Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_sse2_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse2_double
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
104     real             *vftab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     krf              = _mm_set1_pd(fr->ic->k_rf);
123     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
124     crf              = _mm_set1_pd(fr->ic->c_rf);
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
135     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
136     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
140     rcutoff_scalar   = fr->ic->rcoulomb;
141     rcutoff          = _mm_set1_pd(rcutoff_scalar);
142     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
169
170         fix0             = _mm_setzero_pd();
171         fiy0             = _mm_setzero_pd();
172         fiz0             = _mm_setzero_pd();
173         fix1             = _mm_setzero_pd();
174         fiy1             = _mm_setzero_pd();
175         fiz1             = _mm_setzero_pd();
176         fix2             = _mm_setzero_pd();
177         fiy2             = _mm_setzero_pd();
178         fiz2             = _mm_setzero_pd();
179         fix3             = _mm_setzero_pd();
180         fiy3             = _mm_setzero_pd();
181         fiz3             = _mm_setzero_pd();
182
183         /* Reset potential sums */
184         velecsum         = _mm_setzero_pd();
185         vvdwsum          = _mm_setzero_pd();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196
197             /* load j atom coordinates */
198             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm_sub_pd(ix0,jx0);
203             dy00             = _mm_sub_pd(iy0,jy0);
204             dz00             = _mm_sub_pd(iz0,jz0);
205             dx10             = _mm_sub_pd(ix1,jx0);
206             dy10             = _mm_sub_pd(iy1,jy0);
207             dz10             = _mm_sub_pd(iz1,jz0);
208             dx20             = _mm_sub_pd(ix2,jx0);
209             dy20             = _mm_sub_pd(iy2,jy0);
210             dz20             = _mm_sub_pd(iz2,jz0);
211             dx30             = _mm_sub_pd(ix3,jx0);
212             dy30             = _mm_sub_pd(iy3,jy0);
213             dz30             = _mm_sub_pd(iz3,jz0);
214
215             /* Calculate squared distance and things based on it */
216             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
217             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
218             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
219             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
220
221             rinv00           = sse2_invsqrt_d(rsq00);
222             rinv10           = sse2_invsqrt_d(rsq10);
223             rinv20           = sse2_invsqrt_d(rsq20);
224             rinv30           = sse2_invsqrt_d(rsq30);
225
226             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
227             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
228             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233             vdwjidx0B        = 2*vdwtype[jnrB+0];
234
235             fjx0             = _mm_setzero_pd();
236             fjy0             = _mm_setzero_pd();
237             fjz0             = _mm_setzero_pd();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             r00              = _mm_mul_pd(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
247                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
248
249             /* Calculate table index by multiplying r with table scale and truncate to integer */
250             rt               = _mm_mul_pd(r00,vftabscale);
251             vfitab           = _mm_cvttpd_epi32(rt);
252             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
253             vfitab           = _mm_slli_epi32(vfitab,3);
254
255             /* CUBIC SPLINE TABLE DISPERSION */
256             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
257             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
258             GMX_MM_TRANSPOSE2_PD(Y,F);
259             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
260             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
261             GMX_MM_TRANSPOSE2_PD(G,H);
262             Heps             = _mm_mul_pd(vfeps,H);
263             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
264             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
265             vvdw6            = _mm_mul_pd(c6_00,VV);
266             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
267             fvdw6            = _mm_mul_pd(c6_00,FF);
268
269             /* CUBIC SPLINE TABLE REPULSION */
270             vfitab           = _mm_add_epi32(vfitab,ifour);
271             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
272             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
273             GMX_MM_TRANSPOSE2_PD(Y,F);
274             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
275             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
276             GMX_MM_TRANSPOSE2_PD(G,H);
277             Heps             = _mm_mul_pd(vfeps,H);
278             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
279             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
280             vvdw12           = _mm_mul_pd(c12_00,VV);
281             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
282             fvdw12           = _mm_mul_pd(c12_00,FF);
283             vvdw             = _mm_add_pd(vvdw12,vvdw6);
284             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
288
289             fscal            = fvdw;
290
291             /* Calculate temporary vectorial force */
292             tx               = _mm_mul_pd(fscal,dx00);
293             ty               = _mm_mul_pd(fscal,dy00);
294             tz               = _mm_mul_pd(fscal,dz00);
295
296             /* Update vectorial force */
297             fix0             = _mm_add_pd(fix0,tx);
298             fiy0             = _mm_add_pd(fiy0,ty);
299             fiz0             = _mm_add_pd(fiz0,tz);
300
301             fjx0             = _mm_add_pd(fjx0,tx);
302             fjy0             = _mm_add_pd(fjy0,ty);
303             fjz0             = _mm_add_pd(fjz0,tz);
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             if (gmx_mm_any_lt(rsq10,rcutoff2))
310             {
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq10             = _mm_mul_pd(iq1,jq0);
314
315             /* REACTION-FIELD ELECTROSTATICS */
316             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
317             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
318
319             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velec            = _mm_and_pd(velec,cutoff_mask);
323             velecsum         = _mm_add_pd(velecsum,velec);
324
325             fscal            = felec;
326
327             fscal            = _mm_and_pd(fscal,cutoff_mask);
328
329             /* Calculate temporary vectorial force */
330             tx               = _mm_mul_pd(fscal,dx10);
331             ty               = _mm_mul_pd(fscal,dy10);
332             tz               = _mm_mul_pd(fscal,dz10);
333
334             /* Update vectorial force */
335             fix1             = _mm_add_pd(fix1,tx);
336             fiy1             = _mm_add_pd(fiy1,ty);
337             fiz1             = _mm_add_pd(fiz1,tz);
338
339             fjx0             = _mm_add_pd(fjx0,tx);
340             fjy0             = _mm_add_pd(fjy0,ty);
341             fjz0             = _mm_add_pd(fjz0,tz);
342
343             }
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             if (gmx_mm_any_lt(rsq20,rcutoff2))
350             {
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq20             = _mm_mul_pd(iq2,jq0);
354
355             /* REACTION-FIELD ELECTROSTATICS */
356             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
357             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
358
359             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velec            = _mm_and_pd(velec,cutoff_mask);
363             velecsum         = _mm_add_pd(velecsum,velec);
364
365             fscal            = felec;
366
367             fscal            = _mm_and_pd(fscal,cutoff_mask);
368
369             /* Calculate temporary vectorial force */
370             tx               = _mm_mul_pd(fscal,dx20);
371             ty               = _mm_mul_pd(fscal,dy20);
372             tz               = _mm_mul_pd(fscal,dz20);
373
374             /* Update vectorial force */
375             fix2             = _mm_add_pd(fix2,tx);
376             fiy2             = _mm_add_pd(fiy2,ty);
377             fiz2             = _mm_add_pd(fiz2,tz);
378
379             fjx0             = _mm_add_pd(fjx0,tx);
380             fjy0             = _mm_add_pd(fjy0,ty);
381             fjz0             = _mm_add_pd(fjz0,tz);
382
383             }
384
385             /**************************
386              * CALCULATE INTERACTIONS *
387              **************************/
388
389             if (gmx_mm_any_lt(rsq30,rcutoff2))
390             {
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq30             = _mm_mul_pd(iq3,jq0);
394
395             /* REACTION-FIELD ELECTROSTATICS */
396             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
397             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
398
399             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
400
401             /* Update potential sum for this i atom from the interaction with this j atom. */
402             velec            = _mm_and_pd(velec,cutoff_mask);
403             velecsum         = _mm_add_pd(velecsum,velec);
404
405             fscal            = felec;
406
407             fscal            = _mm_and_pd(fscal,cutoff_mask);
408
409             /* Calculate temporary vectorial force */
410             tx               = _mm_mul_pd(fscal,dx30);
411             ty               = _mm_mul_pd(fscal,dy30);
412             tz               = _mm_mul_pd(fscal,dz30);
413
414             /* Update vectorial force */
415             fix3             = _mm_add_pd(fix3,tx);
416             fiy3             = _mm_add_pd(fiy3,ty);
417             fiz3             = _mm_add_pd(fiz3,tz);
418
419             fjx0             = _mm_add_pd(fjx0,tx);
420             fjy0             = _mm_add_pd(fjy0,ty);
421             fjz0             = _mm_add_pd(fjz0,tz);
422
423             }
424
425             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
426
427             /* Inner loop uses 167 flops */
428         }
429
430         if(jidx<j_index_end)
431         {
432
433             jnrA             = jjnr[jidx];
434             j_coord_offsetA  = DIM*jnrA;
435
436             /* load j atom coordinates */
437             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
438                                               &jx0,&jy0,&jz0);
439
440             /* Calculate displacement vector */
441             dx00             = _mm_sub_pd(ix0,jx0);
442             dy00             = _mm_sub_pd(iy0,jy0);
443             dz00             = _mm_sub_pd(iz0,jz0);
444             dx10             = _mm_sub_pd(ix1,jx0);
445             dy10             = _mm_sub_pd(iy1,jy0);
446             dz10             = _mm_sub_pd(iz1,jz0);
447             dx20             = _mm_sub_pd(ix2,jx0);
448             dy20             = _mm_sub_pd(iy2,jy0);
449             dz20             = _mm_sub_pd(iz2,jz0);
450             dx30             = _mm_sub_pd(ix3,jx0);
451             dy30             = _mm_sub_pd(iy3,jy0);
452             dz30             = _mm_sub_pd(iz3,jz0);
453
454             /* Calculate squared distance and things based on it */
455             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
456             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
457             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
458             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
459
460             rinv00           = sse2_invsqrt_d(rsq00);
461             rinv10           = sse2_invsqrt_d(rsq10);
462             rinv20           = sse2_invsqrt_d(rsq20);
463             rinv30           = sse2_invsqrt_d(rsq30);
464
465             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
466             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
467             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
468
469             /* Load parameters for j particles */
470             jq0              = _mm_load_sd(charge+jnrA+0);
471             vdwjidx0A        = 2*vdwtype[jnrA+0];
472
473             fjx0             = _mm_setzero_pd();
474             fjy0             = _mm_setzero_pd();
475             fjz0             = _mm_setzero_pd();
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             r00              = _mm_mul_pd(rsq00,rinv00);
482
483             /* Compute parameters for interactions between i and j atoms */
484             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
485
486             /* Calculate table index by multiplying r with table scale and truncate to integer */
487             rt               = _mm_mul_pd(r00,vftabscale);
488             vfitab           = _mm_cvttpd_epi32(rt);
489             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
490             vfitab           = _mm_slli_epi32(vfitab,3);
491
492             /* CUBIC SPLINE TABLE DISPERSION */
493             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
494             F                = _mm_setzero_pd();
495             GMX_MM_TRANSPOSE2_PD(Y,F);
496             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
497             H                = _mm_setzero_pd();
498             GMX_MM_TRANSPOSE2_PD(G,H);
499             Heps             = _mm_mul_pd(vfeps,H);
500             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
501             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
502             vvdw6            = _mm_mul_pd(c6_00,VV);
503             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
504             fvdw6            = _mm_mul_pd(c6_00,FF);
505
506             /* CUBIC SPLINE TABLE REPULSION */
507             vfitab           = _mm_add_epi32(vfitab,ifour);
508             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
509             F                = _mm_setzero_pd();
510             GMX_MM_TRANSPOSE2_PD(Y,F);
511             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
512             H                = _mm_setzero_pd();
513             GMX_MM_TRANSPOSE2_PD(G,H);
514             Heps             = _mm_mul_pd(vfeps,H);
515             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
516             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
517             vvdw12           = _mm_mul_pd(c12_00,VV);
518             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
519             fvdw12           = _mm_mul_pd(c12_00,FF);
520             vvdw             = _mm_add_pd(vvdw12,vvdw6);
521             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
522
523             /* Update potential sum for this i atom from the interaction with this j atom. */
524             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
525             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
526
527             fscal            = fvdw;
528
529             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
530
531             /* Calculate temporary vectorial force */
532             tx               = _mm_mul_pd(fscal,dx00);
533             ty               = _mm_mul_pd(fscal,dy00);
534             tz               = _mm_mul_pd(fscal,dz00);
535
536             /* Update vectorial force */
537             fix0             = _mm_add_pd(fix0,tx);
538             fiy0             = _mm_add_pd(fiy0,ty);
539             fiz0             = _mm_add_pd(fiz0,tz);
540
541             fjx0             = _mm_add_pd(fjx0,tx);
542             fjy0             = _mm_add_pd(fjy0,ty);
543             fjz0             = _mm_add_pd(fjz0,tz);
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             if (gmx_mm_any_lt(rsq10,rcutoff2))
550             {
551
552             /* Compute parameters for interactions between i and j atoms */
553             qq10             = _mm_mul_pd(iq1,jq0);
554
555             /* REACTION-FIELD ELECTROSTATICS */
556             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
557             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
558
559             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
560
561             /* Update potential sum for this i atom from the interaction with this j atom. */
562             velec            = _mm_and_pd(velec,cutoff_mask);
563             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
564             velecsum         = _mm_add_pd(velecsum,velec);
565
566             fscal            = felec;
567
568             fscal            = _mm_and_pd(fscal,cutoff_mask);
569
570             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
571
572             /* Calculate temporary vectorial force */
573             tx               = _mm_mul_pd(fscal,dx10);
574             ty               = _mm_mul_pd(fscal,dy10);
575             tz               = _mm_mul_pd(fscal,dz10);
576
577             /* Update vectorial force */
578             fix1             = _mm_add_pd(fix1,tx);
579             fiy1             = _mm_add_pd(fiy1,ty);
580             fiz1             = _mm_add_pd(fiz1,tz);
581
582             fjx0             = _mm_add_pd(fjx0,tx);
583             fjy0             = _mm_add_pd(fjy0,ty);
584             fjz0             = _mm_add_pd(fjz0,tz);
585
586             }
587
588             /**************************
589              * CALCULATE INTERACTIONS *
590              **************************/
591
592             if (gmx_mm_any_lt(rsq20,rcutoff2))
593             {
594
595             /* Compute parameters for interactions between i and j atoms */
596             qq20             = _mm_mul_pd(iq2,jq0);
597
598             /* REACTION-FIELD ELECTROSTATICS */
599             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
600             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
601
602             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
603
604             /* Update potential sum for this i atom from the interaction with this j atom. */
605             velec            = _mm_and_pd(velec,cutoff_mask);
606             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
607             velecsum         = _mm_add_pd(velecsum,velec);
608
609             fscal            = felec;
610
611             fscal            = _mm_and_pd(fscal,cutoff_mask);
612
613             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
614
615             /* Calculate temporary vectorial force */
616             tx               = _mm_mul_pd(fscal,dx20);
617             ty               = _mm_mul_pd(fscal,dy20);
618             tz               = _mm_mul_pd(fscal,dz20);
619
620             /* Update vectorial force */
621             fix2             = _mm_add_pd(fix2,tx);
622             fiy2             = _mm_add_pd(fiy2,ty);
623             fiz2             = _mm_add_pd(fiz2,tz);
624
625             fjx0             = _mm_add_pd(fjx0,tx);
626             fjy0             = _mm_add_pd(fjy0,ty);
627             fjz0             = _mm_add_pd(fjz0,tz);
628
629             }
630
631             /**************************
632              * CALCULATE INTERACTIONS *
633              **************************/
634
635             if (gmx_mm_any_lt(rsq30,rcutoff2))
636             {
637
638             /* Compute parameters for interactions between i and j atoms */
639             qq30             = _mm_mul_pd(iq3,jq0);
640
641             /* REACTION-FIELD ELECTROSTATICS */
642             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
643             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
644
645             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
646
647             /* Update potential sum for this i atom from the interaction with this j atom. */
648             velec            = _mm_and_pd(velec,cutoff_mask);
649             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
650             velecsum         = _mm_add_pd(velecsum,velec);
651
652             fscal            = felec;
653
654             fscal            = _mm_and_pd(fscal,cutoff_mask);
655
656             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
657
658             /* Calculate temporary vectorial force */
659             tx               = _mm_mul_pd(fscal,dx30);
660             ty               = _mm_mul_pd(fscal,dy30);
661             tz               = _mm_mul_pd(fscal,dz30);
662
663             /* Update vectorial force */
664             fix3             = _mm_add_pd(fix3,tx);
665             fiy3             = _mm_add_pd(fiy3,ty);
666             fiz3             = _mm_add_pd(fiz3,tz);
667
668             fjx0             = _mm_add_pd(fjx0,tx);
669             fjy0             = _mm_add_pd(fjy0,ty);
670             fjz0             = _mm_add_pd(fjz0,tz);
671
672             }
673
674             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
675
676             /* Inner loop uses 167 flops */
677         }
678
679         /* End of innermost loop */
680
681         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
682                                               f+i_coord_offset,fshift+i_shift_offset);
683
684         ggid                        = gid[iidx];
685         /* Update potential energies */
686         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
687         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
688
689         /* Increment number of inner iterations */
690         inneriter                  += j_index_end - j_index_start;
691
692         /* Outer loop uses 26 flops */
693     }
694
695     /* Increment number of outer iterations */
696     outeriter        += nri;
697
698     /* Update outer/inner flops */
699
700     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*167);
701 }
702 /*
703  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse2_double
704  * Electrostatics interaction: ReactionField
705  * VdW interaction:            CubicSplineTable
706  * Geometry:                   Water4-Particle
707  * Calculate force/pot:        Force
708  */
709 void
710 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse2_double
711                     (t_nblist                    * gmx_restrict       nlist,
712                      rvec                        * gmx_restrict          xx,
713                      rvec                        * gmx_restrict          ff,
714                      struct t_forcerec           * gmx_restrict          fr,
715                      t_mdatoms                   * gmx_restrict     mdatoms,
716                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
717                      t_nrnb                      * gmx_restrict        nrnb)
718 {
719     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
720      * just 0 for non-waters.
721      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
722      * jnr indices corresponding to data put in the four positions in the SIMD register.
723      */
724     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
725     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
726     int              jnrA,jnrB;
727     int              j_coord_offsetA,j_coord_offsetB;
728     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
729     real             rcutoff_scalar;
730     real             *shiftvec,*fshift,*x,*f;
731     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
732     int              vdwioffset0;
733     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
734     int              vdwioffset1;
735     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
736     int              vdwioffset2;
737     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
738     int              vdwioffset3;
739     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
740     int              vdwjidx0A,vdwjidx0B;
741     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
742     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
743     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
744     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
745     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
746     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
747     real             *charge;
748     int              nvdwtype;
749     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
750     int              *vdwtype;
751     real             *vdwparam;
752     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
753     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
754     __m128i          vfitab;
755     __m128i          ifour       = _mm_set1_epi32(4);
756     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
757     real             *vftab;
758     __m128d          dummy_mask,cutoff_mask;
759     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
760     __m128d          one     = _mm_set1_pd(1.0);
761     __m128d          two     = _mm_set1_pd(2.0);
762     x                = xx[0];
763     f                = ff[0];
764
765     nri              = nlist->nri;
766     iinr             = nlist->iinr;
767     jindex           = nlist->jindex;
768     jjnr             = nlist->jjnr;
769     shiftidx         = nlist->shift;
770     gid              = nlist->gid;
771     shiftvec         = fr->shift_vec[0];
772     fshift           = fr->fshift[0];
773     facel            = _mm_set1_pd(fr->ic->epsfac);
774     charge           = mdatoms->chargeA;
775     krf              = _mm_set1_pd(fr->ic->k_rf);
776     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
777     crf              = _mm_set1_pd(fr->ic->c_rf);
778     nvdwtype         = fr->ntype;
779     vdwparam         = fr->nbfp;
780     vdwtype          = mdatoms->typeA;
781
782     vftab            = kernel_data->table_vdw->data;
783     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
784
785     /* Setup water-specific parameters */
786     inr              = nlist->iinr[0];
787     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
788     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
789     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
790     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
791
792     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
793     rcutoff_scalar   = fr->ic->rcoulomb;
794     rcutoff          = _mm_set1_pd(rcutoff_scalar);
795     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
796
797     /* Avoid stupid compiler warnings */
798     jnrA = jnrB = 0;
799     j_coord_offsetA = 0;
800     j_coord_offsetB = 0;
801
802     outeriter        = 0;
803     inneriter        = 0;
804
805     /* Start outer loop over neighborlists */
806     for(iidx=0; iidx<nri; iidx++)
807     {
808         /* Load shift vector for this list */
809         i_shift_offset   = DIM*shiftidx[iidx];
810
811         /* Load limits for loop over neighbors */
812         j_index_start    = jindex[iidx];
813         j_index_end      = jindex[iidx+1];
814
815         /* Get outer coordinate index */
816         inr              = iinr[iidx];
817         i_coord_offset   = DIM*inr;
818
819         /* Load i particle coords and add shift vector */
820         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
821                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
822
823         fix0             = _mm_setzero_pd();
824         fiy0             = _mm_setzero_pd();
825         fiz0             = _mm_setzero_pd();
826         fix1             = _mm_setzero_pd();
827         fiy1             = _mm_setzero_pd();
828         fiz1             = _mm_setzero_pd();
829         fix2             = _mm_setzero_pd();
830         fiy2             = _mm_setzero_pd();
831         fiz2             = _mm_setzero_pd();
832         fix3             = _mm_setzero_pd();
833         fiy3             = _mm_setzero_pd();
834         fiz3             = _mm_setzero_pd();
835
836         /* Start inner kernel loop */
837         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
838         {
839
840             /* Get j neighbor index, and coordinate index */
841             jnrA             = jjnr[jidx];
842             jnrB             = jjnr[jidx+1];
843             j_coord_offsetA  = DIM*jnrA;
844             j_coord_offsetB  = DIM*jnrB;
845
846             /* load j atom coordinates */
847             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
848                                               &jx0,&jy0,&jz0);
849
850             /* Calculate displacement vector */
851             dx00             = _mm_sub_pd(ix0,jx0);
852             dy00             = _mm_sub_pd(iy0,jy0);
853             dz00             = _mm_sub_pd(iz0,jz0);
854             dx10             = _mm_sub_pd(ix1,jx0);
855             dy10             = _mm_sub_pd(iy1,jy0);
856             dz10             = _mm_sub_pd(iz1,jz0);
857             dx20             = _mm_sub_pd(ix2,jx0);
858             dy20             = _mm_sub_pd(iy2,jy0);
859             dz20             = _mm_sub_pd(iz2,jz0);
860             dx30             = _mm_sub_pd(ix3,jx0);
861             dy30             = _mm_sub_pd(iy3,jy0);
862             dz30             = _mm_sub_pd(iz3,jz0);
863
864             /* Calculate squared distance and things based on it */
865             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
866             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
867             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
868             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
869
870             rinv00           = sse2_invsqrt_d(rsq00);
871             rinv10           = sse2_invsqrt_d(rsq10);
872             rinv20           = sse2_invsqrt_d(rsq20);
873             rinv30           = sse2_invsqrt_d(rsq30);
874
875             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
876             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
877             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
878
879             /* Load parameters for j particles */
880             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
881             vdwjidx0A        = 2*vdwtype[jnrA+0];
882             vdwjidx0B        = 2*vdwtype[jnrB+0];
883
884             fjx0             = _mm_setzero_pd();
885             fjy0             = _mm_setzero_pd();
886             fjz0             = _mm_setzero_pd();
887
888             /**************************
889              * CALCULATE INTERACTIONS *
890              **************************/
891
892             r00              = _mm_mul_pd(rsq00,rinv00);
893
894             /* Compute parameters for interactions between i and j atoms */
895             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
896                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
897
898             /* Calculate table index by multiplying r with table scale and truncate to integer */
899             rt               = _mm_mul_pd(r00,vftabscale);
900             vfitab           = _mm_cvttpd_epi32(rt);
901             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
902             vfitab           = _mm_slli_epi32(vfitab,3);
903
904             /* CUBIC SPLINE TABLE DISPERSION */
905             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
906             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
907             GMX_MM_TRANSPOSE2_PD(Y,F);
908             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
909             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
910             GMX_MM_TRANSPOSE2_PD(G,H);
911             Heps             = _mm_mul_pd(vfeps,H);
912             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
913             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
914             fvdw6            = _mm_mul_pd(c6_00,FF);
915
916             /* CUBIC SPLINE TABLE REPULSION */
917             vfitab           = _mm_add_epi32(vfitab,ifour);
918             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
919             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
920             GMX_MM_TRANSPOSE2_PD(Y,F);
921             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
922             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
923             GMX_MM_TRANSPOSE2_PD(G,H);
924             Heps             = _mm_mul_pd(vfeps,H);
925             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
926             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
927             fvdw12           = _mm_mul_pd(c12_00,FF);
928             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
929
930             fscal            = fvdw;
931
932             /* Calculate temporary vectorial force */
933             tx               = _mm_mul_pd(fscal,dx00);
934             ty               = _mm_mul_pd(fscal,dy00);
935             tz               = _mm_mul_pd(fscal,dz00);
936
937             /* Update vectorial force */
938             fix0             = _mm_add_pd(fix0,tx);
939             fiy0             = _mm_add_pd(fiy0,ty);
940             fiz0             = _mm_add_pd(fiz0,tz);
941
942             fjx0             = _mm_add_pd(fjx0,tx);
943             fjy0             = _mm_add_pd(fjy0,ty);
944             fjz0             = _mm_add_pd(fjz0,tz);
945
946             /**************************
947              * CALCULATE INTERACTIONS *
948              **************************/
949
950             if (gmx_mm_any_lt(rsq10,rcutoff2))
951             {
952
953             /* Compute parameters for interactions between i and j atoms */
954             qq10             = _mm_mul_pd(iq1,jq0);
955
956             /* REACTION-FIELD ELECTROSTATICS */
957             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
958
959             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
960
961             fscal            = felec;
962
963             fscal            = _mm_and_pd(fscal,cutoff_mask);
964
965             /* Calculate temporary vectorial force */
966             tx               = _mm_mul_pd(fscal,dx10);
967             ty               = _mm_mul_pd(fscal,dy10);
968             tz               = _mm_mul_pd(fscal,dz10);
969
970             /* Update vectorial force */
971             fix1             = _mm_add_pd(fix1,tx);
972             fiy1             = _mm_add_pd(fiy1,ty);
973             fiz1             = _mm_add_pd(fiz1,tz);
974
975             fjx0             = _mm_add_pd(fjx0,tx);
976             fjy0             = _mm_add_pd(fjy0,ty);
977             fjz0             = _mm_add_pd(fjz0,tz);
978
979             }
980
981             /**************************
982              * CALCULATE INTERACTIONS *
983              **************************/
984
985             if (gmx_mm_any_lt(rsq20,rcutoff2))
986             {
987
988             /* Compute parameters for interactions between i and j atoms */
989             qq20             = _mm_mul_pd(iq2,jq0);
990
991             /* REACTION-FIELD ELECTROSTATICS */
992             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
993
994             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
995
996             fscal            = felec;
997
998             fscal            = _mm_and_pd(fscal,cutoff_mask);
999
1000             /* Calculate temporary vectorial force */
1001             tx               = _mm_mul_pd(fscal,dx20);
1002             ty               = _mm_mul_pd(fscal,dy20);
1003             tz               = _mm_mul_pd(fscal,dz20);
1004
1005             /* Update vectorial force */
1006             fix2             = _mm_add_pd(fix2,tx);
1007             fiy2             = _mm_add_pd(fiy2,ty);
1008             fiz2             = _mm_add_pd(fiz2,tz);
1009
1010             fjx0             = _mm_add_pd(fjx0,tx);
1011             fjy0             = _mm_add_pd(fjy0,ty);
1012             fjz0             = _mm_add_pd(fjz0,tz);
1013
1014             }
1015
1016             /**************************
1017              * CALCULATE INTERACTIONS *
1018              **************************/
1019
1020             if (gmx_mm_any_lt(rsq30,rcutoff2))
1021             {
1022
1023             /* Compute parameters for interactions between i and j atoms */
1024             qq30             = _mm_mul_pd(iq3,jq0);
1025
1026             /* REACTION-FIELD ELECTROSTATICS */
1027             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1028
1029             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1030
1031             fscal            = felec;
1032
1033             fscal            = _mm_and_pd(fscal,cutoff_mask);
1034
1035             /* Calculate temporary vectorial force */
1036             tx               = _mm_mul_pd(fscal,dx30);
1037             ty               = _mm_mul_pd(fscal,dy30);
1038             tz               = _mm_mul_pd(fscal,dz30);
1039
1040             /* Update vectorial force */
1041             fix3             = _mm_add_pd(fix3,tx);
1042             fiy3             = _mm_add_pd(fiy3,ty);
1043             fiz3             = _mm_add_pd(fiz3,tz);
1044
1045             fjx0             = _mm_add_pd(fjx0,tx);
1046             fjy0             = _mm_add_pd(fjy0,ty);
1047             fjz0             = _mm_add_pd(fjz0,tz);
1048
1049             }
1050
1051             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1052
1053             /* Inner loop uses 141 flops */
1054         }
1055
1056         if(jidx<j_index_end)
1057         {
1058
1059             jnrA             = jjnr[jidx];
1060             j_coord_offsetA  = DIM*jnrA;
1061
1062             /* load j atom coordinates */
1063             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1064                                               &jx0,&jy0,&jz0);
1065
1066             /* Calculate displacement vector */
1067             dx00             = _mm_sub_pd(ix0,jx0);
1068             dy00             = _mm_sub_pd(iy0,jy0);
1069             dz00             = _mm_sub_pd(iz0,jz0);
1070             dx10             = _mm_sub_pd(ix1,jx0);
1071             dy10             = _mm_sub_pd(iy1,jy0);
1072             dz10             = _mm_sub_pd(iz1,jz0);
1073             dx20             = _mm_sub_pd(ix2,jx0);
1074             dy20             = _mm_sub_pd(iy2,jy0);
1075             dz20             = _mm_sub_pd(iz2,jz0);
1076             dx30             = _mm_sub_pd(ix3,jx0);
1077             dy30             = _mm_sub_pd(iy3,jy0);
1078             dz30             = _mm_sub_pd(iz3,jz0);
1079
1080             /* Calculate squared distance and things based on it */
1081             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1082             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1083             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1084             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1085
1086             rinv00           = sse2_invsqrt_d(rsq00);
1087             rinv10           = sse2_invsqrt_d(rsq10);
1088             rinv20           = sse2_invsqrt_d(rsq20);
1089             rinv30           = sse2_invsqrt_d(rsq30);
1090
1091             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1092             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1093             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1094
1095             /* Load parameters for j particles */
1096             jq0              = _mm_load_sd(charge+jnrA+0);
1097             vdwjidx0A        = 2*vdwtype[jnrA+0];
1098
1099             fjx0             = _mm_setzero_pd();
1100             fjy0             = _mm_setzero_pd();
1101             fjz0             = _mm_setzero_pd();
1102
1103             /**************************
1104              * CALCULATE INTERACTIONS *
1105              **************************/
1106
1107             r00              = _mm_mul_pd(rsq00,rinv00);
1108
1109             /* Compute parameters for interactions between i and j atoms */
1110             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1111
1112             /* Calculate table index by multiplying r with table scale and truncate to integer */
1113             rt               = _mm_mul_pd(r00,vftabscale);
1114             vfitab           = _mm_cvttpd_epi32(rt);
1115             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1116             vfitab           = _mm_slli_epi32(vfitab,3);
1117
1118             /* CUBIC SPLINE TABLE DISPERSION */
1119             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1120             F                = _mm_setzero_pd();
1121             GMX_MM_TRANSPOSE2_PD(Y,F);
1122             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1123             H                = _mm_setzero_pd();
1124             GMX_MM_TRANSPOSE2_PD(G,H);
1125             Heps             = _mm_mul_pd(vfeps,H);
1126             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1127             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1128             fvdw6            = _mm_mul_pd(c6_00,FF);
1129
1130             /* CUBIC SPLINE TABLE REPULSION */
1131             vfitab           = _mm_add_epi32(vfitab,ifour);
1132             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1133             F                = _mm_setzero_pd();
1134             GMX_MM_TRANSPOSE2_PD(Y,F);
1135             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1136             H                = _mm_setzero_pd();
1137             GMX_MM_TRANSPOSE2_PD(G,H);
1138             Heps             = _mm_mul_pd(vfeps,H);
1139             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1140             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1141             fvdw12           = _mm_mul_pd(c12_00,FF);
1142             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1143
1144             fscal            = fvdw;
1145
1146             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1147
1148             /* Calculate temporary vectorial force */
1149             tx               = _mm_mul_pd(fscal,dx00);
1150             ty               = _mm_mul_pd(fscal,dy00);
1151             tz               = _mm_mul_pd(fscal,dz00);
1152
1153             /* Update vectorial force */
1154             fix0             = _mm_add_pd(fix0,tx);
1155             fiy0             = _mm_add_pd(fiy0,ty);
1156             fiz0             = _mm_add_pd(fiz0,tz);
1157
1158             fjx0             = _mm_add_pd(fjx0,tx);
1159             fjy0             = _mm_add_pd(fjy0,ty);
1160             fjz0             = _mm_add_pd(fjz0,tz);
1161
1162             /**************************
1163              * CALCULATE INTERACTIONS *
1164              **************************/
1165
1166             if (gmx_mm_any_lt(rsq10,rcutoff2))
1167             {
1168
1169             /* Compute parameters for interactions between i and j atoms */
1170             qq10             = _mm_mul_pd(iq1,jq0);
1171
1172             /* REACTION-FIELD ELECTROSTATICS */
1173             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1174
1175             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1176
1177             fscal            = felec;
1178
1179             fscal            = _mm_and_pd(fscal,cutoff_mask);
1180
1181             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1182
1183             /* Calculate temporary vectorial force */
1184             tx               = _mm_mul_pd(fscal,dx10);
1185             ty               = _mm_mul_pd(fscal,dy10);
1186             tz               = _mm_mul_pd(fscal,dz10);
1187
1188             /* Update vectorial force */
1189             fix1             = _mm_add_pd(fix1,tx);
1190             fiy1             = _mm_add_pd(fiy1,ty);
1191             fiz1             = _mm_add_pd(fiz1,tz);
1192
1193             fjx0             = _mm_add_pd(fjx0,tx);
1194             fjy0             = _mm_add_pd(fjy0,ty);
1195             fjz0             = _mm_add_pd(fjz0,tz);
1196
1197             }
1198
1199             /**************************
1200              * CALCULATE INTERACTIONS *
1201              **************************/
1202
1203             if (gmx_mm_any_lt(rsq20,rcutoff2))
1204             {
1205
1206             /* Compute parameters for interactions between i and j atoms */
1207             qq20             = _mm_mul_pd(iq2,jq0);
1208
1209             /* REACTION-FIELD ELECTROSTATICS */
1210             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1211
1212             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1213
1214             fscal            = felec;
1215
1216             fscal            = _mm_and_pd(fscal,cutoff_mask);
1217
1218             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1219
1220             /* Calculate temporary vectorial force */
1221             tx               = _mm_mul_pd(fscal,dx20);
1222             ty               = _mm_mul_pd(fscal,dy20);
1223             tz               = _mm_mul_pd(fscal,dz20);
1224
1225             /* Update vectorial force */
1226             fix2             = _mm_add_pd(fix2,tx);
1227             fiy2             = _mm_add_pd(fiy2,ty);
1228             fiz2             = _mm_add_pd(fiz2,tz);
1229
1230             fjx0             = _mm_add_pd(fjx0,tx);
1231             fjy0             = _mm_add_pd(fjy0,ty);
1232             fjz0             = _mm_add_pd(fjz0,tz);
1233
1234             }
1235
1236             /**************************
1237              * CALCULATE INTERACTIONS *
1238              **************************/
1239
1240             if (gmx_mm_any_lt(rsq30,rcutoff2))
1241             {
1242
1243             /* Compute parameters for interactions between i and j atoms */
1244             qq30             = _mm_mul_pd(iq3,jq0);
1245
1246             /* REACTION-FIELD ELECTROSTATICS */
1247             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1248
1249             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1250
1251             fscal            = felec;
1252
1253             fscal            = _mm_and_pd(fscal,cutoff_mask);
1254
1255             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1256
1257             /* Calculate temporary vectorial force */
1258             tx               = _mm_mul_pd(fscal,dx30);
1259             ty               = _mm_mul_pd(fscal,dy30);
1260             tz               = _mm_mul_pd(fscal,dz30);
1261
1262             /* Update vectorial force */
1263             fix3             = _mm_add_pd(fix3,tx);
1264             fiy3             = _mm_add_pd(fiy3,ty);
1265             fiz3             = _mm_add_pd(fiz3,tz);
1266
1267             fjx0             = _mm_add_pd(fjx0,tx);
1268             fjy0             = _mm_add_pd(fjy0,ty);
1269             fjz0             = _mm_add_pd(fjz0,tz);
1270
1271             }
1272
1273             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1274
1275             /* Inner loop uses 141 flops */
1276         }
1277
1278         /* End of innermost loop */
1279
1280         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1281                                               f+i_coord_offset,fshift+i_shift_offset);
1282
1283         /* Increment number of inner iterations */
1284         inneriter                  += j_index_end - j_index_start;
1285
1286         /* Outer loop uses 24 flops */
1287     }
1288
1289     /* Increment number of outer iterations */
1290     outeriter        += nri;
1291
1292     /* Update outer/inner flops */
1293
1294     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*141);
1295 }