92f873e2441bf2f6807700002e928b449c43866e
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse2_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128d          dummy_mask,cutoff_mask;
100     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
101     __m128d          one     = _mm_set1_pd(1.0);
102     __m128d          two     = _mm_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_pd(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     krf              = _mm_set1_pd(fr->ic->k_rf);
117     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
118     crf              = _mm_set1_pd(fr->ic->c_rf);
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
126     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
127     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
128     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
129
130     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
131     rcutoff_scalar   = fr->rcoulomb;
132     rcutoff          = _mm_set1_pd(rcutoff_scalar);
133     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
134
135     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
136     rvdw             = _mm_set1_pd(fr->rvdw);
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
162                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
163
164         fix0             = _mm_setzero_pd();
165         fiy0             = _mm_setzero_pd();
166         fiz0             = _mm_setzero_pd();
167         fix1             = _mm_setzero_pd();
168         fiy1             = _mm_setzero_pd();
169         fiz1             = _mm_setzero_pd();
170         fix2             = _mm_setzero_pd();
171         fiy2             = _mm_setzero_pd();
172         fiz2             = _mm_setzero_pd();
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_pd();
176         vvdwsum          = _mm_setzero_pd();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187
188             /* load j atom coordinates */
189             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_pd(ix0,jx0);
194             dy00             = _mm_sub_pd(iy0,jy0);
195             dz00             = _mm_sub_pd(iz0,jz0);
196             dx10             = _mm_sub_pd(ix1,jx0);
197             dy10             = _mm_sub_pd(iy1,jy0);
198             dz10             = _mm_sub_pd(iz1,jz0);
199             dx20             = _mm_sub_pd(ix2,jx0);
200             dy20             = _mm_sub_pd(iy2,jy0);
201             dz20             = _mm_sub_pd(iz2,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
205             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
206             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
207
208             rinv00           = gmx_mm_invsqrt_pd(rsq00);
209             rinv10           = gmx_mm_invsqrt_pd(rsq10);
210             rinv20           = gmx_mm_invsqrt_pd(rsq20);
211
212             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
213             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
214             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
218             vdwjidx0A        = 2*vdwtype[jnrA+0];
219             vdwjidx0B        = 2*vdwtype[jnrB+0];
220
221             fjx0             = _mm_setzero_pd();
222             fjy0             = _mm_setzero_pd();
223             fjz0             = _mm_setzero_pd();
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             if (gmx_mm_any_lt(rsq00,rcutoff2))
230             {
231
232             /* Compute parameters for interactions between i and j atoms */
233             qq00             = _mm_mul_pd(iq0,jq0);
234             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
235                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
236
237             /* REACTION-FIELD ELECTROSTATICS */
238             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
239             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
240
241             /* LENNARD-JONES DISPERSION/REPULSION */
242
243             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
244             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
245             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
246             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
247                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
248             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
249
250             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
251
252             /* Update potential sum for this i atom from the interaction with this j atom. */
253             velec            = _mm_and_pd(velec,cutoff_mask);
254             velecsum         = _mm_add_pd(velecsum,velec);
255             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
256             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
257
258             fscal            = _mm_add_pd(felec,fvdw);
259
260             fscal            = _mm_and_pd(fscal,cutoff_mask);
261
262             /* Calculate temporary vectorial force */
263             tx               = _mm_mul_pd(fscal,dx00);
264             ty               = _mm_mul_pd(fscal,dy00);
265             tz               = _mm_mul_pd(fscal,dz00);
266
267             /* Update vectorial force */
268             fix0             = _mm_add_pd(fix0,tx);
269             fiy0             = _mm_add_pd(fiy0,ty);
270             fiz0             = _mm_add_pd(fiz0,tz);
271
272             fjx0             = _mm_add_pd(fjx0,tx);
273             fjy0             = _mm_add_pd(fjy0,ty);
274             fjz0             = _mm_add_pd(fjz0,tz);
275
276             }
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             if (gmx_mm_any_lt(rsq10,rcutoff2))
283             {
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq10             = _mm_mul_pd(iq1,jq0);
287
288             /* REACTION-FIELD ELECTROSTATICS */
289             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
290             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
291
292             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             velec            = _mm_and_pd(velec,cutoff_mask);
296             velecsum         = _mm_add_pd(velecsum,velec);
297
298             fscal            = felec;
299
300             fscal            = _mm_and_pd(fscal,cutoff_mask);
301
302             /* Calculate temporary vectorial force */
303             tx               = _mm_mul_pd(fscal,dx10);
304             ty               = _mm_mul_pd(fscal,dy10);
305             tz               = _mm_mul_pd(fscal,dz10);
306
307             /* Update vectorial force */
308             fix1             = _mm_add_pd(fix1,tx);
309             fiy1             = _mm_add_pd(fiy1,ty);
310             fiz1             = _mm_add_pd(fiz1,tz);
311
312             fjx0             = _mm_add_pd(fjx0,tx);
313             fjy0             = _mm_add_pd(fjy0,ty);
314             fjz0             = _mm_add_pd(fjz0,tz);
315
316             }
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             if (gmx_mm_any_lt(rsq20,rcutoff2))
323             {
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq20             = _mm_mul_pd(iq2,jq0);
327
328             /* REACTION-FIELD ELECTROSTATICS */
329             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
330             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
331
332             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
333
334             /* Update potential sum for this i atom from the interaction with this j atom. */
335             velec            = _mm_and_pd(velec,cutoff_mask);
336             velecsum         = _mm_add_pd(velecsum,velec);
337
338             fscal            = felec;
339
340             fscal            = _mm_and_pd(fscal,cutoff_mask);
341
342             /* Calculate temporary vectorial force */
343             tx               = _mm_mul_pd(fscal,dx20);
344             ty               = _mm_mul_pd(fscal,dy20);
345             tz               = _mm_mul_pd(fscal,dz20);
346
347             /* Update vectorial force */
348             fix2             = _mm_add_pd(fix2,tx);
349             fiy2             = _mm_add_pd(fiy2,ty);
350             fiz2             = _mm_add_pd(fiz2,tz);
351
352             fjx0             = _mm_add_pd(fjx0,tx);
353             fjy0             = _mm_add_pd(fjy0,ty);
354             fjz0             = _mm_add_pd(fjz0,tz);
355
356             }
357
358             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
359
360             /* Inner loop uses 129 flops */
361         }
362
363         if(jidx<j_index_end)
364         {
365
366             jnrA             = jjnr[jidx];
367             j_coord_offsetA  = DIM*jnrA;
368
369             /* load j atom coordinates */
370             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
371                                               &jx0,&jy0,&jz0);
372
373             /* Calculate displacement vector */
374             dx00             = _mm_sub_pd(ix0,jx0);
375             dy00             = _mm_sub_pd(iy0,jy0);
376             dz00             = _mm_sub_pd(iz0,jz0);
377             dx10             = _mm_sub_pd(ix1,jx0);
378             dy10             = _mm_sub_pd(iy1,jy0);
379             dz10             = _mm_sub_pd(iz1,jz0);
380             dx20             = _mm_sub_pd(ix2,jx0);
381             dy20             = _mm_sub_pd(iy2,jy0);
382             dz20             = _mm_sub_pd(iz2,jz0);
383
384             /* Calculate squared distance and things based on it */
385             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
386             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
387             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
388
389             rinv00           = gmx_mm_invsqrt_pd(rsq00);
390             rinv10           = gmx_mm_invsqrt_pd(rsq10);
391             rinv20           = gmx_mm_invsqrt_pd(rsq20);
392
393             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
394             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
395             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
396
397             /* Load parameters for j particles */
398             jq0              = _mm_load_sd(charge+jnrA+0);
399             vdwjidx0A        = 2*vdwtype[jnrA+0];
400
401             fjx0             = _mm_setzero_pd();
402             fjy0             = _mm_setzero_pd();
403             fjz0             = _mm_setzero_pd();
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             if (gmx_mm_any_lt(rsq00,rcutoff2))
410             {
411
412             /* Compute parameters for interactions between i and j atoms */
413             qq00             = _mm_mul_pd(iq0,jq0);
414             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
415
416             /* REACTION-FIELD ELECTROSTATICS */
417             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
418             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
419
420             /* LENNARD-JONES DISPERSION/REPULSION */
421
422             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
423             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
424             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
425             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
426                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
427             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
428
429             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
430
431             /* Update potential sum for this i atom from the interaction with this j atom. */
432             velec            = _mm_and_pd(velec,cutoff_mask);
433             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
434             velecsum         = _mm_add_pd(velecsum,velec);
435             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
436             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
437             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
438
439             fscal            = _mm_add_pd(felec,fvdw);
440
441             fscal            = _mm_and_pd(fscal,cutoff_mask);
442
443             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
444
445             /* Calculate temporary vectorial force */
446             tx               = _mm_mul_pd(fscal,dx00);
447             ty               = _mm_mul_pd(fscal,dy00);
448             tz               = _mm_mul_pd(fscal,dz00);
449
450             /* Update vectorial force */
451             fix0             = _mm_add_pd(fix0,tx);
452             fiy0             = _mm_add_pd(fiy0,ty);
453             fiz0             = _mm_add_pd(fiz0,tz);
454
455             fjx0             = _mm_add_pd(fjx0,tx);
456             fjy0             = _mm_add_pd(fjy0,ty);
457             fjz0             = _mm_add_pd(fjz0,tz);
458
459             }
460
461             /**************************
462              * CALCULATE INTERACTIONS *
463              **************************/
464
465             if (gmx_mm_any_lt(rsq10,rcutoff2))
466             {
467
468             /* Compute parameters for interactions between i and j atoms */
469             qq10             = _mm_mul_pd(iq1,jq0);
470
471             /* REACTION-FIELD ELECTROSTATICS */
472             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
473             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
474
475             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
476
477             /* Update potential sum for this i atom from the interaction with this j atom. */
478             velec            = _mm_and_pd(velec,cutoff_mask);
479             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
480             velecsum         = _mm_add_pd(velecsum,velec);
481
482             fscal            = felec;
483
484             fscal            = _mm_and_pd(fscal,cutoff_mask);
485
486             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
487
488             /* Calculate temporary vectorial force */
489             tx               = _mm_mul_pd(fscal,dx10);
490             ty               = _mm_mul_pd(fscal,dy10);
491             tz               = _mm_mul_pd(fscal,dz10);
492
493             /* Update vectorial force */
494             fix1             = _mm_add_pd(fix1,tx);
495             fiy1             = _mm_add_pd(fiy1,ty);
496             fiz1             = _mm_add_pd(fiz1,tz);
497
498             fjx0             = _mm_add_pd(fjx0,tx);
499             fjy0             = _mm_add_pd(fjy0,ty);
500             fjz0             = _mm_add_pd(fjz0,tz);
501
502             }
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             if (gmx_mm_any_lt(rsq20,rcutoff2))
509             {
510
511             /* Compute parameters for interactions between i and j atoms */
512             qq20             = _mm_mul_pd(iq2,jq0);
513
514             /* REACTION-FIELD ELECTROSTATICS */
515             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
516             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
517
518             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
519
520             /* Update potential sum for this i atom from the interaction with this j atom. */
521             velec            = _mm_and_pd(velec,cutoff_mask);
522             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
523             velecsum         = _mm_add_pd(velecsum,velec);
524
525             fscal            = felec;
526
527             fscal            = _mm_and_pd(fscal,cutoff_mask);
528
529             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
530
531             /* Calculate temporary vectorial force */
532             tx               = _mm_mul_pd(fscal,dx20);
533             ty               = _mm_mul_pd(fscal,dy20);
534             tz               = _mm_mul_pd(fscal,dz20);
535
536             /* Update vectorial force */
537             fix2             = _mm_add_pd(fix2,tx);
538             fiy2             = _mm_add_pd(fiy2,ty);
539             fiz2             = _mm_add_pd(fiz2,tz);
540
541             fjx0             = _mm_add_pd(fjx0,tx);
542             fjy0             = _mm_add_pd(fjy0,ty);
543             fjz0             = _mm_add_pd(fjz0,tz);
544
545             }
546
547             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
548
549             /* Inner loop uses 129 flops */
550         }
551
552         /* End of innermost loop */
553
554         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
555                                               f+i_coord_offset,fshift+i_shift_offset);
556
557         ggid                        = gid[iidx];
558         /* Update potential energies */
559         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
560         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
561
562         /* Increment number of inner iterations */
563         inneriter                  += j_index_end - j_index_start;
564
565         /* Outer loop uses 20 flops */
566     }
567
568     /* Increment number of outer iterations */
569     outeriter        += nri;
570
571     /* Update outer/inner flops */
572
573     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
574 }
575 /*
576  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse2_double
577  * Electrostatics interaction: ReactionField
578  * VdW interaction:            LennardJones
579  * Geometry:                   Water3-Particle
580  * Calculate force/pot:        Force
581  */
582 void
583 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse2_double
584                     (t_nblist                    * gmx_restrict       nlist,
585                      rvec                        * gmx_restrict          xx,
586                      rvec                        * gmx_restrict          ff,
587                      t_forcerec                  * gmx_restrict          fr,
588                      t_mdatoms                   * gmx_restrict     mdatoms,
589                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
590                      t_nrnb                      * gmx_restrict        nrnb)
591 {
592     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
593      * just 0 for non-waters.
594      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
595      * jnr indices corresponding to data put in the four positions in the SIMD register.
596      */
597     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
598     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
599     int              jnrA,jnrB;
600     int              j_coord_offsetA,j_coord_offsetB;
601     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
602     real             rcutoff_scalar;
603     real             *shiftvec,*fshift,*x,*f;
604     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
605     int              vdwioffset0;
606     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
607     int              vdwioffset1;
608     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
609     int              vdwioffset2;
610     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
611     int              vdwjidx0A,vdwjidx0B;
612     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
613     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
614     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
615     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
616     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
617     real             *charge;
618     int              nvdwtype;
619     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
620     int              *vdwtype;
621     real             *vdwparam;
622     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
623     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
624     __m128d          dummy_mask,cutoff_mask;
625     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
626     __m128d          one     = _mm_set1_pd(1.0);
627     __m128d          two     = _mm_set1_pd(2.0);
628     x                = xx[0];
629     f                = ff[0];
630
631     nri              = nlist->nri;
632     iinr             = nlist->iinr;
633     jindex           = nlist->jindex;
634     jjnr             = nlist->jjnr;
635     shiftidx         = nlist->shift;
636     gid              = nlist->gid;
637     shiftvec         = fr->shift_vec[0];
638     fshift           = fr->fshift[0];
639     facel            = _mm_set1_pd(fr->epsfac);
640     charge           = mdatoms->chargeA;
641     krf              = _mm_set1_pd(fr->ic->k_rf);
642     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
643     crf              = _mm_set1_pd(fr->ic->c_rf);
644     nvdwtype         = fr->ntype;
645     vdwparam         = fr->nbfp;
646     vdwtype          = mdatoms->typeA;
647
648     /* Setup water-specific parameters */
649     inr              = nlist->iinr[0];
650     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
651     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
652     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
653     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
654
655     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
656     rcutoff_scalar   = fr->rcoulomb;
657     rcutoff          = _mm_set1_pd(rcutoff_scalar);
658     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
659
660     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
661     rvdw             = _mm_set1_pd(fr->rvdw);
662
663     /* Avoid stupid compiler warnings */
664     jnrA = jnrB = 0;
665     j_coord_offsetA = 0;
666     j_coord_offsetB = 0;
667
668     outeriter        = 0;
669     inneriter        = 0;
670
671     /* Start outer loop over neighborlists */
672     for(iidx=0; iidx<nri; iidx++)
673     {
674         /* Load shift vector for this list */
675         i_shift_offset   = DIM*shiftidx[iidx];
676
677         /* Load limits for loop over neighbors */
678         j_index_start    = jindex[iidx];
679         j_index_end      = jindex[iidx+1];
680
681         /* Get outer coordinate index */
682         inr              = iinr[iidx];
683         i_coord_offset   = DIM*inr;
684
685         /* Load i particle coords and add shift vector */
686         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
687                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
688
689         fix0             = _mm_setzero_pd();
690         fiy0             = _mm_setzero_pd();
691         fiz0             = _mm_setzero_pd();
692         fix1             = _mm_setzero_pd();
693         fiy1             = _mm_setzero_pd();
694         fiz1             = _mm_setzero_pd();
695         fix2             = _mm_setzero_pd();
696         fiy2             = _mm_setzero_pd();
697         fiz2             = _mm_setzero_pd();
698
699         /* Start inner kernel loop */
700         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
701         {
702
703             /* Get j neighbor index, and coordinate index */
704             jnrA             = jjnr[jidx];
705             jnrB             = jjnr[jidx+1];
706             j_coord_offsetA  = DIM*jnrA;
707             j_coord_offsetB  = DIM*jnrB;
708
709             /* load j atom coordinates */
710             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
711                                               &jx0,&jy0,&jz0);
712
713             /* Calculate displacement vector */
714             dx00             = _mm_sub_pd(ix0,jx0);
715             dy00             = _mm_sub_pd(iy0,jy0);
716             dz00             = _mm_sub_pd(iz0,jz0);
717             dx10             = _mm_sub_pd(ix1,jx0);
718             dy10             = _mm_sub_pd(iy1,jy0);
719             dz10             = _mm_sub_pd(iz1,jz0);
720             dx20             = _mm_sub_pd(ix2,jx0);
721             dy20             = _mm_sub_pd(iy2,jy0);
722             dz20             = _mm_sub_pd(iz2,jz0);
723
724             /* Calculate squared distance and things based on it */
725             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
726             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
727             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
728
729             rinv00           = gmx_mm_invsqrt_pd(rsq00);
730             rinv10           = gmx_mm_invsqrt_pd(rsq10);
731             rinv20           = gmx_mm_invsqrt_pd(rsq20);
732
733             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
734             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
735             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
736
737             /* Load parameters for j particles */
738             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
739             vdwjidx0A        = 2*vdwtype[jnrA+0];
740             vdwjidx0B        = 2*vdwtype[jnrB+0];
741
742             fjx0             = _mm_setzero_pd();
743             fjy0             = _mm_setzero_pd();
744             fjz0             = _mm_setzero_pd();
745
746             /**************************
747              * CALCULATE INTERACTIONS *
748              **************************/
749
750             if (gmx_mm_any_lt(rsq00,rcutoff2))
751             {
752
753             /* Compute parameters for interactions between i and j atoms */
754             qq00             = _mm_mul_pd(iq0,jq0);
755             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
756                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
757
758             /* REACTION-FIELD ELECTROSTATICS */
759             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
760
761             /* LENNARD-JONES DISPERSION/REPULSION */
762
763             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
764             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
765
766             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
767
768             fscal            = _mm_add_pd(felec,fvdw);
769
770             fscal            = _mm_and_pd(fscal,cutoff_mask);
771
772             /* Calculate temporary vectorial force */
773             tx               = _mm_mul_pd(fscal,dx00);
774             ty               = _mm_mul_pd(fscal,dy00);
775             tz               = _mm_mul_pd(fscal,dz00);
776
777             /* Update vectorial force */
778             fix0             = _mm_add_pd(fix0,tx);
779             fiy0             = _mm_add_pd(fiy0,ty);
780             fiz0             = _mm_add_pd(fiz0,tz);
781
782             fjx0             = _mm_add_pd(fjx0,tx);
783             fjy0             = _mm_add_pd(fjy0,ty);
784             fjz0             = _mm_add_pd(fjz0,tz);
785
786             }
787
788             /**************************
789              * CALCULATE INTERACTIONS *
790              **************************/
791
792             if (gmx_mm_any_lt(rsq10,rcutoff2))
793             {
794
795             /* Compute parameters for interactions between i and j atoms */
796             qq10             = _mm_mul_pd(iq1,jq0);
797
798             /* REACTION-FIELD ELECTROSTATICS */
799             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
800
801             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
802
803             fscal            = felec;
804
805             fscal            = _mm_and_pd(fscal,cutoff_mask);
806
807             /* Calculate temporary vectorial force */
808             tx               = _mm_mul_pd(fscal,dx10);
809             ty               = _mm_mul_pd(fscal,dy10);
810             tz               = _mm_mul_pd(fscal,dz10);
811
812             /* Update vectorial force */
813             fix1             = _mm_add_pd(fix1,tx);
814             fiy1             = _mm_add_pd(fiy1,ty);
815             fiz1             = _mm_add_pd(fiz1,tz);
816
817             fjx0             = _mm_add_pd(fjx0,tx);
818             fjy0             = _mm_add_pd(fjy0,ty);
819             fjz0             = _mm_add_pd(fjz0,tz);
820
821             }
822
823             /**************************
824              * CALCULATE INTERACTIONS *
825              **************************/
826
827             if (gmx_mm_any_lt(rsq20,rcutoff2))
828             {
829
830             /* Compute parameters for interactions between i and j atoms */
831             qq20             = _mm_mul_pd(iq2,jq0);
832
833             /* REACTION-FIELD ELECTROSTATICS */
834             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
835
836             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
837
838             fscal            = felec;
839
840             fscal            = _mm_and_pd(fscal,cutoff_mask);
841
842             /* Calculate temporary vectorial force */
843             tx               = _mm_mul_pd(fscal,dx20);
844             ty               = _mm_mul_pd(fscal,dy20);
845             tz               = _mm_mul_pd(fscal,dz20);
846
847             /* Update vectorial force */
848             fix2             = _mm_add_pd(fix2,tx);
849             fiy2             = _mm_add_pd(fiy2,ty);
850             fiz2             = _mm_add_pd(fiz2,tz);
851
852             fjx0             = _mm_add_pd(fjx0,tx);
853             fjy0             = _mm_add_pd(fjy0,ty);
854             fjz0             = _mm_add_pd(fjz0,tz);
855
856             }
857
858             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
859
860             /* Inner loop uses 100 flops */
861         }
862
863         if(jidx<j_index_end)
864         {
865
866             jnrA             = jjnr[jidx];
867             j_coord_offsetA  = DIM*jnrA;
868
869             /* load j atom coordinates */
870             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
871                                               &jx0,&jy0,&jz0);
872
873             /* Calculate displacement vector */
874             dx00             = _mm_sub_pd(ix0,jx0);
875             dy00             = _mm_sub_pd(iy0,jy0);
876             dz00             = _mm_sub_pd(iz0,jz0);
877             dx10             = _mm_sub_pd(ix1,jx0);
878             dy10             = _mm_sub_pd(iy1,jy0);
879             dz10             = _mm_sub_pd(iz1,jz0);
880             dx20             = _mm_sub_pd(ix2,jx0);
881             dy20             = _mm_sub_pd(iy2,jy0);
882             dz20             = _mm_sub_pd(iz2,jz0);
883
884             /* Calculate squared distance and things based on it */
885             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
886             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
887             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
888
889             rinv00           = gmx_mm_invsqrt_pd(rsq00);
890             rinv10           = gmx_mm_invsqrt_pd(rsq10);
891             rinv20           = gmx_mm_invsqrt_pd(rsq20);
892
893             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
894             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
895             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
896
897             /* Load parameters for j particles */
898             jq0              = _mm_load_sd(charge+jnrA+0);
899             vdwjidx0A        = 2*vdwtype[jnrA+0];
900
901             fjx0             = _mm_setzero_pd();
902             fjy0             = _mm_setzero_pd();
903             fjz0             = _mm_setzero_pd();
904
905             /**************************
906              * CALCULATE INTERACTIONS *
907              **************************/
908
909             if (gmx_mm_any_lt(rsq00,rcutoff2))
910             {
911
912             /* Compute parameters for interactions between i and j atoms */
913             qq00             = _mm_mul_pd(iq0,jq0);
914             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
915
916             /* REACTION-FIELD ELECTROSTATICS */
917             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
918
919             /* LENNARD-JONES DISPERSION/REPULSION */
920
921             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
922             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
923
924             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
925
926             fscal            = _mm_add_pd(felec,fvdw);
927
928             fscal            = _mm_and_pd(fscal,cutoff_mask);
929
930             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
931
932             /* Calculate temporary vectorial force */
933             tx               = _mm_mul_pd(fscal,dx00);
934             ty               = _mm_mul_pd(fscal,dy00);
935             tz               = _mm_mul_pd(fscal,dz00);
936
937             /* Update vectorial force */
938             fix0             = _mm_add_pd(fix0,tx);
939             fiy0             = _mm_add_pd(fiy0,ty);
940             fiz0             = _mm_add_pd(fiz0,tz);
941
942             fjx0             = _mm_add_pd(fjx0,tx);
943             fjy0             = _mm_add_pd(fjy0,ty);
944             fjz0             = _mm_add_pd(fjz0,tz);
945
946             }
947
948             /**************************
949              * CALCULATE INTERACTIONS *
950              **************************/
951
952             if (gmx_mm_any_lt(rsq10,rcutoff2))
953             {
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq10             = _mm_mul_pd(iq1,jq0);
957
958             /* REACTION-FIELD ELECTROSTATICS */
959             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
960
961             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
962
963             fscal            = felec;
964
965             fscal            = _mm_and_pd(fscal,cutoff_mask);
966
967             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
968
969             /* Calculate temporary vectorial force */
970             tx               = _mm_mul_pd(fscal,dx10);
971             ty               = _mm_mul_pd(fscal,dy10);
972             tz               = _mm_mul_pd(fscal,dz10);
973
974             /* Update vectorial force */
975             fix1             = _mm_add_pd(fix1,tx);
976             fiy1             = _mm_add_pd(fiy1,ty);
977             fiz1             = _mm_add_pd(fiz1,tz);
978
979             fjx0             = _mm_add_pd(fjx0,tx);
980             fjy0             = _mm_add_pd(fjy0,ty);
981             fjz0             = _mm_add_pd(fjz0,tz);
982
983             }
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             if (gmx_mm_any_lt(rsq20,rcutoff2))
990             {
991
992             /* Compute parameters for interactions between i and j atoms */
993             qq20             = _mm_mul_pd(iq2,jq0);
994
995             /* REACTION-FIELD ELECTROSTATICS */
996             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
997
998             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
999
1000             fscal            = felec;
1001
1002             fscal            = _mm_and_pd(fscal,cutoff_mask);
1003
1004             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1005
1006             /* Calculate temporary vectorial force */
1007             tx               = _mm_mul_pd(fscal,dx20);
1008             ty               = _mm_mul_pd(fscal,dy20);
1009             tz               = _mm_mul_pd(fscal,dz20);
1010
1011             /* Update vectorial force */
1012             fix2             = _mm_add_pd(fix2,tx);
1013             fiy2             = _mm_add_pd(fiy2,ty);
1014             fiz2             = _mm_add_pd(fiz2,tz);
1015
1016             fjx0             = _mm_add_pd(fjx0,tx);
1017             fjy0             = _mm_add_pd(fjy0,ty);
1018             fjz0             = _mm_add_pd(fjz0,tz);
1019
1020             }
1021
1022             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1023
1024             /* Inner loop uses 100 flops */
1025         }
1026
1027         /* End of innermost loop */
1028
1029         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1030                                               f+i_coord_offset,fshift+i_shift_offset);
1031
1032         /* Increment number of inner iterations */
1033         inneriter                  += j_index_end - j_index_start;
1034
1035         /* Outer loop uses 18 flops */
1036     }
1037
1038     /* Increment number of outer iterations */
1039     outeriter        += nri;
1040
1041     /* Update outer/inner flops */
1042
1043     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*100);
1044 }