Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse2_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->ic->epsfac);
108     charge           = mdatoms->chargeA;
109     krf              = _mm_set1_pd(fr->ic->k_rf);
110     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
111     crf              = _mm_set1_pd(fr->ic->c_rf);
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
117     rcutoff_scalar   = fr->ic->rcoulomb;
118     rcutoff          = _mm_set1_pd(rcutoff_scalar);
119     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
120
121     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
122     rvdw             = _mm_set1_pd(fr->ic->rvdw);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
148
149         fix0             = _mm_setzero_pd();
150         fiy0             = _mm_setzero_pd();
151         fiz0             = _mm_setzero_pd();
152
153         /* Load parameters for i particles */
154         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
155         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
156
157         /* Reset potential sums */
158         velecsum         = _mm_setzero_pd();
159         vvdwsum          = _mm_setzero_pd();
160
161         /* Start inner kernel loop */
162         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
163         {
164
165             /* Get j neighbor index, and coordinate index */
166             jnrA             = jjnr[jidx];
167             jnrB             = jjnr[jidx+1];
168             j_coord_offsetA  = DIM*jnrA;
169             j_coord_offsetB  = DIM*jnrB;
170
171             /* load j atom coordinates */
172             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
173                                               &jx0,&jy0,&jz0);
174
175             /* Calculate displacement vector */
176             dx00             = _mm_sub_pd(ix0,jx0);
177             dy00             = _mm_sub_pd(iy0,jy0);
178             dz00             = _mm_sub_pd(iz0,jz0);
179
180             /* Calculate squared distance and things based on it */
181             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
182
183             rinv00           = sse2_invsqrt_d(rsq00);
184
185             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
186
187             /* Load parameters for j particles */
188             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
189             vdwjidx0A        = 2*vdwtype[jnrA+0];
190             vdwjidx0B        = 2*vdwtype[jnrB+0];
191
192             /**************************
193              * CALCULATE INTERACTIONS *
194              **************************/
195
196             if (gmx_mm_any_lt(rsq00,rcutoff2))
197             {
198
199             /* Compute parameters for interactions between i and j atoms */
200             qq00             = _mm_mul_pd(iq0,jq0);
201             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
202                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
203
204             /* REACTION-FIELD ELECTROSTATICS */
205             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
206             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
207
208             /* LENNARD-JONES DISPERSION/REPULSION */
209
210             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
211             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
212             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
213             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
214                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
215             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
216
217             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
218
219             /* Update potential sum for this i atom from the interaction with this j atom. */
220             velec            = _mm_and_pd(velec,cutoff_mask);
221             velecsum         = _mm_add_pd(velecsum,velec);
222             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
223             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
224
225             fscal            = _mm_add_pd(felec,fvdw);
226
227             fscal            = _mm_and_pd(fscal,cutoff_mask);
228
229             /* Calculate temporary vectorial force */
230             tx               = _mm_mul_pd(fscal,dx00);
231             ty               = _mm_mul_pd(fscal,dy00);
232             tz               = _mm_mul_pd(fscal,dz00);
233
234             /* Update vectorial force */
235             fix0             = _mm_add_pd(fix0,tx);
236             fiy0             = _mm_add_pd(fiy0,ty);
237             fiz0             = _mm_add_pd(fiz0,tz);
238
239             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
240
241             }
242
243             /* Inner loop uses 54 flops */
244         }
245
246         if(jidx<j_index_end)
247         {
248
249             jnrA             = jjnr[jidx];
250             j_coord_offsetA  = DIM*jnrA;
251
252             /* load j atom coordinates */
253             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
254                                               &jx0,&jy0,&jz0);
255
256             /* Calculate displacement vector */
257             dx00             = _mm_sub_pd(ix0,jx0);
258             dy00             = _mm_sub_pd(iy0,jy0);
259             dz00             = _mm_sub_pd(iz0,jz0);
260
261             /* Calculate squared distance and things based on it */
262             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
263
264             rinv00           = sse2_invsqrt_d(rsq00);
265
266             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
267
268             /* Load parameters for j particles */
269             jq0              = _mm_load_sd(charge+jnrA+0);
270             vdwjidx0A        = 2*vdwtype[jnrA+0];
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             if (gmx_mm_any_lt(rsq00,rcutoff2))
277             {
278
279             /* Compute parameters for interactions between i and j atoms */
280             qq00             = _mm_mul_pd(iq0,jq0);
281             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
282
283             /* REACTION-FIELD ELECTROSTATICS */
284             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
285             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
286
287             /* LENNARD-JONES DISPERSION/REPULSION */
288
289             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
290             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
291             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
292             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
293                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
294             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
295
296             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             velec            = _mm_and_pd(velec,cutoff_mask);
300             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
301             velecsum         = _mm_add_pd(velecsum,velec);
302             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
303             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
304             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
305
306             fscal            = _mm_add_pd(felec,fvdw);
307
308             fscal            = _mm_and_pd(fscal,cutoff_mask);
309
310             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
311
312             /* Calculate temporary vectorial force */
313             tx               = _mm_mul_pd(fscal,dx00);
314             ty               = _mm_mul_pd(fscal,dy00);
315             tz               = _mm_mul_pd(fscal,dz00);
316
317             /* Update vectorial force */
318             fix0             = _mm_add_pd(fix0,tx);
319             fiy0             = _mm_add_pd(fiy0,ty);
320             fiz0             = _mm_add_pd(fiz0,tz);
321
322             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
323
324             }
325
326             /* Inner loop uses 54 flops */
327         }
328
329         /* End of innermost loop */
330
331         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
332                                               f+i_coord_offset,fshift+i_shift_offset);
333
334         ggid                        = gid[iidx];
335         /* Update potential energies */
336         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
337         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
338
339         /* Increment number of inner iterations */
340         inneriter                  += j_index_end - j_index_start;
341
342         /* Outer loop uses 9 flops */
343     }
344
345     /* Increment number of outer iterations */
346     outeriter        += nri;
347
348     /* Update outer/inner flops */
349
350     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
351 }
352 /*
353  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse2_double
354  * Electrostatics interaction: ReactionField
355  * VdW interaction:            LennardJones
356  * Geometry:                   Particle-Particle
357  * Calculate force/pot:        Force
358  */
359 void
360 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse2_double
361                     (t_nblist                    * gmx_restrict       nlist,
362                      rvec                        * gmx_restrict          xx,
363                      rvec                        * gmx_restrict          ff,
364                      struct t_forcerec           * gmx_restrict          fr,
365                      t_mdatoms                   * gmx_restrict     mdatoms,
366                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
367                      t_nrnb                      * gmx_restrict        nrnb)
368 {
369     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
370      * just 0 for non-waters.
371      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
372      * jnr indices corresponding to data put in the four positions in the SIMD register.
373      */
374     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
375     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
376     int              jnrA,jnrB;
377     int              j_coord_offsetA,j_coord_offsetB;
378     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
379     real             rcutoff_scalar;
380     real             *shiftvec,*fshift,*x,*f;
381     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
382     int              vdwioffset0;
383     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
384     int              vdwjidx0A,vdwjidx0B;
385     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
386     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
387     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
388     real             *charge;
389     int              nvdwtype;
390     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
391     int              *vdwtype;
392     real             *vdwparam;
393     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
394     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
395     __m128d          dummy_mask,cutoff_mask;
396     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
397     __m128d          one     = _mm_set1_pd(1.0);
398     __m128d          two     = _mm_set1_pd(2.0);
399     x                = xx[0];
400     f                = ff[0];
401
402     nri              = nlist->nri;
403     iinr             = nlist->iinr;
404     jindex           = nlist->jindex;
405     jjnr             = nlist->jjnr;
406     shiftidx         = nlist->shift;
407     gid              = nlist->gid;
408     shiftvec         = fr->shift_vec[0];
409     fshift           = fr->fshift[0];
410     facel            = _mm_set1_pd(fr->ic->epsfac);
411     charge           = mdatoms->chargeA;
412     krf              = _mm_set1_pd(fr->ic->k_rf);
413     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
414     crf              = _mm_set1_pd(fr->ic->c_rf);
415     nvdwtype         = fr->ntype;
416     vdwparam         = fr->nbfp;
417     vdwtype          = mdatoms->typeA;
418
419     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
420     rcutoff_scalar   = fr->ic->rcoulomb;
421     rcutoff          = _mm_set1_pd(rcutoff_scalar);
422     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
423
424     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
425     rvdw             = _mm_set1_pd(fr->ic->rvdw);
426
427     /* Avoid stupid compiler warnings */
428     jnrA = jnrB = 0;
429     j_coord_offsetA = 0;
430     j_coord_offsetB = 0;
431
432     outeriter        = 0;
433     inneriter        = 0;
434
435     /* Start outer loop over neighborlists */
436     for(iidx=0; iidx<nri; iidx++)
437     {
438         /* Load shift vector for this list */
439         i_shift_offset   = DIM*shiftidx[iidx];
440
441         /* Load limits for loop over neighbors */
442         j_index_start    = jindex[iidx];
443         j_index_end      = jindex[iidx+1];
444
445         /* Get outer coordinate index */
446         inr              = iinr[iidx];
447         i_coord_offset   = DIM*inr;
448
449         /* Load i particle coords and add shift vector */
450         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
451
452         fix0             = _mm_setzero_pd();
453         fiy0             = _mm_setzero_pd();
454         fiz0             = _mm_setzero_pd();
455
456         /* Load parameters for i particles */
457         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
458         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
459
460         /* Start inner kernel loop */
461         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
462         {
463
464             /* Get j neighbor index, and coordinate index */
465             jnrA             = jjnr[jidx];
466             jnrB             = jjnr[jidx+1];
467             j_coord_offsetA  = DIM*jnrA;
468             j_coord_offsetB  = DIM*jnrB;
469
470             /* load j atom coordinates */
471             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
472                                               &jx0,&jy0,&jz0);
473
474             /* Calculate displacement vector */
475             dx00             = _mm_sub_pd(ix0,jx0);
476             dy00             = _mm_sub_pd(iy0,jy0);
477             dz00             = _mm_sub_pd(iz0,jz0);
478
479             /* Calculate squared distance and things based on it */
480             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
481
482             rinv00           = sse2_invsqrt_d(rsq00);
483
484             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
485
486             /* Load parameters for j particles */
487             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
488             vdwjidx0A        = 2*vdwtype[jnrA+0];
489             vdwjidx0B        = 2*vdwtype[jnrB+0];
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             if (gmx_mm_any_lt(rsq00,rcutoff2))
496             {
497
498             /* Compute parameters for interactions between i and j atoms */
499             qq00             = _mm_mul_pd(iq0,jq0);
500             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
501                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
502
503             /* REACTION-FIELD ELECTROSTATICS */
504             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
505
506             /* LENNARD-JONES DISPERSION/REPULSION */
507
508             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
509             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
510
511             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
512
513             fscal            = _mm_add_pd(felec,fvdw);
514
515             fscal            = _mm_and_pd(fscal,cutoff_mask);
516
517             /* Calculate temporary vectorial force */
518             tx               = _mm_mul_pd(fscal,dx00);
519             ty               = _mm_mul_pd(fscal,dy00);
520             tz               = _mm_mul_pd(fscal,dz00);
521
522             /* Update vectorial force */
523             fix0             = _mm_add_pd(fix0,tx);
524             fiy0             = _mm_add_pd(fiy0,ty);
525             fiz0             = _mm_add_pd(fiz0,tz);
526
527             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
528
529             }
530
531             /* Inner loop uses 37 flops */
532         }
533
534         if(jidx<j_index_end)
535         {
536
537             jnrA             = jjnr[jidx];
538             j_coord_offsetA  = DIM*jnrA;
539
540             /* load j atom coordinates */
541             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
542                                               &jx0,&jy0,&jz0);
543
544             /* Calculate displacement vector */
545             dx00             = _mm_sub_pd(ix0,jx0);
546             dy00             = _mm_sub_pd(iy0,jy0);
547             dz00             = _mm_sub_pd(iz0,jz0);
548
549             /* Calculate squared distance and things based on it */
550             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
551
552             rinv00           = sse2_invsqrt_d(rsq00);
553
554             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
555
556             /* Load parameters for j particles */
557             jq0              = _mm_load_sd(charge+jnrA+0);
558             vdwjidx0A        = 2*vdwtype[jnrA+0];
559
560             /**************************
561              * CALCULATE INTERACTIONS *
562              **************************/
563
564             if (gmx_mm_any_lt(rsq00,rcutoff2))
565             {
566
567             /* Compute parameters for interactions between i and j atoms */
568             qq00             = _mm_mul_pd(iq0,jq0);
569             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
570
571             /* REACTION-FIELD ELECTROSTATICS */
572             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
573
574             /* LENNARD-JONES DISPERSION/REPULSION */
575
576             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
577             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
578
579             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
580
581             fscal            = _mm_add_pd(felec,fvdw);
582
583             fscal            = _mm_and_pd(fscal,cutoff_mask);
584
585             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
586
587             /* Calculate temporary vectorial force */
588             tx               = _mm_mul_pd(fscal,dx00);
589             ty               = _mm_mul_pd(fscal,dy00);
590             tz               = _mm_mul_pd(fscal,dz00);
591
592             /* Update vectorial force */
593             fix0             = _mm_add_pd(fix0,tx);
594             fiy0             = _mm_add_pd(fiy0,ty);
595             fiz0             = _mm_add_pd(fiz0,tz);
596
597             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
598
599             }
600
601             /* Inner loop uses 37 flops */
602         }
603
604         /* End of innermost loop */
605
606         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
607                                               f+i_coord_offset,fshift+i_shift_offset);
608
609         /* Increment number of inner iterations */
610         inneriter                  += j_index_end - j_index_start;
611
612         /* Outer loop uses 7 flops */
613     }
614
615     /* Increment number of outer iterations */
616     outeriter        += nri;
617
618     /* Update outer/inner flops */
619
620     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
621 }