Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse2_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
96     real             rswitch_scalar,d_scalar;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114     krf              = _mm_set1_pd(fr->ic->k_rf);
115     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
116     crf              = _mm_set1_pd(fr->ic->c_rf);
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
122     rcutoff_scalar   = fr->rcoulomb;
123     rcutoff          = _mm_set1_pd(rcutoff_scalar);
124     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
125
126     rswitch_scalar   = fr->rvdw_switch;
127     rswitch          = _mm_set1_pd(rswitch_scalar);
128     /* Setup switch parameters */
129     d_scalar         = rcutoff_scalar-rswitch_scalar;
130     d                = _mm_set1_pd(d_scalar);
131     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
132     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
133     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
134     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
135     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
162
163         fix0             = _mm_setzero_pd();
164         fiy0             = _mm_setzero_pd();
165         fiz0             = _mm_setzero_pd();
166
167         /* Load parameters for i particles */
168         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
169         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_pd();
173         vvdwsum          = _mm_setzero_pd();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_pd(ix0,jx0);
191             dy00             = _mm_sub_pd(iy0,jy0);
192             dz00             = _mm_sub_pd(iz0,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
196
197             rinv00           = gmx_mm_invsqrt_pd(rsq00);
198
199             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
203             vdwjidx0A        = 2*vdwtype[jnrA+0];
204             vdwjidx0B        = 2*vdwtype[jnrB+0];
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             if (gmx_mm_any_lt(rsq00,rcutoff2))
211             {
212
213             r00              = _mm_mul_pd(rsq00,rinv00);
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq00             = _mm_mul_pd(iq0,jq0);
217             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
218                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
219
220             /* REACTION-FIELD ELECTROSTATICS */
221             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
222             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
223
224             /* LENNARD-JONES DISPERSION/REPULSION */
225
226             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
227             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
228             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
229             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
230             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
231
232             d                = _mm_sub_pd(r00,rswitch);
233             d                = _mm_max_pd(d,_mm_setzero_pd());
234             d2               = _mm_mul_pd(d,d);
235             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
236
237             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
238
239             /* Evaluate switch function */
240             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
241             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
242             vvdw             = _mm_mul_pd(vvdw,sw);
243             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
244
245             /* Update potential sum for this i atom from the interaction with this j atom. */
246             velec            = _mm_and_pd(velec,cutoff_mask);
247             velecsum         = _mm_add_pd(velecsum,velec);
248             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
249             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
250
251             fscal            = _mm_add_pd(felec,fvdw);
252
253             fscal            = _mm_and_pd(fscal,cutoff_mask);
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm_mul_pd(fscal,dx00);
257             ty               = _mm_mul_pd(fscal,dy00);
258             tz               = _mm_mul_pd(fscal,dz00);
259
260             /* Update vectorial force */
261             fix0             = _mm_add_pd(fix0,tx);
262             fiy0             = _mm_add_pd(fiy0,ty);
263             fiz0             = _mm_add_pd(fiz0,tz);
264
265             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
266
267             }
268
269             /* Inner loop uses 70 flops */
270         }
271
272         if(jidx<j_index_end)
273         {
274
275             jnrA             = jjnr[jidx];
276             j_coord_offsetA  = DIM*jnrA;
277
278             /* load j atom coordinates */
279             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
280                                               &jx0,&jy0,&jz0);
281
282             /* Calculate displacement vector */
283             dx00             = _mm_sub_pd(ix0,jx0);
284             dy00             = _mm_sub_pd(iy0,jy0);
285             dz00             = _mm_sub_pd(iz0,jz0);
286
287             /* Calculate squared distance and things based on it */
288             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
289
290             rinv00           = gmx_mm_invsqrt_pd(rsq00);
291
292             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
293
294             /* Load parameters for j particles */
295             jq0              = _mm_load_sd(charge+jnrA+0);
296             vdwjidx0A        = 2*vdwtype[jnrA+0];
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             if (gmx_mm_any_lt(rsq00,rcutoff2))
303             {
304
305             r00              = _mm_mul_pd(rsq00,rinv00);
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq00             = _mm_mul_pd(iq0,jq0);
309             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
310
311             /* REACTION-FIELD ELECTROSTATICS */
312             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
313             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
314
315             /* LENNARD-JONES DISPERSION/REPULSION */
316
317             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
318             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
319             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
320             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
321             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
322
323             d                = _mm_sub_pd(r00,rswitch);
324             d                = _mm_max_pd(d,_mm_setzero_pd());
325             d2               = _mm_mul_pd(d,d);
326             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
327
328             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
329
330             /* Evaluate switch function */
331             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
332             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
333             vvdw             = _mm_mul_pd(vvdw,sw);
334             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velec            = _mm_and_pd(velec,cutoff_mask);
338             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
339             velecsum         = _mm_add_pd(velecsum,velec);
340             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
341             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
342             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
343
344             fscal            = _mm_add_pd(felec,fvdw);
345
346             fscal            = _mm_and_pd(fscal,cutoff_mask);
347
348             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
349
350             /* Calculate temporary vectorial force */
351             tx               = _mm_mul_pd(fscal,dx00);
352             ty               = _mm_mul_pd(fscal,dy00);
353             tz               = _mm_mul_pd(fscal,dz00);
354
355             /* Update vectorial force */
356             fix0             = _mm_add_pd(fix0,tx);
357             fiy0             = _mm_add_pd(fiy0,ty);
358             fiz0             = _mm_add_pd(fiz0,tz);
359
360             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
361
362             }
363
364             /* Inner loop uses 70 flops */
365         }
366
367         /* End of innermost loop */
368
369         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
370                                               f+i_coord_offset,fshift+i_shift_offset);
371
372         ggid                        = gid[iidx];
373         /* Update potential energies */
374         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
375         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
376
377         /* Increment number of inner iterations */
378         inneriter                  += j_index_end - j_index_start;
379
380         /* Outer loop uses 9 flops */
381     }
382
383     /* Increment number of outer iterations */
384     outeriter        += nri;
385
386     /* Update outer/inner flops */
387
388     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*70);
389 }
390 /*
391  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse2_double
392  * Electrostatics interaction: ReactionField
393  * VdW interaction:            LennardJones
394  * Geometry:                   Particle-Particle
395  * Calculate force/pot:        Force
396  */
397 void
398 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse2_double
399                     (t_nblist                    * gmx_restrict       nlist,
400                      rvec                        * gmx_restrict          xx,
401                      rvec                        * gmx_restrict          ff,
402                      t_forcerec                  * gmx_restrict          fr,
403                      t_mdatoms                   * gmx_restrict     mdatoms,
404                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
405                      t_nrnb                      * gmx_restrict        nrnb)
406 {
407     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
408      * just 0 for non-waters.
409      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
410      * jnr indices corresponding to data put in the four positions in the SIMD register.
411      */
412     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
413     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
414     int              jnrA,jnrB;
415     int              j_coord_offsetA,j_coord_offsetB;
416     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
417     real             rcutoff_scalar;
418     real             *shiftvec,*fshift,*x,*f;
419     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
420     int              vdwioffset0;
421     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
422     int              vdwjidx0A,vdwjidx0B;
423     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
424     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
425     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
426     real             *charge;
427     int              nvdwtype;
428     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
429     int              *vdwtype;
430     real             *vdwparam;
431     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
432     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
433     __m128d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
434     real             rswitch_scalar,d_scalar;
435     __m128d          dummy_mask,cutoff_mask;
436     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
437     __m128d          one     = _mm_set1_pd(1.0);
438     __m128d          two     = _mm_set1_pd(2.0);
439     x                = xx[0];
440     f                = ff[0];
441
442     nri              = nlist->nri;
443     iinr             = nlist->iinr;
444     jindex           = nlist->jindex;
445     jjnr             = nlist->jjnr;
446     shiftidx         = nlist->shift;
447     gid              = nlist->gid;
448     shiftvec         = fr->shift_vec[0];
449     fshift           = fr->fshift[0];
450     facel            = _mm_set1_pd(fr->epsfac);
451     charge           = mdatoms->chargeA;
452     krf              = _mm_set1_pd(fr->ic->k_rf);
453     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
454     crf              = _mm_set1_pd(fr->ic->c_rf);
455     nvdwtype         = fr->ntype;
456     vdwparam         = fr->nbfp;
457     vdwtype          = mdatoms->typeA;
458
459     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
460     rcutoff_scalar   = fr->rcoulomb;
461     rcutoff          = _mm_set1_pd(rcutoff_scalar);
462     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
463
464     rswitch_scalar   = fr->rvdw_switch;
465     rswitch          = _mm_set1_pd(rswitch_scalar);
466     /* Setup switch parameters */
467     d_scalar         = rcutoff_scalar-rswitch_scalar;
468     d                = _mm_set1_pd(d_scalar);
469     swV3             = _mm_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
470     swV4             = _mm_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
471     swV5             = _mm_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
472     swF2             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
473     swF3             = _mm_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
474     swF4             = _mm_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
475
476     /* Avoid stupid compiler warnings */
477     jnrA = jnrB = 0;
478     j_coord_offsetA = 0;
479     j_coord_offsetB = 0;
480
481     outeriter        = 0;
482     inneriter        = 0;
483
484     /* Start outer loop over neighborlists */
485     for(iidx=0; iidx<nri; iidx++)
486     {
487         /* Load shift vector for this list */
488         i_shift_offset   = DIM*shiftidx[iidx];
489
490         /* Load limits for loop over neighbors */
491         j_index_start    = jindex[iidx];
492         j_index_end      = jindex[iidx+1];
493
494         /* Get outer coordinate index */
495         inr              = iinr[iidx];
496         i_coord_offset   = DIM*inr;
497
498         /* Load i particle coords and add shift vector */
499         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
500
501         fix0             = _mm_setzero_pd();
502         fiy0             = _mm_setzero_pd();
503         fiz0             = _mm_setzero_pd();
504
505         /* Load parameters for i particles */
506         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
507         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
508
509         /* Start inner kernel loop */
510         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
511         {
512
513             /* Get j neighbor index, and coordinate index */
514             jnrA             = jjnr[jidx];
515             jnrB             = jjnr[jidx+1];
516             j_coord_offsetA  = DIM*jnrA;
517             j_coord_offsetB  = DIM*jnrB;
518
519             /* load j atom coordinates */
520             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
521                                               &jx0,&jy0,&jz0);
522
523             /* Calculate displacement vector */
524             dx00             = _mm_sub_pd(ix0,jx0);
525             dy00             = _mm_sub_pd(iy0,jy0);
526             dz00             = _mm_sub_pd(iz0,jz0);
527
528             /* Calculate squared distance and things based on it */
529             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
530
531             rinv00           = gmx_mm_invsqrt_pd(rsq00);
532
533             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
534
535             /* Load parameters for j particles */
536             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
537             vdwjidx0A        = 2*vdwtype[jnrA+0];
538             vdwjidx0B        = 2*vdwtype[jnrB+0];
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             if (gmx_mm_any_lt(rsq00,rcutoff2))
545             {
546
547             r00              = _mm_mul_pd(rsq00,rinv00);
548
549             /* Compute parameters for interactions between i and j atoms */
550             qq00             = _mm_mul_pd(iq0,jq0);
551             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
552                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
553
554             /* REACTION-FIELD ELECTROSTATICS */
555             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
556
557             /* LENNARD-JONES DISPERSION/REPULSION */
558
559             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
560             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
561             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
562             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
563             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
564
565             d                = _mm_sub_pd(r00,rswitch);
566             d                = _mm_max_pd(d,_mm_setzero_pd());
567             d2               = _mm_mul_pd(d,d);
568             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
569
570             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
571
572             /* Evaluate switch function */
573             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
574             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
575             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
576
577             fscal            = _mm_add_pd(felec,fvdw);
578
579             fscal            = _mm_and_pd(fscal,cutoff_mask);
580
581             /* Calculate temporary vectorial force */
582             tx               = _mm_mul_pd(fscal,dx00);
583             ty               = _mm_mul_pd(fscal,dy00);
584             tz               = _mm_mul_pd(fscal,dz00);
585
586             /* Update vectorial force */
587             fix0             = _mm_add_pd(fix0,tx);
588             fiy0             = _mm_add_pd(fiy0,ty);
589             fiz0             = _mm_add_pd(fiz0,tz);
590
591             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
592
593             }
594
595             /* Inner loop uses 61 flops */
596         }
597
598         if(jidx<j_index_end)
599         {
600
601             jnrA             = jjnr[jidx];
602             j_coord_offsetA  = DIM*jnrA;
603
604             /* load j atom coordinates */
605             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
606                                               &jx0,&jy0,&jz0);
607
608             /* Calculate displacement vector */
609             dx00             = _mm_sub_pd(ix0,jx0);
610             dy00             = _mm_sub_pd(iy0,jy0);
611             dz00             = _mm_sub_pd(iz0,jz0);
612
613             /* Calculate squared distance and things based on it */
614             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
615
616             rinv00           = gmx_mm_invsqrt_pd(rsq00);
617
618             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
619
620             /* Load parameters for j particles */
621             jq0              = _mm_load_sd(charge+jnrA+0);
622             vdwjidx0A        = 2*vdwtype[jnrA+0];
623
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             if (gmx_mm_any_lt(rsq00,rcutoff2))
629             {
630
631             r00              = _mm_mul_pd(rsq00,rinv00);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq00             = _mm_mul_pd(iq0,jq0);
635             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
636
637             /* REACTION-FIELD ELECTROSTATICS */
638             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
639
640             /* LENNARD-JONES DISPERSION/REPULSION */
641
642             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
643             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
644             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
645             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
646             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
647
648             d                = _mm_sub_pd(r00,rswitch);
649             d                = _mm_max_pd(d,_mm_setzero_pd());
650             d2               = _mm_mul_pd(d,d);
651             sw               = _mm_add_pd(one,_mm_mul_pd(d2,_mm_mul_pd(d,_mm_add_pd(swV3,_mm_mul_pd(d,_mm_add_pd(swV4,_mm_mul_pd(d,swV5)))))));
652
653             dsw              = _mm_mul_pd(d2,_mm_add_pd(swF2,_mm_mul_pd(d,_mm_add_pd(swF3,_mm_mul_pd(d,swF4)))));
654
655             /* Evaluate switch function */
656             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
657             fvdw             = _mm_sub_pd( _mm_mul_pd(fvdw,sw) , _mm_mul_pd(rinv00,_mm_mul_pd(vvdw,dsw)) );
658             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
659
660             fscal            = _mm_add_pd(felec,fvdw);
661
662             fscal            = _mm_and_pd(fscal,cutoff_mask);
663
664             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
665
666             /* Calculate temporary vectorial force */
667             tx               = _mm_mul_pd(fscal,dx00);
668             ty               = _mm_mul_pd(fscal,dy00);
669             tz               = _mm_mul_pd(fscal,dz00);
670
671             /* Update vectorial force */
672             fix0             = _mm_add_pd(fix0,tx);
673             fiy0             = _mm_add_pd(fiy0,ty);
674             fiz0             = _mm_add_pd(fiz0,tz);
675
676             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
677
678             }
679
680             /* Inner loop uses 61 flops */
681         }
682
683         /* End of innermost loop */
684
685         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
686                                               f+i_coord_offset,fshift+i_shift_offset);
687
688         /* Increment number of inner iterations */
689         inneriter                  += j_index_end - j_index_start;
690
691         /* Outer loop uses 7 flops */
692     }
693
694     /* Increment number of outer iterations */
695     outeriter        += nri;
696
697     /* Update outer/inner flops */
698
699     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*61);
700 }