Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse2_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     krf              = _mm_set1_pd(fr->ic->k_rf);
121     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
122     crf              = _mm_set1_pd(fr->ic->c_rf);
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
133     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
134     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->rcoulomb;
139     rcutoff          = _mm_set1_pd(rcutoff_scalar);
140     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
166                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
167
168         fix0             = _mm_setzero_pd();
169         fiy0             = _mm_setzero_pd();
170         fiz0             = _mm_setzero_pd();
171         fix1             = _mm_setzero_pd();
172         fiy1             = _mm_setzero_pd();
173         fiz1             = _mm_setzero_pd();
174         fix2             = _mm_setzero_pd();
175         fiy2             = _mm_setzero_pd();
176         fiz2             = _mm_setzero_pd();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_pd();
180         vvdwsum          = _mm_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_pd(ix0,jx0);
198             dy00             = _mm_sub_pd(iy0,jy0);
199             dz00             = _mm_sub_pd(iz0,jz0);
200             dx10             = _mm_sub_pd(ix1,jx0);
201             dy10             = _mm_sub_pd(iy1,jy0);
202             dz10             = _mm_sub_pd(iz1,jz0);
203             dx20             = _mm_sub_pd(ix2,jx0);
204             dy20             = _mm_sub_pd(iy2,jy0);
205             dz20             = _mm_sub_pd(iz2,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
209             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
210             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
211
212             rinv00           = gmx_mm_invsqrt_pd(rsq00);
213             rinv10           = gmx_mm_invsqrt_pd(rsq10);
214             rinv20           = gmx_mm_invsqrt_pd(rsq20);
215
216             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
217             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
218             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224
225             fjx0             = _mm_setzero_pd();
226             fjy0             = _mm_setzero_pd();
227             fjz0             = _mm_setzero_pd();
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             if (gmx_mm_any_lt(rsq00,rcutoff2))
234             {
235
236             r00              = _mm_mul_pd(rsq00,rinv00);
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm_mul_pd(iq0,jq0);
240             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
241                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
242
243             /* Calculate table index by multiplying r with table scale and truncate to integer */
244             rt               = _mm_mul_pd(r00,vftabscale);
245             vfitab           = _mm_cvttpd_epi32(rt);
246             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
247             vfitab           = _mm_slli_epi32(vfitab,3);
248
249             /* REACTION-FIELD ELECTROSTATICS */
250             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
251             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
252
253             /* CUBIC SPLINE TABLE DISPERSION */
254             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
255             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
256             GMX_MM_TRANSPOSE2_PD(Y,F);
257             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
258             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
259             GMX_MM_TRANSPOSE2_PD(G,H);
260             Heps             = _mm_mul_pd(vfeps,H);
261             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
262             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
263             vvdw6            = _mm_mul_pd(c6_00,VV);
264             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
265             fvdw6            = _mm_mul_pd(c6_00,FF);
266
267             /* CUBIC SPLINE TABLE REPULSION */
268             vfitab           = _mm_add_epi32(vfitab,ifour);
269             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
270             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
271             GMX_MM_TRANSPOSE2_PD(Y,F);
272             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
273             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
274             GMX_MM_TRANSPOSE2_PD(G,H);
275             Heps             = _mm_mul_pd(vfeps,H);
276             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
277             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
278             vvdw12           = _mm_mul_pd(c12_00,VV);
279             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
280             fvdw12           = _mm_mul_pd(c12_00,FF);
281             vvdw             = _mm_add_pd(vvdw12,vvdw6);
282             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
283
284             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velec            = _mm_and_pd(velec,cutoff_mask);
288             velecsum         = _mm_add_pd(velecsum,velec);
289             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
290             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
291
292             fscal            = _mm_add_pd(felec,fvdw);
293
294             fscal            = _mm_and_pd(fscal,cutoff_mask);
295
296             /* Calculate temporary vectorial force */
297             tx               = _mm_mul_pd(fscal,dx00);
298             ty               = _mm_mul_pd(fscal,dy00);
299             tz               = _mm_mul_pd(fscal,dz00);
300
301             /* Update vectorial force */
302             fix0             = _mm_add_pd(fix0,tx);
303             fiy0             = _mm_add_pd(fiy0,ty);
304             fiz0             = _mm_add_pd(fiz0,tz);
305
306             fjx0             = _mm_add_pd(fjx0,tx);
307             fjy0             = _mm_add_pd(fjy0,ty);
308             fjz0             = _mm_add_pd(fjz0,tz);
309
310             }
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             if (gmx_mm_any_lt(rsq10,rcutoff2))
317             {
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm_mul_pd(iq1,jq0);
321
322             /* REACTION-FIELD ELECTROSTATICS */
323             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
324             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
325
326             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velec            = _mm_and_pd(velec,cutoff_mask);
330             velecsum         = _mm_add_pd(velecsum,velec);
331
332             fscal            = felec;
333
334             fscal            = _mm_and_pd(fscal,cutoff_mask);
335
336             /* Calculate temporary vectorial force */
337             tx               = _mm_mul_pd(fscal,dx10);
338             ty               = _mm_mul_pd(fscal,dy10);
339             tz               = _mm_mul_pd(fscal,dz10);
340
341             /* Update vectorial force */
342             fix1             = _mm_add_pd(fix1,tx);
343             fiy1             = _mm_add_pd(fiy1,ty);
344             fiz1             = _mm_add_pd(fiz1,tz);
345
346             fjx0             = _mm_add_pd(fjx0,tx);
347             fjy0             = _mm_add_pd(fjy0,ty);
348             fjz0             = _mm_add_pd(fjz0,tz);
349
350             }
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             if (gmx_mm_any_lt(rsq20,rcutoff2))
357             {
358
359             /* Compute parameters for interactions between i and j atoms */
360             qq20             = _mm_mul_pd(iq2,jq0);
361
362             /* REACTION-FIELD ELECTROSTATICS */
363             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
364             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
365
366             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velec            = _mm_and_pd(velec,cutoff_mask);
370             velecsum         = _mm_add_pd(velecsum,velec);
371
372             fscal            = felec;
373
374             fscal            = _mm_and_pd(fscal,cutoff_mask);
375
376             /* Calculate temporary vectorial force */
377             tx               = _mm_mul_pd(fscal,dx20);
378             ty               = _mm_mul_pd(fscal,dy20);
379             tz               = _mm_mul_pd(fscal,dz20);
380
381             /* Update vectorial force */
382             fix2             = _mm_add_pd(fix2,tx);
383             fiy2             = _mm_add_pd(fiy2,ty);
384             fiz2             = _mm_add_pd(fiz2,tz);
385
386             fjx0             = _mm_add_pd(fjx0,tx);
387             fjy0             = _mm_add_pd(fjy0,ty);
388             fjz0             = _mm_add_pd(fjz0,tz);
389
390             }
391
392             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
393
394             /* Inner loop uses 147 flops */
395         }
396
397         if(jidx<j_index_end)
398         {
399
400             jnrA             = jjnr[jidx];
401             j_coord_offsetA  = DIM*jnrA;
402
403             /* load j atom coordinates */
404             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
405                                               &jx0,&jy0,&jz0);
406
407             /* Calculate displacement vector */
408             dx00             = _mm_sub_pd(ix0,jx0);
409             dy00             = _mm_sub_pd(iy0,jy0);
410             dz00             = _mm_sub_pd(iz0,jz0);
411             dx10             = _mm_sub_pd(ix1,jx0);
412             dy10             = _mm_sub_pd(iy1,jy0);
413             dz10             = _mm_sub_pd(iz1,jz0);
414             dx20             = _mm_sub_pd(ix2,jx0);
415             dy20             = _mm_sub_pd(iy2,jy0);
416             dz20             = _mm_sub_pd(iz2,jz0);
417
418             /* Calculate squared distance and things based on it */
419             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
420             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
421             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
422
423             rinv00           = gmx_mm_invsqrt_pd(rsq00);
424             rinv10           = gmx_mm_invsqrt_pd(rsq10);
425             rinv20           = gmx_mm_invsqrt_pd(rsq20);
426
427             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
428             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
429             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
430
431             /* Load parameters for j particles */
432             jq0              = _mm_load_sd(charge+jnrA+0);
433             vdwjidx0A        = 2*vdwtype[jnrA+0];
434
435             fjx0             = _mm_setzero_pd();
436             fjy0             = _mm_setzero_pd();
437             fjz0             = _mm_setzero_pd();
438
439             /**************************
440              * CALCULATE INTERACTIONS *
441              **************************/
442
443             if (gmx_mm_any_lt(rsq00,rcutoff2))
444             {
445
446             r00              = _mm_mul_pd(rsq00,rinv00);
447
448             /* Compute parameters for interactions between i and j atoms */
449             qq00             = _mm_mul_pd(iq0,jq0);
450             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
451
452             /* Calculate table index by multiplying r with table scale and truncate to integer */
453             rt               = _mm_mul_pd(r00,vftabscale);
454             vfitab           = _mm_cvttpd_epi32(rt);
455             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
456             vfitab           = _mm_slli_epi32(vfitab,3);
457
458             /* REACTION-FIELD ELECTROSTATICS */
459             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_add_pd(rinv00,_mm_mul_pd(krf,rsq00)),crf));
460             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
461
462             /* CUBIC SPLINE TABLE DISPERSION */
463             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
464             F                = _mm_setzero_pd();
465             GMX_MM_TRANSPOSE2_PD(Y,F);
466             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
467             H                = _mm_setzero_pd();
468             GMX_MM_TRANSPOSE2_PD(G,H);
469             Heps             = _mm_mul_pd(vfeps,H);
470             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
471             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
472             vvdw6            = _mm_mul_pd(c6_00,VV);
473             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
474             fvdw6            = _mm_mul_pd(c6_00,FF);
475
476             /* CUBIC SPLINE TABLE REPULSION */
477             vfitab           = _mm_add_epi32(vfitab,ifour);
478             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
479             F                = _mm_setzero_pd();
480             GMX_MM_TRANSPOSE2_PD(Y,F);
481             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
482             H                = _mm_setzero_pd();
483             GMX_MM_TRANSPOSE2_PD(G,H);
484             Heps             = _mm_mul_pd(vfeps,H);
485             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
486             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
487             vvdw12           = _mm_mul_pd(c12_00,VV);
488             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
489             fvdw12           = _mm_mul_pd(c12_00,FF);
490             vvdw             = _mm_add_pd(vvdw12,vvdw6);
491             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
492
493             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
494
495             /* Update potential sum for this i atom from the interaction with this j atom. */
496             velec            = _mm_and_pd(velec,cutoff_mask);
497             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
498             velecsum         = _mm_add_pd(velecsum,velec);
499             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
500             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
501             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
502
503             fscal            = _mm_add_pd(felec,fvdw);
504
505             fscal            = _mm_and_pd(fscal,cutoff_mask);
506
507             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
508
509             /* Calculate temporary vectorial force */
510             tx               = _mm_mul_pd(fscal,dx00);
511             ty               = _mm_mul_pd(fscal,dy00);
512             tz               = _mm_mul_pd(fscal,dz00);
513
514             /* Update vectorial force */
515             fix0             = _mm_add_pd(fix0,tx);
516             fiy0             = _mm_add_pd(fiy0,ty);
517             fiz0             = _mm_add_pd(fiz0,tz);
518
519             fjx0             = _mm_add_pd(fjx0,tx);
520             fjy0             = _mm_add_pd(fjy0,ty);
521             fjz0             = _mm_add_pd(fjz0,tz);
522
523             }
524
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             if (gmx_mm_any_lt(rsq10,rcutoff2))
530             {
531
532             /* Compute parameters for interactions between i and j atoms */
533             qq10             = _mm_mul_pd(iq1,jq0);
534
535             /* REACTION-FIELD ELECTROSTATICS */
536             velec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_add_pd(rinv10,_mm_mul_pd(krf,rsq10)),crf));
537             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
538
539             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
540
541             /* Update potential sum for this i atom from the interaction with this j atom. */
542             velec            = _mm_and_pd(velec,cutoff_mask);
543             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
544             velecsum         = _mm_add_pd(velecsum,velec);
545
546             fscal            = felec;
547
548             fscal            = _mm_and_pd(fscal,cutoff_mask);
549
550             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
551
552             /* Calculate temporary vectorial force */
553             tx               = _mm_mul_pd(fscal,dx10);
554             ty               = _mm_mul_pd(fscal,dy10);
555             tz               = _mm_mul_pd(fscal,dz10);
556
557             /* Update vectorial force */
558             fix1             = _mm_add_pd(fix1,tx);
559             fiy1             = _mm_add_pd(fiy1,ty);
560             fiz1             = _mm_add_pd(fiz1,tz);
561
562             fjx0             = _mm_add_pd(fjx0,tx);
563             fjy0             = _mm_add_pd(fjy0,ty);
564             fjz0             = _mm_add_pd(fjz0,tz);
565
566             }
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             if (gmx_mm_any_lt(rsq20,rcutoff2))
573             {
574
575             /* Compute parameters for interactions between i and j atoms */
576             qq20             = _mm_mul_pd(iq2,jq0);
577
578             /* REACTION-FIELD ELECTROSTATICS */
579             velec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_add_pd(rinv20,_mm_mul_pd(krf,rsq20)),crf));
580             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
581
582             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm_and_pd(velec,cutoff_mask);
586             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
587             velecsum         = _mm_add_pd(velecsum,velec);
588
589             fscal            = felec;
590
591             fscal            = _mm_and_pd(fscal,cutoff_mask);
592
593             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm_mul_pd(fscal,dx20);
597             ty               = _mm_mul_pd(fscal,dy20);
598             tz               = _mm_mul_pd(fscal,dz20);
599
600             /* Update vectorial force */
601             fix2             = _mm_add_pd(fix2,tx);
602             fiy2             = _mm_add_pd(fiy2,ty);
603             fiz2             = _mm_add_pd(fiz2,tz);
604
605             fjx0             = _mm_add_pd(fjx0,tx);
606             fjy0             = _mm_add_pd(fjy0,ty);
607             fjz0             = _mm_add_pd(fjz0,tz);
608
609             }
610
611             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
612
613             /* Inner loop uses 147 flops */
614         }
615
616         /* End of innermost loop */
617
618         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
619                                               f+i_coord_offset,fshift+i_shift_offset);
620
621         ggid                        = gid[iidx];
622         /* Update potential energies */
623         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
624         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
625
626         /* Increment number of inner iterations */
627         inneriter                  += j_index_end - j_index_start;
628
629         /* Outer loop uses 20 flops */
630     }
631
632     /* Increment number of outer iterations */
633     outeriter        += nri;
634
635     /* Update outer/inner flops */
636
637     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*147);
638 }
639 /*
640  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse2_double
641  * Electrostatics interaction: ReactionField
642  * VdW interaction:            CubicSplineTable
643  * Geometry:                   Water3-Particle
644  * Calculate force/pot:        Force
645  */
646 void
647 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_sse2_double
648                     (t_nblist                    * gmx_restrict       nlist,
649                      rvec                        * gmx_restrict          xx,
650                      rvec                        * gmx_restrict          ff,
651                      t_forcerec                  * gmx_restrict          fr,
652                      t_mdatoms                   * gmx_restrict     mdatoms,
653                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
654                      t_nrnb                      * gmx_restrict        nrnb)
655 {
656     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
657      * just 0 for non-waters.
658      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
659      * jnr indices corresponding to data put in the four positions in the SIMD register.
660      */
661     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
662     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
663     int              jnrA,jnrB;
664     int              j_coord_offsetA,j_coord_offsetB;
665     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
666     real             rcutoff_scalar;
667     real             *shiftvec,*fshift,*x,*f;
668     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
669     int              vdwioffset0;
670     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
671     int              vdwioffset1;
672     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
673     int              vdwioffset2;
674     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
675     int              vdwjidx0A,vdwjidx0B;
676     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
677     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
678     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
679     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
680     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
681     real             *charge;
682     int              nvdwtype;
683     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
684     int              *vdwtype;
685     real             *vdwparam;
686     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
687     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
688     __m128i          vfitab;
689     __m128i          ifour       = _mm_set1_epi32(4);
690     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
691     real             *vftab;
692     __m128d          dummy_mask,cutoff_mask;
693     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
694     __m128d          one     = _mm_set1_pd(1.0);
695     __m128d          two     = _mm_set1_pd(2.0);
696     x                = xx[0];
697     f                = ff[0];
698
699     nri              = nlist->nri;
700     iinr             = nlist->iinr;
701     jindex           = nlist->jindex;
702     jjnr             = nlist->jjnr;
703     shiftidx         = nlist->shift;
704     gid              = nlist->gid;
705     shiftvec         = fr->shift_vec[0];
706     fshift           = fr->fshift[0];
707     facel            = _mm_set1_pd(fr->epsfac);
708     charge           = mdatoms->chargeA;
709     krf              = _mm_set1_pd(fr->ic->k_rf);
710     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
711     crf              = _mm_set1_pd(fr->ic->c_rf);
712     nvdwtype         = fr->ntype;
713     vdwparam         = fr->nbfp;
714     vdwtype          = mdatoms->typeA;
715
716     vftab            = kernel_data->table_vdw->data;
717     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
718
719     /* Setup water-specific parameters */
720     inr              = nlist->iinr[0];
721     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
722     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
723     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
724     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
725
726     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
727     rcutoff_scalar   = fr->rcoulomb;
728     rcutoff          = _mm_set1_pd(rcutoff_scalar);
729     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
730
731     /* Avoid stupid compiler warnings */
732     jnrA = jnrB = 0;
733     j_coord_offsetA = 0;
734     j_coord_offsetB = 0;
735
736     outeriter        = 0;
737     inneriter        = 0;
738
739     /* Start outer loop over neighborlists */
740     for(iidx=0; iidx<nri; iidx++)
741     {
742         /* Load shift vector for this list */
743         i_shift_offset   = DIM*shiftidx[iidx];
744
745         /* Load limits for loop over neighbors */
746         j_index_start    = jindex[iidx];
747         j_index_end      = jindex[iidx+1];
748
749         /* Get outer coordinate index */
750         inr              = iinr[iidx];
751         i_coord_offset   = DIM*inr;
752
753         /* Load i particle coords and add shift vector */
754         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
755                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
756
757         fix0             = _mm_setzero_pd();
758         fiy0             = _mm_setzero_pd();
759         fiz0             = _mm_setzero_pd();
760         fix1             = _mm_setzero_pd();
761         fiy1             = _mm_setzero_pd();
762         fiz1             = _mm_setzero_pd();
763         fix2             = _mm_setzero_pd();
764         fiy2             = _mm_setzero_pd();
765         fiz2             = _mm_setzero_pd();
766
767         /* Start inner kernel loop */
768         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
769         {
770
771             /* Get j neighbor index, and coordinate index */
772             jnrA             = jjnr[jidx];
773             jnrB             = jjnr[jidx+1];
774             j_coord_offsetA  = DIM*jnrA;
775             j_coord_offsetB  = DIM*jnrB;
776
777             /* load j atom coordinates */
778             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
779                                               &jx0,&jy0,&jz0);
780
781             /* Calculate displacement vector */
782             dx00             = _mm_sub_pd(ix0,jx0);
783             dy00             = _mm_sub_pd(iy0,jy0);
784             dz00             = _mm_sub_pd(iz0,jz0);
785             dx10             = _mm_sub_pd(ix1,jx0);
786             dy10             = _mm_sub_pd(iy1,jy0);
787             dz10             = _mm_sub_pd(iz1,jz0);
788             dx20             = _mm_sub_pd(ix2,jx0);
789             dy20             = _mm_sub_pd(iy2,jy0);
790             dz20             = _mm_sub_pd(iz2,jz0);
791
792             /* Calculate squared distance and things based on it */
793             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
794             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
795             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
796
797             rinv00           = gmx_mm_invsqrt_pd(rsq00);
798             rinv10           = gmx_mm_invsqrt_pd(rsq10);
799             rinv20           = gmx_mm_invsqrt_pd(rsq20);
800
801             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
802             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
803             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
804
805             /* Load parameters for j particles */
806             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
807             vdwjidx0A        = 2*vdwtype[jnrA+0];
808             vdwjidx0B        = 2*vdwtype[jnrB+0];
809
810             fjx0             = _mm_setzero_pd();
811             fjy0             = _mm_setzero_pd();
812             fjz0             = _mm_setzero_pd();
813
814             /**************************
815              * CALCULATE INTERACTIONS *
816              **************************/
817
818             if (gmx_mm_any_lt(rsq00,rcutoff2))
819             {
820
821             r00              = _mm_mul_pd(rsq00,rinv00);
822
823             /* Compute parameters for interactions between i and j atoms */
824             qq00             = _mm_mul_pd(iq0,jq0);
825             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
826                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
827
828             /* Calculate table index by multiplying r with table scale and truncate to integer */
829             rt               = _mm_mul_pd(r00,vftabscale);
830             vfitab           = _mm_cvttpd_epi32(rt);
831             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
832             vfitab           = _mm_slli_epi32(vfitab,3);
833
834             /* REACTION-FIELD ELECTROSTATICS */
835             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
836
837             /* CUBIC SPLINE TABLE DISPERSION */
838             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
839             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
840             GMX_MM_TRANSPOSE2_PD(Y,F);
841             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
842             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
843             GMX_MM_TRANSPOSE2_PD(G,H);
844             Heps             = _mm_mul_pd(vfeps,H);
845             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
846             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
847             fvdw6            = _mm_mul_pd(c6_00,FF);
848
849             /* CUBIC SPLINE TABLE REPULSION */
850             vfitab           = _mm_add_epi32(vfitab,ifour);
851             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
852             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
853             GMX_MM_TRANSPOSE2_PD(Y,F);
854             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
855             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
856             GMX_MM_TRANSPOSE2_PD(G,H);
857             Heps             = _mm_mul_pd(vfeps,H);
858             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
859             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
860             fvdw12           = _mm_mul_pd(c12_00,FF);
861             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
862
863             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
864
865             fscal            = _mm_add_pd(felec,fvdw);
866
867             fscal            = _mm_and_pd(fscal,cutoff_mask);
868
869             /* Calculate temporary vectorial force */
870             tx               = _mm_mul_pd(fscal,dx00);
871             ty               = _mm_mul_pd(fscal,dy00);
872             tz               = _mm_mul_pd(fscal,dz00);
873
874             /* Update vectorial force */
875             fix0             = _mm_add_pd(fix0,tx);
876             fiy0             = _mm_add_pd(fiy0,ty);
877             fiz0             = _mm_add_pd(fiz0,tz);
878
879             fjx0             = _mm_add_pd(fjx0,tx);
880             fjy0             = _mm_add_pd(fjy0,ty);
881             fjz0             = _mm_add_pd(fjz0,tz);
882
883             }
884
885             /**************************
886              * CALCULATE INTERACTIONS *
887              **************************/
888
889             if (gmx_mm_any_lt(rsq10,rcutoff2))
890             {
891
892             /* Compute parameters for interactions between i and j atoms */
893             qq10             = _mm_mul_pd(iq1,jq0);
894
895             /* REACTION-FIELD ELECTROSTATICS */
896             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
897
898             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
899
900             fscal            = felec;
901
902             fscal            = _mm_and_pd(fscal,cutoff_mask);
903
904             /* Calculate temporary vectorial force */
905             tx               = _mm_mul_pd(fscal,dx10);
906             ty               = _mm_mul_pd(fscal,dy10);
907             tz               = _mm_mul_pd(fscal,dz10);
908
909             /* Update vectorial force */
910             fix1             = _mm_add_pd(fix1,tx);
911             fiy1             = _mm_add_pd(fiy1,ty);
912             fiz1             = _mm_add_pd(fiz1,tz);
913
914             fjx0             = _mm_add_pd(fjx0,tx);
915             fjy0             = _mm_add_pd(fjy0,ty);
916             fjz0             = _mm_add_pd(fjz0,tz);
917
918             }
919
920             /**************************
921              * CALCULATE INTERACTIONS *
922              **************************/
923
924             if (gmx_mm_any_lt(rsq20,rcutoff2))
925             {
926
927             /* Compute parameters for interactions between i and j atoms */
928             qq20             = _mm_mul_pd(iq2,jq0);
929
930             /* REACTION-FIELD ELECTROSTATICS */
931             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
932
933             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
934
935             fscal            = felec;
936
937             fscal            = _mm_and_pd(fscal,cutoff_mask);
938
939             /* Calculate temporary vectorial force */
940             tx               = _mm_mul_pd(fscal,dx20);
941             ty               = _mm_mul_pd(fscal,dy20);
942             tz               = _mm_mul_pd(fscal,dz20);
943
944             /* Update vectorial force */
945             fix2             = _mm_add_pd(fix2,tx);
946             fiy2             = _mm_add_pd(fiy2,ty);
947             fiz2             = _mm_add_pd(fiz2,tz);
948
949             fjx0             = _mm_add_pd(fjx0,tx);
950             fjy0             = _mm_add_pd(fjy0,ty);
951             fjz0             = _mm_add_pd(fjz0,tz);
952
953             }
954
955             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
956
957             /* Inner loop uses 120 flops */
958         }
959
960         if(jidx<j_index_end)
961         {
962
963             jnrA             = jjnr[jidx];
964             j_coord_offsetA  = DIM*jnrA;
965
966             /* load j atom coordinates */
967             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
968                                               &jx0,&jy0,&jz0);
969
970             /* Calculate displacement vector */
971             dx00             = _mm_sub_pd(ix0,jx0);
972             dy00             = _mm_sub_pd(iy0,jy0);
973             dz00             = _mm_sub_pd(iz0,jz0);
974             dx10             = _mm_sub_pd(ix1,jx0);
975             dy10             = _mm_sub_pd(iy1,jy0);
976             dz10             = _mm_sub_pd(iz1,jz0);
977             dx20             = _mm_sub_pd(ix2,jx0);
978             dy20             = _mm_sub_pd(iy2,jy0);
979             dz20             = _mm_sub_pd(iz2,jz0);
980
981             /* Calculate squared distance and things based on it */
982             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
983             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
984             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
985
986             rinv00           = gmx_mm_invsqrt_pd(rsq00);
987             rinv10           = gmx_mm_invsqrt_pd(rsq10);
988             rinv20           = gmx_mm_invsqrt_pd(rsq20);
989
990             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
991             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
992             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
993
994             /* Load parameters for j particles */
995             jq0              = _mm_load_sd(charge+jnrA+0);
996             vdwjidx0A        = 2*vdwtype[jnrA+0];
997
998             fjx0             = _mm_setzero_pd();
999             fjy0             = _mm_setzero_pd();
1000             fjz0             = _mm_setzero_pd();
1001
1002             /**************************
1003              * CALCULATE INTERACTIONS *
1004              **************************/
1005
1006             if (gmx_mm_any_lt(rsq00,rcutoff2))
1007             {
1008
1009             r00              = _mm_mul_pd(rsq00,rinv00);
1010
1011             /* Compute parameters for interactions between i and j atoms */
1012             qq00             = _mm_mul_pd(iq0,jq0);
1013             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1014
1015             /* Calculate table index by multiplying r with table scale and truncate to integer */
1016             rt               = _mm_mul_pd(r00,vftabscale);
1017             vfitab           = _mm_cvttpd_epi32(rt);
1018             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1019             vfitab           = _mm_slli_epi32(vfitab,3);
1020
1021             /* REACTION-FIELD ELECTROSTATICS */
1022             felec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_mul_pd(rinv00,rinvsq00),krf2));
1023
1024             /* CUBIC SPLINE TABLE DISPERSION */
1025             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1026             F                = _mm_setzero_pd();
1027             GMX_MM_TRANSPOSE2_PD(Y,F);
1028             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1029             H                = _mm_setzero_pd();
1030             GMX_MM_TRANSPOSE2_PD(G,H);
1031             Heps             = _mm_mul_pd(vfeps,H);
1032             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1033             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1034             fvdw6            = _mm_mul_pd(c6_00,FF);
1035
1036             /* CUBIC SPLINE TABLE REPULSION */
1037             vfitab           = _mm_add_epi32(vfitab,ifour);
1038             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1039             F                = _mm_setzero_pd();
1040             GMX_MM_TRANSPOSE2_PD(Y,F);
1041             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1042             H                = _mm_setzero_pd();
1043             GMX_MM_TRANSPOSE2_PD(G,H);
1044             Heps             = _mm_mul_pd(vfeps,H);
1045             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1046             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1047             fvdw12           = _mm_mul_pd(c12_00,FF);
1048             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1049
1050             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
1051
1052             fscal            = _mm_add_pd(felec,fvdw);
1053
1054             fscal            = _mm_and_pd(fscal,cutoff_mask);
1055
1056             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1057
1058             /* Calculate temporary vectorial force */
1059             tx               = _mm_mul_pd(fscal,dx00);
1060             ty               = _mm_mul_pd(fscal,dy00);
1061             tz               = _mm_mul_pd(fscal,dz00);
1062
1063             /* Update vectorial force */
1064             fix0             = _mm_add_pd(fix0,tx);
1065             fiy0             = _mm_add_pd(fiy0,ty);
1066             fiz0             = _mm_add_pd(fiz0,tz);
1067
1068             fjx0             = _mm_add_pd(fjx0,tx);
1069             fjy0             = _mm_add_pd(fjy0,ty);
1070             fjz0             = _mm_add_pd(fjz0,tz);
1071
1072             }
1073
1074             /**************************
1075              * CALCULATE INTERACTIONS *
1076              **************************/
1077
1078             if (gmx_mm_any_lt(rsq10,rcutoff2))
1079             {
1080
1081             /* Compute parameters for interactions between i and j atoms */
1082             qq10             = _mm_mul_pd(iq1,jq0);
1083
1084             /* REACTION-FIELD ELECTROSTATICS */
1085             felec            = _mm_mul_pd(qq10,_mm_sub_pd(_mm_mul_pd(rinv10,rinvsq10),krf2));
1086
1087             cutoff_mask      = _mm_cmplt_pd(rsq10,rcutoff2);
1088
1089             fscal            = felec;
1090
1091             fscal            = _mm_and_pd(fscal,cutoff_mask);
1092
1093             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1094
1095             /* Calculate temporary vectorial force */
1096             tx               = _mm_mul_pd(fscal,dx10);
1097             ty               = _mm_mul_pd(fscal,dy10);
1098             tz               = _mm_mul_pd(fscal,dz10);
1099
1100             /* Update vectorial force */
1101             fix1             = _mm_add_pd(fix1,tx);
1102             fiy1             = _mm_add_pd(fiy1,ty);
1103             fiz1             = _mm_add_pd(fiz1,tz);
1104
1105             fjx0             = _mm_add_pd(fjx0,tx);
1106             fjy0             = _mm_add_pd(fjy0,ty);
1107             fjz0             = _mm_add_pd(fjz0,tz);
1108
1109             }
1110
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             if (gmx_mm_any_lt(rsq20,rcutoff2))
1116             {
1117
1118             /* Compute parameters for interactions between i and j atoms */
1119             qq20             = _mm_mul_pd(iq2,jq0);
1120
1121             /* REACTION-FIELD ELECTROSTATICS */
1122             felec            = _mm_mul_pd(qq20,_mm_sub_pd(_mm_mul_pd(rinv20,rinvsq20),krf2));
1123
1124             cutoff_mask      = _mm_cmplt_pd(rsq20,rcutoff2);
1125
1126             fscal            = felec;
1127
1128             fscal            = _mm_and_pd(fscal,cutoff_mask);
1129
1130             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1131
1132             /* Calculate temporary vectorial force */
1133             tx               = _mm_mul_pd(fscal,dx20);
1134             ty               = _mm_mul_pd(fscal,dy20);
1135             tz               = _mm_mul_pd(fscal,dz20);
1136
1137             /* Update vectorial force */
1138             fix2             = _mm_add_pd(fix2,tx);
1139             fiy2             = _mm_add_pd(fiy2,ty);
1140             fiz2             = _mm_add_pd(fiz2,tz);
1141
1142             fjx0             = _mm_add_pd(fjx0,tx);
1143             fjy0             = _mm_add_pd(fjy0,ty);
1144             fjz0             = _mm_add_pd(fjz0,tz);
1145
1146             }
1147
1148             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1149
1150             /* Inner loop uses 120 flops */
1151         }
1152
1153         /* End of innermost loop */
1154
1155         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1156                                               f+i_coord_offset,fshift+i_shift_offset);
1157
1158         /* Increment number of inner iterations */
1159         inneriter                  += j_index_end - j_index_start;
1160
1161         /* Outer loop uses 18 flops */
1162     }
1163
1164     /* Increment number of outer iterations */
1165     outeriter        += nri;
1166
1167     /* Update outer/inner flops */
1168
1169     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*120);
1170 }