Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse2_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwioffset1;
69     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
70     int              vdwioffset2;
71     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
76     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
84     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
85     __m128d          dummy_mask,cutoff_mask;
86     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
87     __m128d          one     = _mm_set1_pd(1.0);
88     __m128d          two     = _mm_set1_pd(2.0);
89     x                = xx[0];
90     f                = ff[0];
91
92     nri              = nlist->nri;
93     iinr             = nlist->iinr;
94     jindex           = nlist->jindex;
95     jjnr             = nlist->jjnr;
96     shiftidx         = nlist->shift;
97     gid              = nlist->gid;
98     shiftvec         = fr->shift_vec[0];
99     fshift           = fr->fshift[0];
100     facel            = _mm_set1_pd(fr->epsfac);
101     charge           = mdatoms->chargeA;
102     krf              = _mm_set1_pd(fr->ic->k_rf);
103     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
104     crf              = _mm_set1_pd(fr->ic->c_rf);
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     /* Setup water-specific parameters */
110     inr              = nlist->iinr[0];
111     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
112     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
113     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
114     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
115
116     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
117     rcutoff_scalar   = fr->rcoulomb;
118     rcutoff          = _mm_set1_pd(rcutoff_scalar);
119     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
120
121     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
122     rvdw             = _mm_set1_pd(fr->rvdw);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
148                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
149
150         fix0             = _mm_setzero_pd();
151         fiy0             = _mm_setzero_pd();
152         fiz0             = _mm_setzero_pd();
153         fix1             = _mm_setzero_pd();
154         fiy1             = _mm_setzero_pd();
155         fiz1             = _mm_setzero_pd();
156         fix2             = _mm_setzero_pd();
157         fiy2             = _mm_setzero_pd();
158         fiz2             = _mm_setzero_pd();
159
160         /* Reset potential sums */
161         velecsum         = _mm_setzero_pd();
162         vvdwsum          = _mm_setzero_pd();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173             
174             /* load j atom coordinates */
175             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
176                                               &jx0,&jy0,&jz0);
177             
178             /* Calculate displacement vector */
179             dx00             = _mm_sub_pd(ix0,jx0);
180             dy00             = _mm_sub_pd(iy0,jy0);
181             dz00             = _mm_sub_pd(iz0,jz0);
182             dx10             = _mm_sub_pd(ix1,jx0);
183             dy10             = _mm_sub_pd(iy1,jy0);
184             dz10             = _mm_sub_pd(iz1,jz0);
185             dx20             = _mm_sub_pd(ix2,jx0);
186             dy20             = _mm_sub_pd(iy2,jy0);
187             dz20             = _mm_sub_pd(iz2,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
191             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
192             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
193
194             rinv00           = gmx_mm_invsqrt_pd(rsq00);
195             rinv10           = gmx_mm_invsqrt_pd(rsq10);
196             rinv20           = gmx_mm_invsqrt_pd(rsq20);
197
198             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
199             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
200             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
201
202             /* Load parameters for j particles */
203             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
204             vdwjidx0A        = 2*vdwtype[jnrA+0];
205             vdwjidx0B        = 2*vdwtype[jnrB+0];
206
207             fjx0             = _mm_setzero_pd();
208             fjy0             = _mm_setzero_pd();
209             fjz0             = _mm_setzero_pd();
210
211             /**************************
212              * CALCULATE INTERACTIONS *
213              **************************/
214
215             if (gmx_mm_any_lt(rsq00,rcutoff2))
216             {
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm_mul_pd(iq0,jq0);
220             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
222
223             /* REACTION-FIELD ELECTROSTATICS */
224             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
225             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
226
227             /* LENNARD-JONES DISPERSION/REPULSION */
228
229             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
230             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
231             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
232             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
233                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
234             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
235
236             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
237
238             /* Update potential sum for this i atom from the interaction with this j atom. */
239             velec            = _mm_and_pd(velec,cutoff_mask);
240             velecsum         = _mm_add_pd(velecsum,velec);
241             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
242             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
243
244             fscal            = _mm_add_pd(felec,fvdw);
245
246             fscal            = _mm_and_pd(fscal,cutoff_mask);
247
248             /* Calculate temporary vectorial force */
249             tx               = _mm_mul_pd(fscal,dx00);
250             ty               = _mm_mul_pd(fscal,dy00);
251             tz               = _mm_mul_pd(fscal,dz00);
252
253             /* Update vectorial force */
254             fix0             = _mm_add_pd(fix0,tx);
255             fiy0             = _mm_add_pd(fiy0,ty);
256             fiz0             = _mm_add_pd(fiz0,tz);
257
258             fjx0             = _mm_add_pd(fjx0,tx);
259             fjy0             = _mm_add_pd(fjy0,ty);
260             fjz0             = _mm_add_pd(fjz0,tz);
261
262             }
263
264             /**************************
265              * CALCULATE INTERACTIONS *
266              **************************/
267
268             if (gmx_mm_any_lt(rsq10,rcutoff2))
269             {
270
271             /* Compute parameters for interactions between i and j atoms */
272             qq10             = _mm_mul_pd(iq1,jq0);
273
274             /* REACTION-FIELD ELECTROSTATICS */
275             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
276             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
277
278             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velec            = _mm_and_pd(velec,cutoff_mask);
282             velecsum         = _mm_add_pd(velecsum,velec);
283
284             fscal            = felec;
285
286             fscal            = _mm_and_pd(fscal,cutoff_mask);
287
288             /* Calculate temporary vectorial force */
289             tx               = _mm_mul_pd(fscal,dx10);
290             ty               = _mm_mul_pd(fscal,dy10);
291             tz               = _mm_mul_pd(fscal,dz10);
292
293             /* Update vectorial force */
294             fix1             = _mm_add_pd(fix1,tx);
295             fiy1             = _mm_add_pd(fiy1,ty);
296             fiz1             = _mm_add_pd(fiz1,tz);
297
298             fjx0             = _mm_add_pd(fjx0,tx);
299             fjy0             = _mm_add_pd(fjy0,ty);
300             fjz0             = _mm_add_pd(fjz0,tz);
301
302             }
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             if (gmx_mm_any_lt(rsq20,rcutoff2))
309             {
310
311             /* Compute parameters for interactions between i and j atoms */
312             qq20             = _mm_mul_pd(iq2,jq0);
313
314             /* REACTION-FIELD ELECTROSTATICS */
315             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
316             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
317
318             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             velec            = _mm_and_pd(velec,cutoff_mask);
322             velecsum         = _mm_add_pd(velecsum,velec);
323
324             fscal            = felec;
325
326             fscal            = _mm_and_pd(fscal,cutoff_mask);
327
328             /* Calculate temporary vectorial force */
329             tx               = _mm_mul_pd(fscal,dx20);
330             ty               = _mm_mul_pd(fscal,dy20);
331             tz               = _mm_mul_pd(fscal,dz20);
332
333             /* Update vectorial force */
334             fix2             = _mm_add_pd(fix2,tx);
335             fiy2             = _mm_add_pd(fiy2,ty);
336             fiz2             = _mm_add_pd(fiz2,tz);
337
338             fjx0             = _mm_add_pd(fjx0,tx);
339             fjy0             = _mm_add_pd(fjy0,ty);
340             fjz0             = _mm_add_pd(fjz0,tz);
341
342             }
343
344             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
345
346             /* Inner loop uses 129 flops */
347         }
348
349         if(jidx<j_index_end)
350         {
351
352             jnrA             = jjnr[jidx];
353             j_coord_offsetA  = DIM*jnrA;
354
355             /* load j atom coordinates */
356             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
357                                               &jx0,&jy0,&jz0);
358             
359             /* Calculate displacement vector */
360             dx00             = _mm_sub_pd(ix0,jx0);
361             dy00             = _mm_sub_pd(iy0,jy0);
362             dz00             = _mm_sub_pd(iz0,jz0);
363             dx10             = _mm_sub_pd(ix1,jx0);
364             dy10             = _mm_sub_pd(iy1,jy0);
365             dz10             = _mm_sub_pd(iz1,jz0);
366             dx20             = _mm_sub_pd(ix2,jx0);
367             dy20             = _mm_sub_pd(iy2,jy0);
368             dz20             = _mm_sub_pd(iz2,jz0);
369
370             /* Calculate squared distance and things based on it */
371             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
372             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
373             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
374
375             rinv00           = gmx_mm_invsqrt_pd(rsq00);
376             rinv10           = gmx_mm_invsqrt_pd(rsq10);
377             rinv20           = gmx_mm_invsqrt_pd(rsq20);
378
379             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
380             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
381             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
382
383             /* Load parameters for j particles */
384             jq0              = _mm_load_sd(charge+jnrA+0);
385             vdwjidx0A        = 2*vdwtype[jnrA+0];
386
387             fjx0             = _mm_setzero_pd();
388             fjy0             = _mm_setzero_pd();
389             fjz0             = _mm_setzero_pd();
390
391             /**************************
392              * CALCULATE INTERACTIONS *
393              **************************/
394
395             if (gmx_mm_any_lt(rsq00,rcutoff2))
396             {
397
398             /* Compute parameters for interactions between i and j atoms */
399             qq00             = _mm_mul_pd(iq0,jq0);
400             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
401
402             /* REACTION-FIELD ELECTROSTATICS */
403             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
404             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
405
406             /* LENNARD-JONES DISPERSION/REPULSION */
407
408             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
409             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
410             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
411             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
412                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
413             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
414
415             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
416
417             /* Update potential sum for this i atom from the interaction with this j atom. */
418             velec            = _mm_and_pd(velec,cutoff_mask);
419             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
420             velecsum         = _mm_add_pd(velecsum,velec);
421             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
422             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
423             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
424
425             fscal            = _mm_add_pd(felec,fvdw);
426
427             fscal            = _mm_and_pd(fscal,cutoff_mask);
428
429             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
430
431             /* Calculate temporary vectorial force */
432             tx               = _mm_mul_pd(fscal,dx00);
433             ty               = _mm_mul_pd(fscal,dy00);
434             tz               = _mm_mul_pd(fscal,dz00);
435
436             /* Update vectorial force */
437             fix0             = _mm_add_pd(fix0,tx);
438             fiy0             = _mm_add_pd(fiy0,ty);
439             fiz0             = _mm_add_pd(fiz0,tz);
440
441             fjx0             = _mm_add_pd(fjx0,tx);
442             fjy0             = _mm_add_pd(fjy0,ty);
443             fjz0             = _mm_add_pd(fjz0,tz);
444
445             }
446
447             /**************************
448              * CALCULATE INTERACTIONS *
449              **************************/
450
451             if (gmx_mm_any_lt(rsq10,rcutoff2))
452             {
453
454             /* Compute parameters for interactions between i and j atoms */
455             qq10             = _mm_mul_pd(iq1,jq0);
456
457             /* REACTION-FIELD ELECTROSTATICS */
458             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
459             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
460
461             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
462
463             /* Update potential sum for this i atom from the interaction with this j atom. */
464             velec            = _mm_and_pd(velec,cutoff_mask);
465             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
466             velecsum         = _mm_add_pd(velecsum,velec);
467
468             fscal            = felec;
469
470             fscal            = _mm_and_pd(fscal,cutoff_mask);
471
472             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
473
474             /* Calculate temporary vectorial force */
475             tx               = _mm_mul_pd(fscal,dx10);
476             ty               = _mm_mul_pd(fscal,dy10);
477             tz               = _mm_mul_pd(fscal,dz10);
478
479             /* Update vectorial force */
480             fix1             = _mm_add_pd(fix1,tx);
481             fiy1             = _mm_add_pd(fiy1,ty);
482             fiz1             = _mm_add_pd(fiz1,tz);
483
484             fjx0             = _mm_add_pd(fjx0,tx);
485             fjy0             = _mm_add_pd(fjy0,ty);
486             fjz0             = _mm_add_pd(fjz0,tz);
487
488             }
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             if (gmx_mm_any_lt(rsq20,rcutoff2))
495             {
496
497             /* Compute parameters for interactions between i and j atoms */
498             qq20             = _mm_mul_pd(iq2,jq0);
499
500             /* REACTION-FIELD ELECTROSTATICS */
501             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
502             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
503
504             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
505
506             /* Update potential sum for this i atom from the interaction with this j atom. */
507             velec            = _mm_and_pd(velec,cutoff_mask);
508             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
509             velecsum         = _mm_add_pd(velecsum,velec);
510
511             fscal            = felec;
512
513             fscal            = _mm_and_pd(fscal,cutoff_mask);
514
515             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
516
517             /* Calculate temporary vectorial force */
518             tx               = _mm_mul_pd(fscal,dx20);
519             ty               = _mm_mul_pd(fscal,dy20);
520             tz               = _mm_mul_pd(fscal,dz20);
521
522             /* Update vectorial force */
523             fix2             = _mm_add_pd(fix2,tx);
524             fiy2             = _mm_add_pd(fiy2,ty);
525             fiz2             = _mm_add_pd(fiz2,tz);
526
527             fjx0             = _mm_add_pd(fjx0,tx);
528             fjy0             = _mm_add_pd(fjy0,ty);
529             fjz0             = _mm_add_pd(fjz0,tz);
530
531             }
532
533             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
534
535             /* Inner loop uses 129 flops */
536         }
537
538         /* End of innermost loop */
539
540         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
541                                               f+i_coord_offset,fshift+i_shift_offset);
542
543         ggid                        = gid[iidx];
544         /* Update potential energies */
545         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
546         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
547
548         /* Increment number of inner iterations */
549         inneriter                  += j_index_end - j_index_start;
550
551         /* Outer loop uses 20 flops */
552     }
553
554     /* Increment number of outer iterations */
555     outeriter        += nri;
556
557     /* Update outer/inner flops */
558
559     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*129);
560 }
561 /*
562  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse2_double
563  * Electrostatics interaction: ReactionField
564  * VdW interaction:            LennardJones
565  * Geometry:                   Water3-Particle
566  * Calculate force/pot:        Force
567  */
568 void
569 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_sse2_double
570                     (t_nblist * gmx_restrict                nlist,
571                      rvec * gmx_restrict                    xx,
572                      rvec * gmx_restrict                    ff,
573                      t_forcerec * gmx_restrict              fr,
574                      t_mdatoms * gmx_restrict               mdatoms,
575                      nb_kernel_data_t * gmx_restrict        kernel_data,
576                      t_nrnb * gmx_restrict                  nrnb)
577 {
578     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
579      * just 0 for non-waters.
580      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
581      * jnr indices corresponding to data put in the four positions in the SIMD register.
582      */
583     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
584     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
585     int              jnrA,jnrB;
586     int              j_coord_offsetA,j_coord_offsetB;
587     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
588     real             rcutoff_scalar;
589     real             *shiftvec,*fshift,*x,*f;
590     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
591     int              vdwioffset0;
592     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
593     int              vdwioffset1;
594     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
595     int              vdwioffset2;
596     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
597     int              vdwjidx0A,vdwjidx0B;
598     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
599     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
600     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
601     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
602     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
603     real             *charge;
604     int              nvdwtype;
605     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
606     int              *vdwtype;
607     real             *vdwparam;
608     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
609     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
610     __m128d          dummy_mask,cutoff_mask;
611     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
612     __m128d          one     = _mm_set1_pd(1.0);
613     __m128d          two     = _mm_set1_pd(2.0);
614     x                = xx[0];
615     f                = ff[0];
616
617     nri              = nlist->nri;
618     iinr             = nlist->iinr;
619     jindex           = nlist->jindex;
620     jjnr             = nlist->jjnr;
621     shiftidx         = nlist->shift;
622     gid              = nlist->gid;
623     shiftvec         = fr->shift_vec[0];
624     fshift           = fr->fshift[0];
625     facel            = _mm_set1_pd(fr->epsfac);
626     charge           = mdatoms->chargeA;
627     krf              = _mm_set1_pd(fr->ic->k_rf);
628     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
629     crf              = _mm_set1_pd(fr->ic->c_rf);
630     nvdwtype         = fr->ntype;
631     vdwparam         = fr->nbfp;
632     vdwtype          = mdatoms->typeA;
633
634     /* Setup water-specific parameters */
635     inr              = nlist->iinr[0];
636     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
637     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
638     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
639     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
640
641     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
642     rcutoff_scalar   = fr->rcoulomb;
643     rcutoff          = _mm_set1_pd(rcutoff_scalar);
644     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
645
646     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
647     rvdw             = _mm_set1_pd(fr->rvdw);
648
649     /* Avoid stupid compiler warnings */
650     jnrA = jnrB = 0;
651     j_coord_offsetA = 0;
652     j_coord_offsetB = 0;
653
654     outeriter        = 0;
655     inneriter        = 0;
656
657     /* Start outer loop over neighborlists */
658     for(iidx=0; iidx<nri; iidx++)
659     {
660         /* Load shift vector for this list */
661         i_shift_offset   = DIM*shiftidx[iidx];
662
663         /* Load limits for loop over neighbors */
664         j_index_start    = jindex[iidx];
665         j_index_end      = jindex[iidx+1];
666
667         /* Get outer coordinate index */
668         inr              = iinr[iidx];
669         i_coord_offset   = DIM*inr;
670
671         /* Load i particle coords and add shift vector */
672         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
673                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
674
675         fix0             = _mm_setzero_pd();
676         fiy0             = _mm_setzero_pd();
677         fiz0             = _mm_setzero_pd();
678         fix1             = _mm_setzero_pd();
679         fiy1             = _mm_setzero_pd();
680         fiz1             = _mm_setzero_pd();
681         fix2             = _mm_setzero_pd();
682         fiy2             = _mm_setzero_pd();
683         fiz2             = _mm_setzero_pd();
684
685         /* Start inner kernel loop */
686         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
687         {
688
689             /* Get j neighbor index, and coordinate index */
690             jnrA             = jjnr[jidx];
691             jnrB             = jjnr[jidx+1];
692             j_coord_offsetA  = DIM*jnrA;
693             j_coord_offsetB  = DIM*jnrB;
694             
695             /* load j atom coordinates */
696             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
697                                               &jx0,&jy0,&jz0);
698             
699             /* Calculate displacement vector */
700             dx00             = _mm_sub_pd(ix0,jx0);
701             dy00             = _mm_sub_pd(iy0,jy0);
702             dz00             = _mm_sub_pd(iz0,jz0);
703             dx10             = _mm_sub_pd(ix1,jx0);
704             dy10             = _mm_sub_pd(iy1,jy0);
705             dz10             = _mm_sub_pd(iz1,jz0);
706             dx20             = _mm_sub_pd(ix2,jx0);
707             dy20             = _mm_sub_pd(iy2,jy0);
708             dz20             = _mm_sub_pd(iz2,jz0);
709
710             /* Calculate squared distance and things based on it */
711             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
712             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
713             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
714
715             rinv00           = gmx_mm_invsqrt_pd(rsq00);
716             rinv10           = gmx_mm_invsqrt_pd(rsq10);
717             rinv20           = gmx_mm_invsqrt_pd(rsq20);
718
719             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
720             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
721             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
722
723             /* Load parameters for j particles */
724             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
725             vdwjidx0A        = 2*vdwtype[jnrA+0];
726             vdwjidx0B        = 2*vdwtype[jnrB+0];
727
728             fjx0             = _mm_setzero_pd();
729             fjy0             = _mm_setzero_pd();
730             fjz0             = _mm_setzero_pd();
731
732             /**************************
733              * CALCULATE INTERACTIONS *
734              **************************/
735
736             if (gmx_mm_any_lt(rsq00,rcutoff2))
737             {
738
739             /* Compute parameters for interactions between i and j atoms */
740             qq00             = _mm_mul_pd(iq0,jq0);
741             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
742                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
743
744             /* REACTION-FIELD ELECTROSTATICS */
745             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
746
747             /* LENNARD-JONES DISPERSION/REPULSION */
748
749             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
750             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
751
752             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
753
754             fscal            = _mm_add_pd(felec,fvdw);
755
756             fscal            = _mm_and_pd(fscal,cutoff_mask);
757
758             /* Calculate temporary vectorial force */
759             tx               = _mm_mul_pd(fscal,dx00);
760             ty               = _mm_mul_pd(fscal,dy00);
761             tz               = _mm_mul_pd(fscal,dz00);
762
763             /* Update vectorial force */
764             fix0             = _mm_add_pd(fix0,tx);
765             fiy0             = _mm_add_pd(fiy0,ty);
766             fiz0             = _mm_add_pd(fiz0,tz);
767
768             fjx0             = _mm_add_pd(fjx0,tx);
769             fjy0             = _mm_add_pd(fjy0,ty);
770             fjz0             = _mm_add_pd(fjz0,tz);
771
772             }
773
774             /**************************
775              * CALCULATE INTERACTIONS *
776              **************************/
777
778             if (gmx_mm_any_lt(rsq10,rcutoff2))
779             {
780
781             /* Compute parameters for interactions between i and j atoms */
782             qq10             = _mm_mul_pd(iq1,jq0);
783
784             /* REACTION-FIELD ELECTROSTATICS */
785             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
786
787             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
788
789             fscal            = felec;
790
791             fscal            = _mm_and_pd(fscal,cutoff_mask);
792
793             /* Calculate temporary vectorial force */
794             tx               = _mm_mul_pd(fscal,dx10);
795             ty               = _mm_mul_pd(fscal,dy10);
796             tz               = _mm_mul_pd(fscal,dz10);
797
798             /* Update vectorial force */
799             fix1             = _mm_add_pd(fix1,tx);
800             fiy1             = _mm_add_pd(fiy1,ty);
801             fiz1             = _mm_add_pd(fiz1,tz);
802
803             fjx0             = _mm_add_pd(fjx0,tx);
804             fjy0             = _mm_add_pd(fjy0,ty);
805             fjz0             = _mm_add_pd(fjz0,tz);
806
807             }
808
809             /**************************
810              * CALCULATE INTERACTIONS *
811              **************************/
812
813             if (gmx_mm_any_lt(rsq20,rcutoff2))
814             {
815
816             /* Compute parameters for interactions between i and j atoms */
817             qq20             = _mm_mul_pd(iq2,jq0);
818
819             /* REACTION-FIELD ELECTROSTATICS */
820             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
821
822             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
823
824             fscal            = felec;
825
826             fscal            = _mm_and_pd(fscal,cutoff_mask);
827
828             /* Calculate temporary vectorial force */
829             tx               = _mm_mul_pd(fscal,dx20);
830             ty               = _mm_mul_pd(fscal,dy20);
831             tz               = _mm_mul_pd(fscal,dz20);
832
833             /* Update vectorial force */
834             fix2             = _mm_add_pd(fix2,tx);
835             fiy2             = _mm_add_pd(fiy2,ty);
836             fiz2             = _mm_add_pd(fiz2,tz);
837
838             fjx0             = _mm_add_pd(fjx0,tx);
839             fjy0             = _mm_add_pd(fjy0,ty);
840             fjz0             = _mm_add_pd(fjz0,tz);
841
842             }
843
844             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
845
846             /* Inner loop uses 100 flops */
847         }
848
849         if(jidx<j_index_end)
850         {
851
852             jnrA             = jjnr[jidx];
853             j_coord_offsetA  = DIM*jnrA;
854
855             /* load j atom coordinates */
856             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
857                                               &jx0,&jy0,&jz0);
858             
859             /* Calculate displacement vector */
860             dx00             = _mm_sub_pd(ix0,jx0);
861             dy00             = _mm_sub_pd(iy0,jy0);
862             dz00             = _mm_sub_pd(iz0,jz0);
863             dx10             = _mm_sub_pd(ix1,jx0);
864             dy10             = _mm_sub_pd(iy1,jy0);
865             dz10             = _mm_sub_pd(iz1,jz0);
866             dx20             = _mm_sub_pd(ix2,jx0);
867             dy20             = _mm_sub_pd(iy2,jy0);
868             dz20             = _mm_sub_pd(iz2,jz0);
869
870             /* Calculate squared distance and things based on it */
871             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
872             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
873             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
874
875             rinv00           = gmx_mm_invsqrt_pd(rsq00);
876             rinv10           = gmx_mm_invsqrt_pd(rsq10);
877             rinv20           = gmx_mm_invsqrt_pd(rsq20);
878
879             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
880             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
881             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
882
883             /* Load parameters for j particles */
884             jq0              = _mm_load_sd(charge+jnrA+0);
885             vdwjidx0A        = 2*vdwtype[jnrA+0];
886
887             fjx0             = _mm_setzero_pd();
888             fjy0             = _mm_setzero_pd();
889             fjz0             = _mm_setzero_pd();
890
891             /**************************
892              * CALCULATE INTERACTIONS *
893              **************************/
894
895             if (gmx_mm_any_lt(rsq00,rcutoff2))
896             {
897
898             /* Compute parameters for interactions between i and j atoms */
899             qq00             = _mm_mul_pd(iq0,jq0);
900             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
901
902             /* REACTION-FIELD ELECTROSTATICS */
903             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
904
905             /* LENNARD-JONES DISPERSION/REPULSION */
906
907             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
908             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
909
910             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
911
912             fscal            = _mm_add_pd(felec,fvdw);
913
914             fscal            = _mm_and_pd(fscal,cutoff_mask);
915
916             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
917
918             /* Calculate temporary vectorial force */
919             tx               = _mm_mul_pd(fscal,dx00);
920             ty               = _mm_mul_pd(fscal,dy00);
921             tz               = _mm_mul_pd(fscal,dz00);
922
923             /* Update vectorial force */
924             fix0             = _mm_add_pd(fix0,tx);
925             fiy0             = _mm_add_pd(fiy0,ty);
926             fiz0             = _mm_add_pd(fiz0,tz);
927
928             fjx0             = _mm_add_pd(fjx0,tx);
929             fjy0             = _mm_add_pd(fjy0,ty);
930             fjz0             = _mm_add_pd(fjz0,tz);
931
932             }
933
934             /**************************
935              * CALCULATE INTERACTIONS *
936              **************************/
937
938             if (gmx_mm_any_lt(rsq10,rcutoff2))
939             {
940
941             /* Compute parameters for interactions between i and j atoms */
942             qq10             = _mm_mul_pd(iq1,jq0);
943
944             /* REACTION-FIELD ELECTROSTATICS */
945             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
946
947             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
948
949             fscal            = felec;
950
951             fscal            = _mm_and_pd(fscal,cutoff_mask);
952
953             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
954
955             /* Calculate temporary vectorial force */
956             tx               = _mm_mul_pd(fscal,dx10);
957             ty               = _mm_mul_pd(fscal,dy10);
958             tz               = _mm_mul_pd(fscal,dz10);
959
960             /* Update vectorial force */
961             fix1             = _mm_add_pd(fix1,tx);
962             fiy1             = _mm_add_pd(fiy1,ty);
963             fiz1             = _mm_add_pd(fiz1,tz);
964
965             fjx0             = _mm_add_pd(fjx0,tx);
966             fjy0             = _mm_add_pd(fjy0,ty);
967             fjz0             = _mm_add_pd(fjz0,tz);
968
969             }
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             if (gmx_mm_any_lt(rsq20,rcutoff2))
976             {
977
978             /* Compute parameters for interactions between i and j atoms */
979             qq20             = _mm_mul_pd(iq2,jq0);
980
981             /* REACTION-FIELD ELECTROSTATICS */
982             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
983
984             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
985
986             fscal            = felec;
987
988             fscal            = _mm_and_pd(fscal,cutoff_mask);
989
990             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
991
992             /* Calculate temporary vectorial force */
993             tx               = _mm_mul_pd(fscal,dx20);
994             ty               = _mm_mul_pd(fscal,dy20);
995             tz               = _mm_mul_pd(fscal,dz20);
996
997             /* Update vectorial force */
998             fix2             = _mm_add_pd(fix2,tx);
999             fiy2             = _mm_add_pd(fiy2,ty);
1000             fiz2             = _mm_add_pd(fiz2,tz);
1001
1002             fjx0             = _mm_add_pd(fjx0,tx);
1003             fjy0             = _mm_add_pd(fjy0,ty);
1004             fjz0             = _mm_add_pd(fjz0,tz);
1005
1006             }
1007
1008             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1009
1010             /* Inner loop uses 100 flops */
1011         }
1012
1013         /* End of innermost loop */
1014
1015         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1016                                               f+i_coord_offset,fshift+i_shift_offset);
1017
1018         /* Increment number of inner iterations */
1019         inneriter                  += j_index_end - j_index_start;
1020
1021         /* Outer loop uses 18 flops */
1022     }
1023
1024     /* Increment number of outer iterations */
1025     outeriter        += nri;
1026
1027     /* Update outer/inner flops */
1028
1029     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*100);
1030 }