pd(fiy1,ty);
876             fiz1             = _mm_add_pd(fiz1,tz);
877
878             fjx0             = _mm_add_pd(fjx0,tx);
879             fjy0             = _mm_add_pd(fjy0,ty);
880             fjz0             = _mm_add_pd(fjz0,tz);
881
882             }
883
884             /**************************
885              * CALCULATE INTERACTIONS *
886              **************************/
887
888             if (gmx_mm_any_lt(rsq20,rcutoff2))
889             {
890
891             /* Compute parameters for interactions between i and j atoms */
892             qq20             = _mm_mul_pd(iq2,jq0);
893
894             /* REACTION-FIELD ELECTROSTATICS */
895             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
896
897             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
898
899             fscal            = felec;
900
901             fscal            = _mm_and_pd(fscal,cutoff_mask);
902
903             /* Calculate temporary vectorial force */
904             tx               = _mm_mul_pd(fscal,dx20);
905             ty               = _mm_mul_pd(fscal,dy20);
906             tz               = _mm_mul_pd(fscal,dz20);
907
908             /* Update vectorial force */
909             fix2             = _mm_add_pd(fix2,tx);
910             fiy2             = _mm_add_pd(fiy2,ty);
911             fiz2             = _mm_add_pd(fiz2,tz);
912
913             fjx0             = _mm_add_pd(fjx0,tx);
914             fjy0             = _mm_add_pd(fjy0,ty);
915             fjz0             = _mm_add_pd(fjz0,tz);
916
917             }
918
919             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
920
921             /* Inner loop uses 124 flops */
922         }
923
924         if(jidx<j_index_end)
925         {
926
927             jnrA             = jjnr[jidx];
928             j_coord_offsetA  = DIM*jnrA;
929
930             /* load j atom coordinates */
931             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
932                                               &jx0,&jy0,&jz0);
933
934             /* Calculate displacement vector */
935             dx00             = _mm_sub_pd(ix0,jx0);
936             dy00             = _mm_sub_pd(iy0,jy0);
937             dz00             = _mm_sub_pd(iz0,jz0);
938             dx10             = _mm_sub_pd(ix1,jx0);
939             dy10             = _mm_sub_pd(iy1,jy0);
940             dz10             = _mm_sub_pd(iz1,jz0);
941             dx20             = _mm_sub_pd(ix2,jx0);
942             dy20             = _mm_sub_pd(iy2,jy0);
943             dz20             = _mm_sub_pd(iz2,jz0);
944
945             /* Calculate squared distance and things based on it */
946             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
947             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
948             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
949
950             rinv00           = gmx_mm_invsqrt_pd(rsq00);
951             rinv10           = gmx_mm_invsqrt_pd(rsq10);
952             rinv20           = gmx_mm_invsqrt_pd(rsq20);
953
954             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
955             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
956             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
957
958             /* Load parameters for j particles */
959             jq0              = _mm_load_sd(charge+jnrA+0);
960             vdwjidx0A        = 2*vdwtype[jnrA+0];
961
962             fjx0             = _mm_setzero_pd();
963             fjy0             = _mm_setzero_pd();
964             fjz0             = _mm_setzero_pd();
965
966             /**************************
967              * CALCULATE INTERACTIONS *
968              **************************/
969
970             if (gmx_mm_any_lt(rsq00,rcutoff2))
971             {
972
973             r00              = _mm_mul_pd(rsq00,rinv00);
974
975             /* Compute parameters for interactions between i and j atoms */
976             qq00             = _mm_mul_pd(iq0,jq0);
977             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
978
979             /* REACTION-FIELD ELECTROSTATICS */
980             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
981
982             /* LENNARD-JONES DISPERSION/REPULSION */
983
984             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
985             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
986             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
987             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
988             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
989
990             d                = _mm_sub_pd(r00,rswitch);
991             d                = _mm_max_pd(d,_mm_setzero_pd());
992             d2               = _mm_mul_pd(d,d);
993             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
994
995             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
996
997             /* Evaluate switch function */
998             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
999             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
1000             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1001
1002             fscal            = _mm_add_pd(felec,fvdw);
1003
1004             fscal            = _mm_and_pd(fscal,cutoff_mask);
1005
1006             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1007
1008             /* Calculate temporary vectorial force */
1009             tx               = _mm_mul_pd(fscal,dx00);
1010             ty               = _mm_mul_pd(fscal,dy00);
1011             tz               = _mm_mul_pd(fscal,dz00);
1012
1013             /* Update vectorial force */
1014             fix0             = _mm_add_pd(fix0,tx);
1015             fiy0             = _mm_add_pd(fiy0,ty);
1016             fiz0             = _mm_add_pd(fiz0,tz);
1017
1018             fjx0             = _mm_add_pd(fjx0,tx);
1019             fjy0             = _mm_add_pd(fjy0,ty);
1020             fjz0             = _mm_add_pd(fjz0,tz);
1021
1022             }
1023
1024             /**************************
1025              * CALCULATE INTERACTIONS *
1026              **************************/
1027
1028             if (gmx_mm_any_lt(rsq10,rcutoff2))
1029             {
1030
1031             /* Compute parameters for interactions between i and j atoms */
1032             qq10             = _mm_mul_pd(iq1,jq0);
1033
1034             /* REACTION-FIELD ELECTROSTATICS */
1035             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1036
1037             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1038
1039             fscal            = felec;
1040
1041             fscal            = _mm_and_pd(fscal,cutoff_mask);
1042
1043             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1044
1045             /* Calculate temporary vectorial force */
1046             tx               = _mm_mul_pd(fscal,dx10);
1047             ty               = _mm_mul_pd(fscal,dy10);
1048             tz               = _mm_mul_pd(fscal,dz10);
1049
1050             /* Update vectorial force */
1051             fix1             = _mm_add_pd(fix1,tx);
1052             fiy1             = _mm_add_pd(fiy1,ty);
1053             fiz1             = _mm_add_pd(fiz1,tz);
1054
1055             fjx0             = _mm_add_pd(fjx0,tx);
1056             fjy0             = _mm_add_pd(fjy0,ty);
1057             fjz0             = _mm_add_pd(fjz0,tz);
1058
1059             }
1060
1061             /**************************
1062              * CALCULATE INTERACTIONS *
1063              **************************/
1064
1065             if (gmx_mm_any_lt(rsq20,rcutoff2))
1066             {
1067
1068             /* Compute parameters for interactions between i and j atoms */
1069             qq20             = _mm_mul_pd(iq2,jq0);
1070
1071             /* REACTION-FIELD ELECTROSTATICS */
1072             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1073
1074             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1075
1076             fscal            = felec;
1077
1078             fscal            = _mm_and_pd(fscal,cutoff_mask);
1079
1080             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1081
1082             /* Calculate temporary vectorial force */
1083             tx               = _mm_mul_pd(fscal,dx20);
1084             ty               = _mm_mul_pd(fscal,dy20);
1085             tz               = _mm_mul_pd(fscal,dz20);
1086
1087             /* Update vectorial force */
1088             fix2             = _mm_add_pd(fix2,tx);
1089             fiy2             = _mm_add_pd(fiy2,ty);
1090             fiz2             = _mm_add_pd(fiz2,tz);
1091
1092             fjx0             = _mm_add_pd(fjx0,tx);
1093             fjy0             = _mm_add_pd(fjy0,ty);
1094             fjz0             = _mm_add_pd(fjz0,tz);
1095
1096             }
1097
1098             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1099
1100             /* Inner loop uses 124 flops */
1101         }
1102
1103         /* End of innermost loop */
1104
1105         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1106                                               f+i_coord_offset,fshift+i_shift_offset);
1107
1108         /* Increment number of inner iterations */
1109         inneriter                  += j_index_end - j_index_start;
1110
1111         /* Outer loop uses 18 flops */
1112     }
1113
1114     /* Increment number of outer iterations */
1115     outeriter        += nri;
1116
1117     /* Update outer/inner flops */
1118
1119     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*124);
1120 }