Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse2_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128d          dummy_mask,cutoff_mask;
94     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
95     __m128d          one     = _mm_set1_pd(1.0);
96     __m128d          two     = _mm_set1_pd(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm_set1_pd(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     krf              = _mm_set1_pd(fr->ic->k_rf);
111     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
112     crf              = _mm_set1_pd(fr->ic->c_rf);
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
118     rcutoff_scalar   = fr->rcoulomb;
119     rcutoff          = _mm_set1_pd(rcutoff_scalar);
120     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
121
122     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
123     rvdw             = _mm_set1_pd(fr->rvdw);
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
149
150         fix0             = _mm_setzero_pd();
151         fiy0             = _mm_setzero_pd();
152         fiz0             = _mm_setzero_pd();
153
154         /* Load parameters for i particles */
155         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
156         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         velecsum         = _mm_setzero_pd();
160         vvdwsum          = _mm_setzero_pd();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             j_coord_offsetA  = DIM*jnrA;
170             j_coord_offsetB  = DIM*jnrB;
171
172             /* load j atom coordinates */
173             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
174                                               &jx0,&jy0,&jz0);
175
176             /* Calculate displacement vector */
177             dx00             = _mm_sub_pd(ix0,jx0);
178             dy00             = _mm_sub_pd(iy0,jy0);
179             dz00             = _mm_sub_pd(iz0,jz0);
180
181             /* Calculate squared distance and things based on it */
182             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
183
184             rinv00           = gmx_mm_invsqrt_pd(rsq00);
185
186             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
187
188             /* Load parameters for j particles */
189             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
190             vdwjidx0A        = 2*vdwtype[jnrA+0];
191             vdwjidx0B        = 2*vdwtype[jnrB+0];
192
193             /**************************
194              * CALCULATE INTERACTIONS *
195              **************************/
196
197             if (gmx_mm_any_lt(rsq00,rcutoff2))
198             {
199
200             /* Compute parameters for interactions between i and j atoms */
201             qq00             = _mm_mul_pd(iq0,jq0);
202             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
203                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
204
205             /* REACTION-FIELD ELECTROSTATICS */
206             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
207             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
208
209             /* LENNARD-JONES DISPERSION/REPULSION */
210
211             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
212             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
213             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
214             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
215                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
216             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
217
218             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
219
220             /* Update potential sum for this i atom from the interaction with this j atom. */
221             velec            = _mm_and_pd(velec,cutoff_mask);
222             velecsum         = _mm_add_pd(velecsum,velec);
223             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
224             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
225
226             fscal            = _mm_add_pd(felec,fvdw);
227
228             fscal            = _mm_and_pd(fscal,cutoff_mask);
229
230             /* Calculate temporary vectorial force */
231             tx               = _mm_mul_pd(fscal,dx00);
232             ty               = _mm_mul_pd(fscal,dy00);
233             tz               = _mm_mul_pd(fscal,dz00);
234
235             /* Update vectorial force */
236             fix0             = _mm_add_pd(fix0,tx);
237             fiy0             = _mm_add_pd(fiy0,ty);
238             fiz0             = _mm_add_pd(fiz0,tz);
239
240             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
241
242             }
243
244             /* Inner loop uses 54 flops */
245         }
246
247         if(jidx<j_index_end)
248         {
249
250             jnrA             = jjnr[jidx];
251             j_coord_offsetA  = DIM*jnrA;
252
253             /* load j atom coordinates */
254             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
255                                               &jx0,&jy0,&jz0);
256
257             /* Calculate displacement vector */
258             dx00             = _mm_sub_pd(ix0,jx0);
259             dy00             = _mm_sub_pd(iy0,jy0);
260             dz00             = _mm_sub_pd(iz0,jz0);
261
262             /* Calculate squared distance and things based on it */
263             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
264
265             rinv00           = gmx_mm_invsqrt_pd(rsq00);
266
267             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
268
269             /* Load parameters for j particles */
270             jq0              = _mm_load_sd(charge+jnrA+0);
271             vdwjidx0A        = 2*vdwtype[jnrA+0];
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             if (gmx_mm_any_lt(rsq00,rcutoff2))
278             {
279
280             /* Compute parameters for interactions between i and j atoms */
281             qq00             = _mm_mul_pd(iq0,jq0);
282             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
283
284             /* REACTION-FIELD ELECTROSTATICS */
285             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
286             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
287
288             /* LENNARD-JONES DISPERSION/REPULSION */
289
290             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
291             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
292             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
293             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
294                                           _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
295             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
296
297             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velec            = _mm_and_pd(velec,cutoff_mask);
301             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
302             velecsum         = _mm_add_pd(velecsum,velec);
303             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
304             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
305             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
306
307             fscal            = _mm_add_pd(felec,fvdw);
308
309             fscal            = _mm_and_pd(fscal,cutoff_mask);
310
311             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm_mul_pd(fscal,dx00);
315             ty               = _mm_mul_pd(fscal,dy00);
316             tz               = _mm_mul_pd(fscal,dz00);
317
318             /* Update vectorial force */
319             fix0             = _mm_add_pd(fix0,tx);
320             fiy0             = _mm_add_pd(fiy0,ty);
321             fiz0             = _mm_add_pd(fiz0,tz);
322
323             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
324
325             }
326
327             /* Inner loop uses 54 flops */
328         }
329
330         /* End of innermost loop */
331
332         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
333                                               f+i_coord_offset,fshift+i_shift_offset);
334
335         ggid                        = gid[iidx];
336         /* Update potential energies */
337         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
338         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
339
340         /* Increment number of inner iterations */
341         inneriter                  += j_index_end - j_index_start;
342
343         /* Outer loop uses 9 flops */
344     }
345
346     /* Increment number of outer iterations */
347     outeriter        += nri;
348
349     /* Update outer/inner flops */
350
351     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
352 }
353 /*
354  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse2_double
355  * Electrostatics interaction: ReactionField
356  * VdW interaction:            LennardJones
357  * Geometry:                   Particle-Particle
358  * Calculate force/pot:        Force
359  */
360 void
361 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse2_double
362                     (t_nblist                    * gmx_restrict       nlist,
363                      rvec                        * gmx_restrict          xx,
364                      rvec                        * gmx_restrict          ff,
365                      t_forcerec                  * gmx_restrict          fr,
366                      t_mdatoms                   * gmx_restrict     mdatoms,
367                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
368                      t_nrnb                      * gmx_restrict        nrnb)
369 {
370     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
371      * just 0 for non-waters.
372      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
373      * jnr indices corresponding to data put in the four positions in the SIMD register.
374      */
375     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
376     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
377     int              jnrA,jnrB;
378     int              j_coord_offsetA,j_coord_offsetB;
379     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
380     real             rcutoff_scalar;
381     real             *shiftvec,*fshift,*x,*f;
382     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
383     int              vdwioffset0;
384     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
385     int              vdwjidx0A,vdwjidx0B;
386     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
387     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
388     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
389     real             *charge;
390     int              nvdwtype;
391     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
392     int              *vdwtype;
393     real             *vdwparam;
394     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
395     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
396     __m128d          dummy_mask,cutoff_mask;
397     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
398     __m128d          one     = _mm_set1_pd(1.0);
399     __m128d          two     = _mm_set1_pd(2.0);
400     x                = xx[0];
401     f                = ff[0];
402
403     nri              = nlist->nri;
404     iinr             = nlist->iinr;
405     jindex           = nlist->jindex;
406     jjnr             = nlist->jjnr;
407     shiftidx         = nlist->shift;
408     gid              = nlist->gid;
409     shiftvec         = fr->shift_vec[0];
410     fshift           = fr->fshift[0];
411     facel            = _mm_set1_pd(fr->epsfac);
412     charge           = mdatoms->chargeA;
413     krf              = _mm_set1_pd(fr->ic->k_rf);
414     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
415     crf              = _mm_set1_pd(fr->ic->c_rf);
416     nvdwtype         = fr->ntype;
417     vdwparam         = fr->nbfp;
418     vdwtype          = mdatoms->typeA;
419
420     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
421     rcutoff_scalar   = fr->rcoulomb;
422     rcutoff          = _mm_set1_pd(rcutoff_scalar);
423     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
424
425     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
426     rvdw             = _mm_set1_pd(fr->rvdw);
427
428     /* Avoid stupid compiler warnings */
429     jnrA = jnrB = 0;
430     j_coord_offsetA = 0;
431     j_coord_offsetB = 0;
432
433     outeriter        = 0;
434     inneriter        = 0;
435
436     /* Start outer loop over neighborlists */
437     for(iidx=0; iidx<nri; iidx++)
438     {
439         /* Load shift vector for this list */
440         i_shift_offset   = DIM*shiftidx[iidx];
441
442         /* Load limits for loop over neighbors */
443         j_index_start    = jindex[iidx];
444         j_index_end      = jindex[iidx+1];
445
446         /* Get outer coordinate index */
447         inr              = iinr[iidx];
448         i_coord_offset   = DIM*inr;
449
450         /* Load i particle coords and add shift vector */
451         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
452
453         fix0             = _mm_setzero_pd();
454         fiy0             = _mm_setzero_pd();
455         fiz0             = _mm_setzero_pd();
456
457         /* Load parameters for i particles */
458         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
459         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
460
461         /* Start inner kernel loop */
462         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
463         {
464
465             /* Get j neighbor index, and coordinate index */
466             jnrA             = jjnr[jidx];
467             jnrB             = jjnr[jidx+1];
468             j_coord_offsetA  = DIM*jnrA;
469             j_coord_offsetB  = DIM*jnrB;
470
471             /* load j atom coordinates */
472             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
473                                               &jx0,&jy0,&jz0);
474
475             /* Calculate displacement vector */
476             dx00             = _mm_sub_pd(ix0,jx0);
477             dy00             = _mm_sub_pd(iy0,jy0);
478             dz00             = _mm_sub_pd(iz0,jz0);
479
480             /* Calculate squared distance and things based on it */
481             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
482
483             rinv00           = gmx_mm_invsqrt_pd(rsq00);
484
485             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
486
487             /* Load parameters for j particles */
488             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
489             vdwjidx0A        = 2*vdwtype[jnrA+0];
490             vdwjidx0B        = 2*vdwtype[jnrB+0];
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             if (gmx_mm_any_lt(rsq00,rcutoff2))
497             {
498
499             /* Compute parameters for interactions between i and j atoms */
500             qq00             = _mm_mul_pd(iq0,jq0);
501             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
502                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
503
504             /* REACTION-FIELD ELECTROSTATICS */
505             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
506
507             /* LENNARD-JONES DISPERSION/REPULSION */
508
509             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
510             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
511
512             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
513
514             fscal            = _mm_add_pd(felec,fvdw);
515
516             fscal            = _mm_and_pd(fscal,cutoff_mask);
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm_mul_pd(fscal,dx00);
520             ty               = _mm_mul_pd(fscal,dy00);
521             tz               = _mm_mul_pd(fscal,dz00);
522
523             /* Update vectorial force */
524             fix0             = _mm_add_pd(fix0,tx);
525             fiy0             = _mm_add_pd(fiy0,ty);
526             fiz0             = _mm_add_pd(fiz0,tz);
527
528             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
529
530             }
531
532             /* Inner loop uses 37 flops */
533         }
534
535         if(jidx<j_index_end)
536         {
537
538             jnrA             = jjnr[jidx];
539             j_coord_offsetA  = DIM*jnrA;
540
541             /* load j atom coordinates */
542             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
543                                               &jx0,&jy0,&jz0);
544
545             /* Calculate displacement vector */
546             dx00             = _mm_sub_pd(ix0,jx0);
547             dy00             = _mm_sub_pd(iy0,jy0);
548             dz00             = _mm_sub_pd(iz0,jz0);
549
550             /* Calculate squared distance and things based on it */
551             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
552
553             rinv00           = gmx_mm_invsqrt_pd(rsq00);
554
555             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
556
557             /* Load parameters for j particles */
558             jq0              = _mm_load_sd(charge+jnrA+0);
559             vdwjidx0A        = 2*vdwtype[jnrA+0];
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             if (gmx_mm_any_lt(rsq00,rcutoff2))
566             {
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq00             = _mm_mul_pd(iq0,jq0);
570             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
571
572             /* REACTION-FIELD ELECTROSTATICS */
573             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
574
575             /* LENNARD-JONES DISPERSION/REPULSION */
576
577             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
578             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
579
580             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
581
582             fscal            = _mm_add_pd(felec,fvdw);
583
584             fscal            = _mm_and_pd(fscal,cutoff_mask);
585
586             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
587
588             /* Calculate temporary vectorial force */
589             tx               = _mm_mul_pd(fscal,dx00);
590             ty               = _mm_mul_pd(fscal,dy00);
591             tz               = _mm_mul_pd(fscal,dz00);
592
593             /* Update vectorial force */
594             fix0             = _mm_add_pd(fix0,tx);
595             fiy0             = _mm_add_pd(fiy0,ty);
596             fiz0             = _mm_add_pd(fiz0,tz);
597
598             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
599
600             }
601
602             /* Inner loop uses 37 flops */
603         }
604
605         /* End of innermost loop */
606
607         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
608                                               f+i_coord_offset,fshift+i_shift_offset);
609
610         /* Increment number of inner iterations */
611         inneriter                  += j_index_end - j_index_start;
612
613         /* Outer loop uses 7 flops */
614     }
615
616     /* Increment number of outer iterations */
617     outeriter        += nri;
618
619     /* Update outer/inner flops */
620
621     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
622 }