Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_sse2_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse2_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
93     real             rswitch_scalar,d_scalar;
94     __m128d          dummy_mask,cutoff_mask;
95     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
96     __m128d          one     = _mm_set1_pd(1.0);
97     __m128d          two     = _mm_set1_pd(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm_set1_pd(fr->ic->epsfac);
110     charge           = mdatoms->chargeA;
111     krf              = _mm_set1_pd(fr->ic->k_rf);
112     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
113     crf              = _mm_set1_pd(fr->ic->c_rf);
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
119     rcutoff_scalar   = fr->ic->rcoulomb;
120     rcutoff          = _mm_set1_pd(rcutoff_scalar);
121     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
122
123     rswitch_scalar   = fr->ic->rvdw_switch;
124     rswitch          = _mm_set1_pd(rswitch_scalar);
125     /* Setup switch parameters */
126     d_scalar         = rcutoff_scalar-rswitch_scalar;
127     d                = _mm_set1_pd(d_scalar);
128     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
129     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
130     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
131     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
132     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
133     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
159
160         fix0             = _mm_setzero_pd();
161         fiy0             = _mm_setzero_pd();
162         fiz0             = _mm_setzero_pd();
163
164         /* Load parameters for i particles */
165         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
166         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
167
168         /* Reset potential sums */
169         velecsum         = _mm_setzero_pd();
170         vvdwsum          = _mm_setzero_pd();
171
172         /* Start inner kernel loop */
173         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
174         {
175
176             /* Get j neighbor index, and coordinate index */
177             jnrA             = jjnr[jidx];
178             jnrB             = jjnr[jidx+1];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181
182             /* load j atom coordinates */
183             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
184                                               &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm_sub_pd(ix0,jx0);
188             dy00             = _mm_sub_pd(iy0,jy0);
189             dz00             = _mm_sub_pd(iz0,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
193
194             rinv00           = sse2_invsqrt_d(rsq00);
195
196             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
197
198             /* Load parameters for j particles */
199             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             if (gmx_mm_any_lt(rsq00,rcutoff2))
208             {
209
210             r00              = _mm_mul_pd(rsq00,rinv00);
211
212             /* Compute parameters for interactions between i and j atoms */
213             qq00             = _mm_mul_pd(iq0,jq0);
214             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
215                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
216
217             /* REACTION-FIELD ELECTROSTATICS */
218             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
219             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
220
221             /* LENNARD-JONES DISPERSION/REPULSION */
222
223             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
224             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
225             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
226             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
227             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
228
229             d                = _mm_sub_pd(r00,rswitch);
230             d                = _mm_max_pd(d,_mm_setzero_pd());
231             d2               = _mm_mul_pd(d,d);
232             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
233
234             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
235
236             /* Evaluate switch function */
237             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
238             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
239             vvdw             = _mm_mul_pd(vvdw,sw);
240             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
241
242             /* Update potential sum for this i atom from the interaction with this j atom. */
243             velec            = _mm_and_pd(velec,cutoff_mask);
244             velecsum         = _mm_add_pd(velecsum,velec);
245             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
246             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
247
248             fscal            = _mm_add_pd(felec,fvdw);
249
250             fscal            = _mm_and_pd(fscal,cutoff_mask);
251
252             /* Calculate temporary vectorial force */
253             tx               = _mm_mul_pd(fscal,dx00);
254             ty               = _mm_mul_pd(fscal,dy00);
255             tz               = _mm_mul_pd(fscal,dz00);
256
257             /* Update vectorial force */
258             fix0             = _mm_add_pd(fix0,tx);
259             fiy0             = _mm_add_pd(fiy0,ty);
260             fiz0             = _mm_add_pd(fiz0,tz);
261
262             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
263
264             }
265
266             /* Inner loop uses 70 flops */
267         }
268
269         if(jidx<j_index_end)
270         {
271
272             jnrA             = jjnr[jidx];
273             j_coord_offsetA  = DIM*jnrA;
274
275             /* load j atom coordinates */
276             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
277                                               &jx0,&jy0,&jz0);
278
279             /* Calculate displacement vector */
280             dx00             = _mm_sub_pd(ix0,jx0);
281             dy00             = _mm_sub_pd(iy0,jy0);
282             dz00             = _mm_sub_pd(iz0,jz0);
283
284             /* Calculate squared distance and things based on it */
285             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
286
287             rinv00           = sse2_invsqrt_d(rsq00);
288
289             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
290
291             /* Load parameters for j particles */
292             jq0              = _mm_load_sd(charge+jnrA+0);
293             vdwjidx0A        = 2*vdwtype[jnrA+0];
294
295             /**************************
296              * CALCULATE INTERACTIONS *
297              **************************/
298
299             if (gmx_mm_any_lt(rsq00,rcutoff2))
300             {
301
302             r00              = _mm_mul_pd(rsq00,rinv00);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq00             = _mm_mul_pd(iq0,jq0);
306             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
307
308             /* REACTION-FIELD ELECTROSTATICS */
309             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
310             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
311
312             /* LENNARD-JONES DISPERSION/REPULSION */
313
314             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
315             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
316             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
317             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
318             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
319
320             d                = _mm_sub_pd(r00,rswitch);
321             d                = _mm_max_pd(d,_mm_setzero_pd());
322             d2               = _mm_mul_pd(d,d);
323             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
324
325             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
326
327             /* Evaluate switch function */
328             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
329             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
330             vvdw             = _mm_mul_pd(vvdw,sw);
331             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             velec            = _mm_and_pd(velec,cutoff_mask);
335             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
336             velecsum         = _mm_add_pd(velecsum,velec);
337             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
338             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
339             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
340
341             fscal            = _mm_add_pd(felec,fvdw);
342
343             fscal            = _mm_and_pd(fscal,cutoff_mask);
344
345             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
346
347             /* Calculate temporary vectorial force */
348             tx               = _mm_mul_pd(fscal,dx00);
349             ty               = _mm_mul_pd(fscal,dy00);
350             tz               = _mm_mul_pd(fscal,dz00);
351
352             /* Update vectorial force */
353             fix0             = _mm_add_pd(fix0,tx);
354             fiy0             = _mm_add_pd(fiy0,ty);
355             fiz0             = _mm_add_pd(fiz0,tz);
356
357             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
358
359             }
360
361             /* Inner loop uses 70 flops */
362         }
363
364         /* End of innermost loop */
365
366         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
367                                               f+i_coord_offset,fshift+i_shift_offset);
368
369         ggid                        = gid[iidx];
370         /* Update potential energies */
371         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
372         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
373
374         /* Increment number of inner iterations */
375         inneriter                  += j_index_end - j_index_start;
376
377         /* Outer loop uses 9 flops */
378     }
379
380     /* Increment number of outer iterations */
381     outeriter        += nri;
382
383     /* Update outer/inner flops */
384
385     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70);
386 }
387 /*
388  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse2_double
389  * Electrostatics interaction: ReactionField
390  * VdW interaction:            LennardJones
391  * Geometry:                   Particle-Particle
392  * Calculate force/pot:        Force
393  */
394 void
395 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse2_double
396                     (t_nblist                    * gmx_restrict       nlist,
397                      rvec                        * gmx_restrict          xx,
398                      rvec                        * gmx_restrict          ff,
399                      struct t_forcerec           * gmx_restrict          fr,
400                      t_mdatoms                   * gmx_restrict     mdatoms,
401                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
402                      t_nrnb                      * gmx_restrict        nrnb)
403 {
404     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
405      * just 0 for non-waters.
406      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
407      * jnr indices corresponding to data put in the four positions in the SIMD register.
408      */
409     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
410     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
411     int              jnrA,jnrB;
412     int              j_coord_offsetA,j_coord_offsetB;
413     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
414     real             rcutoff_scalar;
415     real             *shiftvec,*fshift,*x,*f;
416     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
417     int              vdwioffset0;
418     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
419     int              vdwjidx0A,vdwjidx0B;
420     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
421     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
422     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
423     real             *charge;
424     int              nvdwtype;
425     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
426     int              *vdwtype;
427     real             *vdwparam;
428     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
429     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
430     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
431     real             rswitch_scalar,d_scalar;
432     __m128d          dummy_mask,cutoff_mask;
433     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
434     __m128d          one     = _mm_set1_pd(1.0);
435     __m128d          two     = _mm_set1_pd(2.0);
436     x                = xx[0];
437     f                = ff[0];
438
439     nri              = nlist->nri;
440     iinr             = nlist->iinr;
441     jindex           = nlist->jindex;
442     jjnr             = nlist->jjnr;
443     shiftidx         = nlist->shift;
444     gid              = nlist->gid;
445     shiftvec         = fr->shift_vec[0];
446     fshift           = fr->fshift[0];
447     facel            = _mm_set1_pd(fr->ic->epsfac);
448     charge           = mdatoms->chargeA;
449     krf              = _mm_set1_pd(fr->ic->k_rf);
450     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
451     crf              = _mm_set1_pd(fr->ic->c_rf);
452     nvdwtype         = fr->ntype;
453     vdwparam         = fr->nbfp;
454     vdwtype          = mdatoms->typeA;
455
456     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
457     rcutoff_scalar   = fr->ic->rcoulomb;
458     rcutoff          = _mm_set1_pd(rcutoff_scalar);
459     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
460
461     rswitch_scalar   = fr->ic->rvdw_switch;
462     rswitch          = _mm_set1_pd(rswitch_scalar);
463     /* Setup switch parameters */
464     d_scalar         = rcutoff_scalar-rswitch_scalar;
465     d                = _mm_set1_pd(d_scalar);
466     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
467     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
468     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
469     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
470     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
471     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
472
473     /* Avoid stupid compiler warnings */
474     jnrA = jnrB = 0;
475     j_coord_offsetA = 0;
476     j_coord_offsetB = 0;
477
478     outeriter        = 0;
479     inneriter        = 0;
480
481     /* Start outer loop over neighborlists */
482     for(iidx=0; iidx<nri; iidx++)
483     {
484         /* Load shift vector for this list */
485         i_shift_offset   = DIM*shiftidx[iidx];
486
487         /* Load limits for loop over neighbors */
488         j_index_start    = jindex[iidx];
489         j_index_end      = jindex[iidx+1];
490
491         /* Get outer coordinate index */
492         inr              = iinr[iidx];
493         i_coord_offset   = DIM*inr;
494
495         /* Load i particle coords and add shift vector */
496         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
497
498         fix0             = _mm_setzero_pd();
499         fiy0             = _mm_setzero_pd();
500         fiz0             = _mm_setzero_pd();
501
502         /* Load parameters for i particles */
503         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
504         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
505
506         /* Start inner kernel loop */
507         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
508         {
509
510             /* Get j neighbor index, and coordinate index */
511             jnrA             = jjnr[jidx];
512             jnrB             = jjnr[jidx+1];
513             j_coord_offsetA  = DIM*jnrA;
514             j_coord_offsetB  = DIM*jnrB;
515
516             /* load j atom coordinates */
517             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
518                                               &jx0,&jy0,&jz0);
519
520             /* Calculate displacement vector */
521             dx00             = _mm_sub_pd(ix0,jx0);
522             dy00             = _mm_sub_pd(iy0,jy0);
523             dz00             = _mm_sub_pd(iz0,jz0);
524
525             /* Calculate squared distance and things based on it */
526             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
527
528             rinv00           = sse2_invsqrt_d(rsq00);
529
530             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
531
532             /* Load parameters for j particles */
533             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
534             vdwjidx0A        = 2*vdwtype[jnrA+0];
535             vdwjidx0B        = 2*vdwtype[jnrB+0];
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             if (gmx_mm_any_lt(rsq00,rcutoff2))
542             {
543
544             r00              = _mm_mul_pd(rsq00,rinv00);
545
546             /* Compute parameters for interactions between i and j atoms */
547             qq00             = _mm_mul_pd(iq0,jq0);
548             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
549                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
550
551             /* REACTION-FIELD ELECTROSTATICS */
552             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
553
554             /* LENNARD-JONES DISPERSION/REPULSION */
555
556             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
557             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
558             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
559             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
560             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
561
562             d                = _mm_sub_pd(r00,rswitch);
563             d                = _mm_max_pd(d,_mm_setzero_pd());
564             d2               = _mm_mul_pd(d,d);
565             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
566
567             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
568
569             /* Evaluate switch function */
570             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
571             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
572             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
573
574             fscal            = _mm_add_pd(felec,fvdw);
575
576             fscal            = _mm_and_pd(fscal,cutoff_mask);
577
578             /* Calculate temporary vectorial force */
579             tx               = _mm_mul_pd(fscal,dx00);
580             ty               = _mm_mul_pd(fscal,dy00);
581             tz               = _mm_mul_pd(fscal,dz00);
582
583             /* Update vectorial force */
584             fix0             = _mm_add_pd(fix0,tx);
585             fiy0             = _mm_add_pd(fiy0,ty);
586             fiz0             = _mm_add_pd(fiz0,tz);
587
588             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
589
590             }
591
592             /* Inner loop uses 61 flops */
593         }
594
595         if(jidx<j_index_end)
596         {
597
598             jnrA             = jjnr[jidx];
599             j_coord_offsetA  = DIM*jnrA;
600
601             /* load j atom coordinates */
602             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
603                                               &jx0,&jy0,&jz0);
604
605             /* Calculate displacement vector */
606             dx00             = _mm_sub_pd(ix0,jx0);
607             dy00             = _mm_sub_pd(iy0,jy0);
608             dz00             = _mm_sub_pd(iz0,jz0);
609
610             /* Calculate squared distance and things based on it */
611             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
612
613             rinv00           = sse2_invsqrt_d(rsq00);
614
615             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
616
617             /* Load parameters for j particles */
618             jq0              = _mm_load_sd(charge+jnrA+0);
619             vdwjidx0A        = 2*vdwtype[jnrA+0];
620
621             /**************************
622              * CALCULATE INTERACTIONS *
623              **************************/
624
625             if (gmx_mm_any_lt(rsq00,rcutoff2))
626             {
627
628             r00              = _mm_mul_pd(rsq00,rinv00);
629
630             /* Compute parameters for interactions between i and j atoms */
631             qq00             = _mm_mul_pd(iq0,jq0);
632             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
633
634             /* REACTION-FIELD ELECTROSTATICS */
635             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
636
637             /* LENNARD-JONES DISPERSION/REPULSION */
638
639             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
640             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
641             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
642             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
643             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
644
645             d                = _mm_sub_pd(r00,rswitch);
646             d                = _mm_max_pd(d,_mm_setzero_pd());
647             d2               = _mm_mul_pd(d,d);
648             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
649
650             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
651
652             /* Evaluate switch function */
653             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
654             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
655             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
656
657             fscal            = _mm_add_pd(felec,fvdw);
658
659             fscal            = _mm_and_pd(fscal,cutoff_mask);
660
661             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
662
663             /* Calculate temporary vectorial force */
664             tx               = _mm_mul_pd(fscal,dx00);
665             ty               = _mm_mul_pd(fscal,dy00);
666             tz               = _mm_mul_pd(fscal,dz00);
667
668             /* Update vectorial force */
669             fix0             = _mm_add_pd(fix0,tx);
670             fiy0             = _mm_add_pd(fiy0,ty);
671             fiz0             = _mm_add_pd(fiz0,tz);
672
673             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
674
675             }
676
677             /* Inner loop uses 61 flops */
678         }
679
680         /* End of innermost loop */
681
682         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
683                                               f+i_coord_offset,fshift+i_shift_offset);
684
685         /* Increment number of inner iterations */
686         inneriter                  += j_index_end - j_index_start;
687
688         /* Outer loop uses 7 flops */
689     }
690
691     /* Increment number of outer iterations */
692     outeriter        += nri;
693
694     /* Update outer/inner flops */
695
696     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*61);
697 }