Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse2_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
107     real             *vftab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm_set1_pd(fr->ic->k_rf);
126     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
127     crf              = _mm_set1_pd(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
138     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
139     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
143     rcutoff_scalar   = fr->rcoulomb;
144     rcutoff          = _mm_set1_pd(rcutoff_scalar);
145     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
172
173         fix0             = _mm_setzero_pd();
174         fiy0             = _mm_setzero_pd();
175         fiz0             = _mm_setzero_pd();
176         fix1             = _mm_setzero_pd();
177         fiy1             = _mm_setzero_pd();
178         fiz1             = _mm_setzero_pd();
179         fix2             = _mm_setzero_pd();
180         fiy2             = _mm_setzero_pd();
181         fiz2             = _mm_setzero_pd();
182         fix3             = _mm_setzero_pd();
183         fiy3             = _mm_setzero_pd();
184         fiz3             = _mm_setzero_pd();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_pd();
188         vvdwsum          = _mm_setzero_pd();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199
200             /* load j atom coordinates */
201             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
202                                               &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm_sub_pd(ix0,jx0);
206             dy00             = _mm_sub_pd(iy0,jy0);
207             dz00             = _mm_sub_pd(iz0,jz0);
208             dx10             = _mm_sub_pd(ix1,jx0);
209             dy10             = _mm_sub_pd(iy1,jy0);
210             dz10             = _mm_sub_pd(iz1,jz0);
211             dx20             = _mm_sub_pd(ix2,jx0);
212             dy20             = _mm_sub_pd(iy2,jy0);
213             dz20             = _mm_sub_pd(iz2,jz0);
214             dx30             = _mm_sub_pd(ix3,jx0);
215             dy30             = _mm_sub_pd(iy3,jy0);
216             dz30             = _mm_sub_pd(iz3,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
220             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
221             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
222             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
223
224             rinv00           = gmx_mm_invsqrt_pd(rsq00);
225             rinv10           = gmx_mm_invsqrt_pd(rsq10);
226             rinv20           = gmx_mm_invsqrt_pd(rsq20);
227             rinv30           = gmx_mm_invsqrt_pd(rsq30);
228
229             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
230             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
231             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
232
233             /* Load parameters for j particles */
234             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237
238             fjx0             = _mm_setzero_pd();
239             fjy0             = _mm_setzero_pd();
240             fjz0             = _mm_setzero_pd();
241
242             /**************************
243              * CALCULATE INTERACTIONS *
244              **************************/
245
246             r00              = _mm_mul_pd(rsq00,rinv00);
247
248             /* Compute parameters for interactions between i and j atoms */
249             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
250                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
251
252             /* Calculate table index by multiplying r with table scale and truncate to integer */
253             rt               = _mm_mul_pd(r00,vftabscale);
254             vfitab           = _mm_cvttpd_epi32(rt);
255             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
256             vfitab           = _mm_slli_epi32(vfitab,3);
257
258             /* CUBIC SPLINE TABLE DISPERSION */
259             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
260             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
261             GMX_MM_TRANSPOSE2_PD(Y,F);
262             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
263             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
264             GMX_MM_TRANSPOSE2_PD(G,H);
265             Heps             = _mm_mul_pd(vfeps,H);
266             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
267             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
268             vvdw6            = _mm_mul_pd(c6_00,VV);
269             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
270             fvdw6            = _mm_mul_pd(c6_00,FF);
271
272             /* CUBIC SPLINE TABLE REPULSION */
273             vfitab           = _mm_add_epi32(vfitab,ifour);
274             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
275             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
276             GMX_MM_TRANSPOSE2_PD(Y,F);
277             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
278             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
279             GMX_MM_TRANSPOSE2_PD(G,H);
280             Heps             = _mm_mul_pd(vfeps,H);
281             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
282             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
283             vvdw12           = _mm_mul_pd(c12_00,VV);
284             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
285             fvdw12           = _mm_mul_pd(c12_00,FF);
286             vvdw             = _mm_add_pd(vvdw12,vvdw6);
287             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
291
292             fscal            = fvdw;
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm_mul_pd(fscal,dx00);
296             ty               = _mm_mul_pd(fscal,dy00);
297             tz               = _mm_mul_pd(fscal,dz00);
298
299             /* Update vectorial force */
300             fix0             = _mm_add_pd(fix0,tx);
301             fiy0             = _mm_add_pd(fiy0,ty);
302             fiz0             = _mm_add_pd(fiz0,tz);
303
304             fjx0             = _mm_add_pd(fjx0,tx);
305             fjy0             = _mm_add_pd(fjy0,ty);
306             fjz0             = _mm_add_pd(fjz0,tz);
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             if (gmx_mm_any_lt(rsq10,rcutoff2))
313             {
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq10             = _mm_mul_pd(iq1,jq0);
317
318             /* REACTION-FIELD ELECTROSTATICS */
319             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
320             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
321
322             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velec            = _mm_and_pd(velec,cutoff_mask);
326             velecsum         = _mm_add_pd(velecsum,velec);
327
328             fscal            = felec;
329
330             fscal            = _mm_and_pd(fscal,cutoff_mask);
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm_mul_pd(fscal,dx10);
334             ty               = _mm_mul_pd(fscal,dy10);
335             tz               = _mm_mul_pd(fscal,dz10);
336
337             /* Update vectorial force */
338             fix1             = _mm_add_pd(fix1,tx);
339             fiy1             = _mm_add_pd(fiy1,ty);
340             fiz1             = _mm_add_pd(fiz1,tz);
341
342             fjx0             = _mm_add_pd(fjx0,tx);
343             fjy0             = _mm_add_pd(fjy0,ty);
344             fjz0             = _mm_add_pd(fjz0,tz);
345
346             }
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             if (gmx_mm_any_lt(rsq20,rcutoff2))
353             {
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq20             = _mm_mul_pd(iq2,jq0);
357
358             /* REACTION-FIELD ELECTROSTATICS */
359             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
360             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
361
362             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velec            = _mm_and_pd(velec,cutoff_mask);
366             velecsum         = _mm_add_pd(velecsum,velec);
367
368             fscal            = felec;
369
370             fscal            = _mm_and_pd(fscal,cutoff_mask);
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm_mul_pd(fscal,dx20);
374             ty               = _mm_mul_pd(fscal,dy20);
375             tz               = _mm_mul_pd(fscal,dz20);
376
377             /* Update vectorial force */
378             fix2             = _mm_add_pd(fix2,tx);
379             fiy2             = _mm_add_pd(fiy2,ty);
380             fiz2             = _mm_add_pd(fiz2,tz);
381
382             fjx0             = _mm_add_pd(fjx0,tx);
383             fjy0             = _mm_add_pd(fjy0,ty);
384             fjz0             = _mm_add_pd(fjz0,tz);
385
386             }
387
388             /**************************
389              * CALCULATE INTERACTIONS *
390              **************************/
391
392             if (gmx_mm_any_lt(rsq30,rcutoff2))
393             {
394
395             /* Compute parameters for interactions between i and j atoms */
396             qq30             = _mm_mul_pd(iq3,jq0);
397
398             /* REACTION-FIELD ELECTROSTATICS */
399             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
400             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
401
402             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
403
404             /* Update potential sum for this i atom from the interaction with this j atom. */
405             velec            = _mm_and_pd(velec,cutoff_mask);
406             velecsum         = _mm_add_pd(velecsum,velec);
407
408             fscal            = felec;
409
410             fscal            = _mm_and_pd(fscal,cutoff_mask);
411
412             /* Calculate temporary vectorial force */
413             tx               = _mm_mul_pd(fscal,dx30);
414             ty               = _mm_mul_pd(fscal,dy30);
415             tz               = _mm_mul_pd(fscal,dz30);
416
417             /* Update vectorial force */
418             fix3             = _mm_add_pd(fix3,tx);
419             fiy3             = _mm_add_pd(fiy3,ty);
420             fiz3             = _mm_add_pd(fiz3,tz);
421
422             fjx0             = _mm_add_pd(fjx0,tx);
423             fjy0             = _mm_add_pd(fjy0,ty);
424             fjz0             = _mm_add_pd(fjz0,tz);
425
426             }
427
428             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
429
430             /* Inner loop uses 167 flops */
431         }
432
433         if(jidx<j_index_end)
434         {
435
436             jnrA             = jjnr[jidx];
437             j_coord_offsetA  = DIM*jnrA;
438
439             /* load j atom coordinates */
440             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
441                                               &jx0,&jy0,&jz0);
442
443             /* Calculate displacement vector */
444             dx00             = _mm_sub_pd(ix0,jx0);
445             dy00             = _mm_sub_pd(iy0,jy0);
446             dz00             = _mm_sub_pd(iz0,jz0);
447             dx10             = _mm_sub_pd(ix1,jx0);
448             dy10             = _mm_sub_pd(iy1,jy0);
449             dz10             = _mm_sub_pd(iz1,jz0);
450             dx20             = _mm_sub_pd(ix2,jx0);
451             dy20             = _mm_sub_pd(iy2,jy0);
452             dz20             = _mm_sub_pd(iz2,jz0);
453             dx30             = _mm_sub_pd(ix3,jx0);
454             dy30             = _mm_sub_pd(iy3,jy0);
455             dz30             = _mm_sub_pd(iz3,jz0);
456
457             /* Calculate squared distance and things based on it */
458             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
459             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
460             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
461             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
462
463             rinv00           = gmx_mm_invsqrt_pd(rsq00);
464             rinv10           = gmx_mm_invsqrt_pd(rsq10);
465             rinv20           = gmx_mm_invsqrt_pd(rsq20);
466             rinv30           = gmx_mm_invsqrt_pd(rsq30);
467
468             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
469             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
470             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
471
472             /* Load parameters for j particles */
473             jq0              = _mm_load_sd(charge+jnrA+0);
474             vdwjidx0A        = 2*vdwtype[jnrA+0];
475
476             fjx0             = _mm_setzero_pd();
477             fjy0             = _mm_setzero_pd();
478             fjz0             = _mm_setzero_pd();
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             r00              = _mm_mul_pd(rsq00,rinv00);
485
486             /* Compute parameters for interactions between i and j atoms */
487             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
488
489             /* Calculate table index by multiplying r with table scale and truncate to integer */
490             rt               = _mm_mul_pd(r00,vftabscale);
491             vfitab           = _mm_cvttpd_epi32(rt);
492             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
493             vfitab           = _mm_slli_epi32(vfitab,3);
494
495             /* CUBIC SPLINE TABLE DISPERSION */
496             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
497             F                = _mm_setzero_pd();
498             GMX_MM_TRANSPOSE2_PD(Y,F);
499             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
500             H                = _mm_setzero_pd();
501             GMX_MM_TRANSPOSE2_PD(G,H);
502             Heps             = _mm_mul_pd(vfeps,H);
503             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
504             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
505             vvdw6            = _mm_mul_pd(c6_00,VV);
506             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
507             fvdw6            = _mm_mul_pd(c6_00,FF);
508
509             /* CUBIC SPLINE TABLE REPULSION */
510             vfitab           = _mm_add_epi32(vfitab,ifour);
511             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
512             F                = _mm_setzero_pd();
513             GMX_MM_TRANSPOSE2_PD(Y,F);
514             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
515             H                = _mm_setzero_pd();
516             GMX_MM_TRANSPOSE2_PD(G,H);
517             Heps             = _mm_mul_pd(vfeps,H);
518             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
519             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
520             vvdw12           = _mm_mul_pd(c12_00,VV);
521             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
522             fvdw12           = _mm_mul_pd(c12_00,FF);
523             vvdw             = _mm_add_pd(vvdw12,vvdw6);
524             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
525
526             /* Update potential sum for this i atom from the interaction with this j atom. */
527             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
528             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
529
530             fscal            = fvdw;
531
532             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
533
534             /* Calculate temporary vectorial force */
535             tx               = _mm_mul_pd(fscal,dx00);
536             ty               = _mm_mul_pd(fscal,dy00);
537             tz               = _mm_mul_pd(fscal,dz00);
538
539             /* Update vectorial force */
540             fix0             = _mm_add_pd(fix0,tx);
541             fiy0             = _mm_add_pd(fiy0,ty);
542             fiz0             = _mm_add_pd(fiz0,tz);
543
544             fjx0             = _mm_add_pd(fjx0,tx);
545             fjy0             = _mm_add_pd(fjy0,ty);
546             fjz0             = _mm_add_pd(fjz0,tz);
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             if (gmx_mm_any_lt(rsq10,rcutoff2))
553             {
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq10             = _mm_mul_pd(iq1,jq0);
557
558             /* REACTION-FIELD ELECTROSTATICS */
559             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
560             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
561
562             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
563
564             /* Update potential sum for this i atom from the interaction with this j atom. */
565             velec            = _mm_and_pd(velec,cutoff_mask);
566             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
567             velecsum         = _mm_add_pd(velecsum,velec);
568
569             fscal            = felec;
570
571             fscal            = _mm_and_pd(fscal,cutoff_mask);
572
573             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
574
575             /* Calculate temporary vectorial force */
576             tx               = _mm_mul_pd(fscal,dx10);
577             ty               = _mm_mul_pd(fscal,dy10);
578             tz               = _mm_mul_pd(fscal,dz10);
579
580             /* Update vectorial force */
581             fix1             = _mm_add_pd(fix1,tx);
582             fiy1             = _mm_add_pd(fiy1,ty);
583             fiz1             = _mm_add_pd(fiz1,tz);
584
585             fjx0             = _mm_add_pd(fjx0,tx);
586             fjy0             = _mm_add_pd(fjy0,ty);
587             fjz0             = _mm_add_pd(fjz0,tz);
588
589             }
590
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             if (gmx_mm_any_lt(rsq20,rcutoff2))
596             {
597
598             /* Compute parameters for interactions between i and j atoms */
599             qq20             = _mm_mul_pd(iq2,jq0);
600
601             /* REACTION-FIELD ELECTROSTATICS */
602             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
603             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
604
605             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
606
607             /* Update potential sum for this i atom from the interaction with this j atom. */
608             velec            = _mm_and_pd(velec,cutoff_mask);
609             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
610             velecsum         = _mm_add_pd(velecsum,velec);
611
612             fscal            = felec;
613
614             fscal            = _mm_and_pd(fscal,cutoff_mask);
615
616             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
617
618             /* Calculate temporary vectorial force */
619             tx               = _mm_mul_pd(fscal,dx20);
620             ty               = _mm_mul_pd(fscal,dy20);
621             tz               = _mm_mul_pd(fscal,dz20);
622
623             /* Update vectorial force */
624             fix2             = _mm_add_pd(fix2,tx);
625             fiy2             = _mm_add_pd(fiy2,ty);
626             fiz2             = _mm_add_pd(fiz2,tz);
627
628             fjx0             = _mm_add_pd(fjx0,tx);
629             fjy0             = _mm_add_pd(fjy0,ty);
630             fjz0             = _mm_add_pd(fjz0,tz);
631
632             }
633
634             /**************************
635              * CALCULATE INTERACTIONS *
636              **************************/
637
638             if (gmx_mm_any_lt(rsq30,rcutoff2))
639             {
640
641             /* Compute parameters for interactions between i and j atoms */
642             qq30             = _mm_mul_pd(iq3,jq0);
643
644             /* REACTION-FIELD ELECTROSTATICS */
645             velec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_add_pd(rinv30,_mm_mul_pd(krf,rsq30)),crf));
646             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
647
648             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
649
650             /* Update potential sum for this i atom from the interaction with this j atom. */
651             velec            = _mm_and_pd(velec,cutoff_mask);
652             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
653             velecsum         = _mm_add_pd(velecsum,velec);
654
655             fscal            = felec;
656
657             fscal            = _mm_and_pd(fscal,cutoff_mask);
658
659             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
660
661             /* Calculate temporary vectorial force */
662             tx               = _mm_mul_pd(fscal,dx30);
663             ty               = _mm_mul_pd(fscal,dy30);
664             tz               = _mm_mul_pd(fscal,dz30);
665
666             /* Update vectorial force */
667             fix3             = _mm_add_pd(fix3,tx);
668             fiy3             = _mm_add_pd(fiy3,ty);
669             fiz3             = _mm_add_pd(fiz3,tz);
670
671             fjx0             = _mm_add_pd(fjx0,tx);
672             fjy0             = _mm_add_pd(fjy0,ty);
673             fjz0             = _mm_add_pd(fjz0,tz);
674
675             }
676
677             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
678
679             /* Inner loop uses 167 flops */
680         }
681
682         /* End of innermost loop */
683
684         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
685                                               f+i_coord_offset,fshift+i_shift_offset);
686
687         ggid                        = gid[iidx];
688         /* Update potential energies */
689         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
690         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
691
692         /* Increment number of inner iterations */
693         inneriter                  += j_index_end - j_index_start;
694
695         /* Outer loop uses 26 flops */
696     }
697
698     /* Increment number of outer iterations */
699     outeriter        += nri;
700
701     /* Update outer/inner flops */
702
703     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*167);
704 }
705 /*
706  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse2_double
707  * Electrostatics interaction: ReactionField
708  * VdW interaction:            CubicSplineTable
709  * Geometry:                   Water4-Particle
710  * Calculate force/pot:        Force
711  */
712 void
713 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_sse2_double
714                     (t_nblist                    * gmx_restrict       nlist,
715                      rvec                        * gmx_restrict          xx,
716                      rvec                        * gmx_restrict          ff,
717                      t_forcerec                  * gmx_restrict          fr,
718                      t_mdatoms                   * gmx_restrict     mdatoms,
719                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
720                      t_nrnb                      * gmx_restrict        nrnb)
721 {
722     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
723      * just 0 for non-waters.
724      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
725      * jnr indices corresponding to data put in the four positions in the SIMD register.
726      */
727     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
728     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
729     int              jnrA,jnrB;
730     int              j_coord_offsetA,j_coord_offsetB;
731     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
732     real             rcutoff_scalar;
733     real             *shiftvec,*fshift,*x,*f;
734     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
735     int              vdwioffset0;
736     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
737     int              vdwioffset1;
738     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
739     int              vdwioffset2;
740     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
741     int              vdwioffset3;
742     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
743     int              vdwjidx0A,vdwjidx0B;
744     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
745     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
746     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
747     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
748     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
749     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
750     real             *charge;
751     int              nvdwtype;
752     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
753     int              *vdwtype;
754     real             *vdwparam;
755     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
756     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
757     __m128i          vfitab;
758     __m128i          ifour       = _mm_set1_epi32(4);
759     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
760     real             *vftab;
761     __m128d          dummy_mask,cutoff_mask;
762     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
763     __m128d          one     = _mm_set1_pd(1.0);
764     __m128d          two     = _mm_set1_pd(2.0);
765     x                = xx[0];
766     f                = ff[0];
767
768     nri              = nlist->nri;
769     iinr             = nlist->iinr;
770     jindex           = nlist->jindex;
771     jjnr             = nlist->jjnr;
772     shiftidx         = nlist->shift;
773     gid              = nlist->gid;
774     shiftvec         = fr->shift_vec[0];
775     fshift           = fr->fshift[0];
776     facel            = _mm_set1_pd(fr->epsfac);
777     charge           = mdatoms->chargeA;
778     krf              = _mm_set1_pd(fr->ic->k_rf);
779     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
780     crf              = _mm_set1_pd(fr->ic->c_rf);
781     nvdwtype         = fr->ntype;
782     vdwparam         = fr->nbfp;
783     vdwtype          = mdatoms->typeA;
784
785     vftab            = kernel_data->table_vdw->data;
786     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
787
788     /* Setup water-specific parameters */
789     inr              = nlist->iinr[0];
790     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
791     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
792     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
793     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
794
795     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
796     rcutoff_scalar   = fr->rcoulomb;
797     rcutoff          = _mm_set1_pd(rcutoff_scalar);
798     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
799
800     /* Avoid stupid compiler warnings */
801     jnrA = jnrB = 0;
802     j_coord_offsetA = 0;
803     j_coord_offsetB = 0;
804
805     outeriter        = 0;
806     inneriter        = 0;
807
808     /* Start outer loop over neighborlists */
809     for(iidx=0; iidx<nri; iidx++)
810     {
811         /* Load shift vector for this list */
812         i_shift_offset   = DIM*shiftidx[iidx];
813
814         /* Load limits for loop over neighbors */
815         j_index_start    = jindex[iidx];
816         j_index_end      = jindex[iidx+1];
817
818         /* Get outer coordinate index */
819         inr              = iinr[iidx];
820         i_coord_offset   = DIM*inr;
821
822         /* Load i particle coords and add shift vector */
823         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
824                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
825
826         fix0             = _mm_setzero_pd();
827         fiy0             = _mm_setzero_pd();
828         fiz0             = _mm_setzero_pd();
829         fix1             = _mm_setzero_pd();
830         fiy1             = _mm_setzero_pd();
831         fiz1             = _mm_setzero_pd();
832         fix2             = _mm_setzero_pd();
833         fiy2             = _mm_setzero_pd();
834         fiz2             = _mm_setzero_pd();
835         fix3             = _mm_setzero_pd();
836         fiy3             = _mm_setzero_pd();
837         fiz3             = _mm_setzero_pd();
838
839         /* Start inner kernel loop */
840         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
841         {
842
843             /* Get j neighbor index, and coordinate index */
844             jnrA             = jjnr[jidx];
845             jnrB             = jjnr[jidx+1];
846             j_coord_offsetA  = DIM*jnrA;
847             j_coord_offsetB  = DIM*jnrB;
848
849             /* load j atom coordinates */
850             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
851                                               &jx0,&jy0,&jz0);
852
853             /* Calculate displacement vector */
854             dx00             = _mm_sub_pd(ix0,jx0);
855             dy00             = _mm_sub_pd(iy0,jy0);
856             dz00             = _mm_sub_pd(iz0,jz0);
857             dx10             = _mm_sub_pd(ix1,jx0);
858             dy10             = _mm_sub_pd(iy1,jy0);
859             dz10             = _mm_sub_pd(iz1,jz0);
860             dx20             = _mm_sub_pd(ix2,jx0);
861             dy20             = _mm_sub_pd(iy2,jy0);
862             dz20             = _mm_sub_pd(iz2,jz0);
863             dx30             = _mm_sub_pd(ix3,jx0);
864             dy30             = _mm_sub_pd(iy3,jy0);
865             dz30             = _mm_sub_pd(iz3,jz0);
866
867             /* Calculate squared distance and things based on it */
868             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
869             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
870             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
871             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
872
873             rinv00           = gmx_mm_invsqrt_pd(rsq00);
874             rinv10           = gmx_mm_invsqrt_pd(rsq10);
875             rinv20           = gmx_mm_invsqrt_pd(rsq20);
876             rinv30           = gmx_mm_invsqrt_pd(rsq30);
877
878             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
879             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
880             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
881
882             /* Load parameters for j particles */
883             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
884             vdwjidx0A        = 2*vdwtype[jnrA+0];
885             vdwjidx0B        = 2*vdwtype[jnrB+0];
886
887             fjx0             = _mm_setzero_pd();
888             fjy0             = _mm_setzero_pd();
889             fjz0             = _mm_setzero_pd();
890
891             /**************************
892              * CALCULATE INTERACTIONS *
893              **************************/
894
895             r00              = _mm_mul_pd(rsq00,rinv00);
896
897             /* Compute parameters for interactions between i and j atoms */
898             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
899                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
900
901             /* Calculate table index by multiplying r with table scale and truncate to integer */
902             rt               = _mm_mul_pd(r00,vftabscale);
903             vfitab           = _mm_cvttpd_epi32(rt);
904             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
905             vfitab           = _mm_slli_epi32(vfitab,3);
906
907             /* CUBIC SPLINE TABLE DISPERSION */
908             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
909             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
910             GMX_MM_TRANSPOSE2_PD(Y,F);
911             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
912             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
913             GMX_MM_TRANSPOSE2_PD(G,H);
914             Heps             = _mm_mul_pd(vfeps,H);
915             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
916             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
917             fvdw6            = _mm_mul_pd(c6_00,FF);
918
919             /* CUBIC SPLINE TABLE REPULSION */
920             vfitab           = _mm_add_epi32(vfitab,ifour);
921             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
922             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
923             GMX_MM_TRANSPOSE2_PD(Y,F);
924             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
925             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
926             GMX_MM_TRANSPOSE2_PD(G,H);
927             Heps             = _mm_mul_pd(vfeps,H);
928             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
929             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
930             fvdw12           = _mm_mul_pd(c12_00,FF);
931             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
932
933             fscal            = fvdw;
934
935             /* Calculate temporary vectorial force */
936             tx               = _mm_mul_pd(fscal,dx00);
937             ty               = _mm_mul_pd(fscal,dy00);
938             tz               = _mm_mul_pd(fscal,dz00);
939
940             /* Update vectorial force */
941             fix0             = _mm_add_pd(fix0,tx);
942             fiy0             = _mm_add_pd(fiy0,ty);
943             fiz0             = _mm_add_pd(fiz0,tz);
944
945             fjx0             = _mm_add_pd(fjx0,tx);
946             fjy0             = _mm_add_pd(fjy0,ty);
947             fjz0             = _mm_add_pd(fjz0,tz);
948
949             /**************************
950              * CALCULATE INTERACTIONS *
951              **************************/
952
953             if (gmx_mm_any_lt(rsq10,rcutoff2))
954             {
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq10             = _mm_mul_pd(iq1,jq0);
958
959             /* REACTION-FIELD ELECTROSTATICS */
960             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
961
962             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
963
964             fscal            = felec;
965
966             fscal            = _mm_and_pd(fscal,cutoff_mask);
967
968             /* Calculate temporary vectorial force */
969             tx               = _mm_mul_pd(fscal,dx10);
970             ty               = _mm_mul_pd(fscal,dy10);
971             tz               = _mm_mul_pd(fscal,dz10);
972
973             /* Update vectorial force */
974             fix1             = _mm_add_pd(fix1,tx);
975             fiy1             = _mm_add_pd(fiy1,ty);
976             fiz1             = _mm_add_pd(fiz1,tz);
977
978             fjx0             = _mm_add_pd(fjx0,tx);
979             fjy0             = _mm_add_pd(fjy0,ty);
980             fjz0             = _mm_add_pd(fjz0,tz);
981
982             }
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             if (gmx_mm_any_lt(rsq20,rcutoff2))
989             {
990
991             /* Compute parameters for interactions between i and j atoms */
992             qq20             = _mm_mul_pd(iq2,jq0);
993
994             /* REACTION-FIELD ELECTROSTATICS */
995             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
996
997             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
998
999             fscal            = felec;
1000
1001             fscal            = _mm_and_pd(fscal,cutoff_mask);
1002
1003             /* Calculate temporary vectorial force */
1004             tx               = _mm_mul_pd(fscal,dx20);
1005             ty               = _mm_mul_pd(fscal,dy20);
1006             tz               = _mm_mul_pd(fscal,dz20);
1007
1008             /* Update vectorial force */
1009             fix2             = _mm_add_pd(fix2,tx);
1010             fiy2             = _mm_add_pd(fiy2,ty);
1011             fiz2             = _mm_add_pd(fiz2,tz);
1012
1013             fjx0             = _mm_add_pd(fjx0,tx);
1014             fjy0             = _mm_add_pd(fjy0,ty);
1015             fjz0             = _mm_add_pd(fjz0,tz);
1016
1017             }
1018
1019             /**************************
1020              * CALCULATE INTERACTIONS *
1021              **************************/
1022
1023             if (gmx_mm_any_lt(rsq30,rcutoff2))
1024             {
1025
1026             /* Compute parameters for interactions between i and j atoms */
1027             qq30             = _mm_mul_pd(iq3,jq0);
1028
1029             /* REACTION-FIELD ELECTROSTATICS */
1030             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1031
1032             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1033
1034             fscal            = felec;
1035
1036             fscal            = _mm_and_pd(fscal,cutoff_mask);
1037
1038             /* Calculate temporary vectorial force */
1039             tx               = _mm_mul_pd(fscal,dx30);
1040             ty               = _mm_mul_pd(fscal,dy30);
1041             tz               = _mm_mul_pd(fscal,dz30);
1042
1043             /* Update vectorial force */
1044             fix3             = _mm_add_pd(fix3,tx);
1045             fiy3             = _mm_add_pd(fiy3,ty);
1046             fiz3             = _mm_add_pd(fiz3,tz);
1047
1048             fjx0             = _mm_add_pd(fjx0,tx);
1049             fjy0             = _mm_add_pd(fjy0,ty);
1050             fjz0             = _mm_add_pd(fjz0,tz);
1051
1052             }
1053
1054             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1055
1056             /* Inner loop uses 141 flops */
1057         }
1058
1059         if(jidx<j_index_end)
1060         {
1061
1062             jnrA             = jjnr[jidx];
1063             j_coord_offsetA  = DIM*jnrA;
1064
1065             /* load j atom coordinates */
1066             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1067                                               &jx0,&jy0,&jz0);
1068
1069             /* Calculate displacement vector */
1070             dx00             = _mm_sub_pd(ix0,jx0);
1071             dy00             = _mm_sub_pd(iy0,jy0);
1072             dz00             = _mm_sub_pd(iz0,jz0);
1073             dx10             = _mm_sub_pd(ix1,jx0);
1074             dy10             = _mm_sub_pd(iy1,jy0);
1075             dz10             = _mm_sub_pd(iz1,jz0);
1076             dx20             = _mm_sub_pd(ix2,jx0);
1077             dy20             = _mm_sub_pd(iy2,jy0);
1078             dz20             = _mm_sub_pd(iz2,jz0);
1079             dx30             = _mm_sub_pd(ix3,jx0);
1080             dy30             = _mm_sub_pd(iy3,jy0);
1081             dz30             = _mm_sub_pd(iz3,jz0);
1082
1083             /* Calculate squared distance and things based on it */
1084             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1085             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1086             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1087             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1088
1089             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1090             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1091             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1092             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1093
1094             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1095             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1096             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1097
1098             /* Load parameters for j particles */
1099             jq0              = _mm_load_sd(charge+jnrA+0);
1100             vdwjidx0A        = 2*vdwtype[jnrA+0];
1101
1102             fjx0             = _mm_setzero_pd();
1103             fjy0             = _mm_setzero_pd();
1104             fjz0             = _mm_setzero_pd();
1105
1106             /**************************
1107              * CALCULATE INTERACTIONS *
1108              **************************/
1109
1110             r00              = _mm_mul_pd(rsq00,rinv00);
1111
1112             /* Compute parameters for interactions between i and j atoms */
1113             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1114
1115             /* Calculate table index by multiplying r with table scale and truncate to integer */
1116             rt               = _mm_mul_pd(r00,vftabscale);
1117             vfitab           = _mm_cvttpd_epi32(rt);
1118             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1119             vfitab           = _mm_slli_epi32(vfitab,3);
1120
1121             /* CUBIC SPLINE TABLE DISPERSION */
1122             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1123             F                = _mm_setzero_pd();
1124             GMX_MM_TRANSPOSE2_PD(Y,F);
1125             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1126             H                = _mm_setzero_pd();
1127             GMX_MM_TRANSPOSE2_PD(G,H);
1128             Heps             = _mm_mul_pd(vfeps,H);
1129             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1130             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1131             fvdw6            = _mm_mul_pd(c6_00,FF);
1132
1133             /* CUBIC SPLINE TABLE REPULSION */
1134             vfitab           = _mm_add_epi32(vfitab,ifour);
1135             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1136             F                = _mm_setzero_pd();
1137             GMX_MM_TRANSPOSE2_PD(Y,F);
1138             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1139             H                = _mm_setzero_pd();
1140             GMX_MM_TRANSPOSE2_PD(G,H);
1141             Heps             = _mm_mul_pd(vfeps,H);
1142             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1143             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1144             fvdw12           = _mm_mul_pd(c12_00,FF);
1145             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1146
1147             fscal            = fvdw;
1148
1149             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1150
1151             /* Calculate temporary vectorial force */
1152             tx               = _mm_mul_pd(fscal,dx00);
1153             ty               = _mm_mul_pd(fscal,dy00);
1154             tz               = _mm_mul_pd(fscal,dz00);
1155
1156             /* Update vectorial force */
1157             fix0             = _mm_add_pd(fix0,tx);
1158             fiy0             = _mm_add_pd(fiy0,ty);
1159             fiz0             = _mm_add_pd(fiz0,tz);
1160
1161             fjx0             = _mm_add_pd(fjx0,tx);
1162             fjy0             = _mm_add_pd(fjy0,ty);
1163             fjz0             = _mm_add_pd(fjz0,tz);
1164
1165             /**************************
1166              * CALCULATE INTERACTIONS *
1167              **************************/
1168
1169             if (gmx_mm_any_lt(rsq10,rcutoff2))
1170             {
1171
1172             /* Compute parameters for interactions between i and j atoms */
1173             qq10             = _mm_mul_pd(iq1,jq0);
1174
1175             /* REACTION-FIELD ELECTROSTATICS */
1176             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1177
1178             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1179
1180             fscal            = felec;
1181
1182             fscal            = _mm_and_pd(fscal,cutoff_mask);
1183
1184             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1185
1186             /* Calculate temporary vectorial force */
1187             tx               = _mm_mul_pd(fscal,dx10);
1188             ty               = _mm_mul_pd(fscal,dy10);
1189             tz               = _mm_mul_pd(fscal,dz10);
1190
1191             /* Update vectorial force */
1192             fix1             = _mm_add_pd(fix1,tx);
1193             fiy1             = _mm_add_pd(fiy1,ty);
1194             fiz1             = _mm_add_pd(fiz1,tz);
1195
1196             fjx0             = _mm_add_pd(fjx0,tx);
1197             fjy0             = _mm_add_pd(fjy0,ty);
1198             fjz0             = _mm_add_pd(fjz0,tz);
1199
1200             }
1201
1202             /**************************
1203              * CALCULATE INTERACTIONS *
1204              **************************/
1205
1206             if (gmx_mm_any_lt(rsq20,rcutoff2))
1207             {
1208
1209             /* Compute parameters for interactions between i and j atoms */
1210             qq20             = _mm_mul_pd(iq2,jq0);
1211
1212             /* REACTION-FIELD ELECTROSTATICS */
1213             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1214
1215             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1216
1217             fscal            = felec;
1218
1219             fscal            = _mm_and_pd(fscal,cutoff_mask);
1220
1221             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1222
1223             /* Calculate temporary vectorial force */
1224             tx               = _mm_mul_pd(fscal,dx20);
1225             ty               = _mm_mul_pd(fscal,dy20);
1226             tz               = _mm_mul_pd(fscal,dz20);
1227
1228             /* Update vectorial force */
1229             fix2             = _mm_add_pd(fix2,tx);
1230             fiy2             = _mm_add_pd(fiy2,ty);
1231             fiz2             = _mm_add_pd(fiz2,tz);
1232
1233             fjx0             = _mm_add_pd(fjx0,tx);
1234             fjy0             = _mm_add_pd(fjy0,ty);
1235             fjz0             = _mm_add_pd(fjz0,tz);
1236
1237             }
1238
1239             /**************************
1240              * CALCULATE INTERACTIONS *
1241              **************************/
1242
1243             if (gmx_mm_any_lt(rsq30,rcutoff2))
1244             {
1245
1246             /* Compute parameters for interactions between i and j atoms */
1247             qq30             = _mm_mul_pd(iq3,jq0);
1248
1249             /* REACTION-FIELD ELECTROSTATICS */
1250             felec            = _mm_mul_pd(qq30,_mm_sub_pd(_mm_mul_pd(rinv30,rinvsq30),krf2));
1251
1252             cutoff_mask      = _mm_cmplt_pd(rsq30,rcutoff2);
1253
1254             fscal            = felec;
1255
1256             fscal            = _mm_and_pd(fscal,cutoff_mask);
1257
1258             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1259
1260             /* Calculate temporary vectorial force */
1261             tx               = _mm_mul_pd(fscal,dx30);
1262             ty               = _mm_mul_pd(fscal,dy30);
1263             tz               = _mm_mul_pd(fscal,dz30);
1264
1265             /* Update vectorial force */
1266             fix3             = _mm_add_pd(fix3,tx);
1267             fiy3             = _mm_add_pd(fiy3,ty);
1268             fiz3             = _mm_add_pd(fiz3,tz);
1269
1270             fjx0             = _mm_add_pd(fjx0,tx);
1271             fjy0             = _mm_add_pd(fjy0,ty);
1272             fjz0             = _mm_add_pd(fjz0,tz);
1273
1274             }
1275
1276             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1277
1278             /* Inner loop uses 141 flops */
1279         }
1280
1281         /* End of innermost loop */
1282
1283         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1284                                               f+i_coord_offset,fshift+i_shift_offset);
1285
1286         /* Increment number of inner iterations */
1287         inneriter                  += j_index_end - j_index_start;
1288
1289         /* Outer loop uses 24 flops */
1290     }
1291
1292     /* Increment number of outer iterations */
1293     outeriter        += nri;
1294
1295     /* Update outer/inner flops */
1296
1297     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*141);
1298 }