Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecNone_VdwLJ_GeomP1P1_sse2_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_sse2_double
51  * Electrostatics interaction: None
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     int              nvdwtype;
85     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
86     int              *vdwtype;
87     real             *vdwparam;
88     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
89     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
90     __m128d          dummy_mask,cutoff_mask;
91     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
92     __m128d          one     = _mm_set1_pd(1.0);
93     __m128d          two     = _mm_set1_pd(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     /* Avoid stupid compiler warnings */
110     jnrA = jnrB = 0;
111     j_coord_offsetA = 0;
112     j_coord_offsetB = 0;
113
114     outeriter        = 0;
115     inneriter        = 0;
116
117     /* Start outer loop over neighborlists */
118     for(iidx=0; iidx<nri; iidx++)
119     {
120         /* Load shift vector for this list */
121         i_shift_offset   = DIM*shiftidx[iidx];
122
123         /* Load limits for loop over neighbors */
124         j_index_start    = jindex[iidx];
125         j_index_end      = jindex[iidx+1];
126
127         /* Get outer coordinate index */
128         inr              = iinr[iidx];
129         i_coord_offset   = DIM*inr;
130
131         /* Load i particle coords and add shift vector */
132         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
133
134         fix0             = _mm_setzero_pd();
135         fiy0             = _mm_setzero_pd();
136         fiz0             = _mm_setzero_pd();
137
138         /* Load parameters for i particles */
139         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
140
141         /* Reset potential sums */
142         vvdwsum          = _mm_setzero_pd();
143
144         /* Start inner kernel loop */
145         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
146         {
147
148             /* Get j neighbor index, and coordinate index */
149             jnrA             = jjnr[jidx];
150             jnrB             = jjnr[jidx+1];
151             j_coord_offsetA  = DIM*jnrA;
152             j_coord_offsetB  = DIM*jnrB;
153
154             /* load j atom coordinates */
155             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
156                                               &jx0,&jy0,&jz0);
157
158             /* Calculate displacement vector */
159             dx00             = _mm_sub_pd(ix0,jx0);
160             dy00             = _mm_sub_pd(iy0,jy0);
161             dz00             = _mm_sub_pd(iz0,jz0);
162
163             /* Calculate squared distance and things based on it */
164             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
165
166             rinvsq00         = sse2_inv_d(rsq00);
167
168             /* Load parameters for j particles */
169             vdwjidx0A        = 2*vdwtype[jnrA+0];
170             vdwjidx0B        = 2*vdwtype[jnrB+0];
171
172             /**************************
173              * CALCULATE INTERACTIONS *
174              **************************/
175
176             /* Compute parameters for interactions between i and j atoms */
177             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
178                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
179
180             /* LENNARD-JONES DISPERSION/REPULSION */
181
182             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
183             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
184             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
185             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
186             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
187
188             /* Update potential sum for this i atom from the interaction with this j atom. */
189             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
190
191             fscal            = fvdw;
192
193             /* Calculate temporary vectorial force */
194             tx               = _mm_mul_pd(fscal,dx00);
195             ty               = _mm_mul_pd(fscal,dy00);
196             tz               = _mm_mul_pd(fscal,dz00);
197
198             /* Update vectorial force */
199             fix0             = _mm_add_pd(fix0,tx);
200             fiy0             = _mm_add_pd(fiy0,ty);
201             fiz0             = _mm_add_pd(fiz0,tz);
202
203             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
204
205             /* Inner loop uses 32 flops */
206         }
207
208         if(jidx<j_index_end)
209         {
210
211             jnrA             = jjnr[jidx];
212             j_coord_offsetA  = DIM*jnrA;
213
214             /* load j atom coordinates */
215             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
216                                               &jx0,&jy0,&jz0);
217
218             /* Calculate displacement vector */
219             dx00             = _mm_sub_pd(ix0,jx0);
220             dy00             = _mm_sub_pd(iy0,jy0);
221             dz00             = _mm_sub_pd(iz0,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
225
226             rinvsq00         = sse2_inv_d(rsq00);
227
228             /* Load parameters for j particles */
229             vdwjidx0A        = 2*vdwtype[jnrA+0];
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             /* Compute parameters for interactions between i and j atoms */
236             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
237
238             /* LENNARD-JONES DISPERSION/REPULSION */
239
240             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
241             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
242             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
243             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
244             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
245
246             /* Update potential sum for this i atom from the interaction with this j atom. */
247             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
248             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
249
250             fscal            = fvdw;
251
252             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
253
254             /* Calculate temporary vectorial force */
255             tx               = _mm_mul_pd(fscal,dx00);
256             ty               = _mm_mul_pd(fscal,dy00);
257             tz               = _mm_mul_pd(fscal,dz00);
258
259             /* Update vectorial force */
260             fix0             = _mm_add_pd(fix0,tx);
261             fiy0             = _mm_add_pd(fiy0,ty);
262             fiz0             = _mm_add_pd(fiz0,tz);
263
264             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
265
266             /* Inner loop uses 32 flops */
267         }
268
269         /* End of innermost loop */
270
271         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
272                                               f+i_coord_offset,fshift+i_shift_offset);
273
274         ggid                        = gid[iidx];
275         /* Update potential energies */
276         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
277
278         /* Increment number of inner iterations */
279         inneriter                  += j_index_end - j_index_start;
280
281         /* Outer loop uses 7 flops */
282     }
283
284     /* Increment number of outer iterations */
285     outeriter        += nri;
286
287     /* Update outer/inner flops */
288
289     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*32);
290 }
291 /*
292  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_sse2_double
293  * Electrostatics interaction: None
294  * VdW interaction:            LennardJones
295  * Geometry:                   Particle-Particle
296  * Calculate force/pot:        Force
297  */
298 void
299 nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_sse2_double
300                     (t_nblist                    * gmx_restrict       nlist,
301                      rvec                        * gmx_restrict          xx,
302                      rvec                        * gmx_restrict          ff,
303                      struct t_forcerec           * gmx_restrict          fr,
304                      t_mdatoms                   * gmx_restrict     mdatoms,
305                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
306                      t_nrnb                      * gmx_restrict        nrnb)
307 {
308     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
309      * just 0 for non-waters.
310      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
311      * jnr indices corresponding to data put in the four positions in the SIMD register.
312      */
313     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
314     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
315     int              jnrA,jnrB;
316     int              j_coord_offsetA,j_coord_offsetB;
317     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
318     real             rcutoff_scalar;
319     real             *shiftvec,*fshift,*x,*f;
320     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
321     int              vdwioffset0;
322     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
323     int              vdwjidx0A,vdwjidx0B;
324     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
325     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
326     int              nvdwtype;
327     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
328     int              *vdwtype;
329     real             *vdwparam;
330     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
331     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
332     __m128d          dummy_mask,cutoff_mask;
333     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
334     __m128d          one     = _mm_set1_pd(1.0);
335     __m128d          two     = _mm_set1_pd(2.0);
336     x                = xx[0];
337     f                = ff[0];
338
339     nri              = nlist->nri;
340     iinr             = nlist->iinr;
341     jindex           = nlist->jindex;
342     jjnr             = nlist->jjnr;
343     shiftidx         = nlist->shift;
344     gid              = nlist->gid;
345     shiftvec         = fr->shift_vec[0];
346     fshift           = fr->fshift[0];
347     nvdwtype         = fr->ntype;
348     vdwparam         = fr->nbfp;
349     vdwtype          = mdatoms->typeA;
350
351     /* Avoid stupid compiler warnings */
352     jnrA = jnrB = 0;
353     j_coord_offsetA = 0;
354     j_coord_offsetB = 0;
355
356     outeriter        = 0;
357     inneriter        = 0;
358
359     /* Start outer loop over neighborlists */
360     for(iidx=0; iidx<nri; iidx++)
361     {
362         /* Load shift vector for this list */
363         i_shift_offset   = DIM*shiftidx[iidx];
364
365         /* Load limits for loop over neighbors */
366         j_index_start    = jindex[iidx];
367         j_index_end      = jindex[iidx+1];
368
369         /* Get outer coordinate index */
370         inr              = iinr[iidx];
371         i_coord_offset   = DIM*inr;
372
373         /* Load i particle coords and add shift vector */
374         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
375
376         fix0             = _mm_setzero_pd();
377         fiy0             = _mm_setzero_pd();
378         fiz0             = _mm_setzero_pd();
379
380         /* Load parameters for i particles */
381         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
382
383         /* Start inner kernel loop */
384         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
385         {
386
387             /* Get j neighbor index, and coordinate index */
388             jnrA             = jjnr[jidx];
389             jnrB             = jjnr[jidx+1];
390             j_coord_offsetA  = DIM*jnrA;
391             j_coord_offsetB  = DIM*jnrB;
392
393             /* load j atom coordinates */
394             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
395                                               &jx0,&jy0,&jz0);
396
397             /* Calculate displacement vector */
398             dx00             = _mm_sub_pd(ix0,jx0);
399             dy00             = _mm_sub_pd(iy0,jy0);
400             dz00             = _mm_sub_pd(iz0,jz0);
401
402             /* Calculate squared distance and things based on it */
403             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
404
405             rinvsq00         = sse2_inv_d(rsq00);
406
407             /* Load parameters for j particles */
408             vdwjidx0A        = 2*vdwtype[jnrA+0];
409             vdwjidx0B        = 2*vdwtype[jnrB+0];
410
411             /**************************
412              * CALCULATE INTERACTIONS *
413              **************************/
414
415             /* Compute parameters for interactions between i and j atoms */
416             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
417                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
418
419             /* LENNARD-JONES DISPERSION/REPULSION */
420
421             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
422             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
423
424             fscal            = fvdw;
425
426             /* Calculate temporary vectorial force */
427             tx               = _mm_mul_pd(fscal,dx00);
428             ty               = _mm_mul_pd(fscal,dy00);
429             tz               = _mm_mul_pd(fscal,dz00);
430
431             /* Update vectorial force */
432             fix0             = _mm_add_pd(fix0,tx);
433             fiy0             = _mm_add_pd(fiy0,ty);
434             fiz0             = _mm_add_pd(fiz0,tz);
435
436             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
437
438             /* Inner loop uses 27 flops */
439         }
440
441         if(jidx<j_index_end)
442         {
443
444             jnrA             = jjnr[jidx];
445             j_coord_offsetA  = DIM*jnrA;
446
447             /* load j atom coordinates */
448             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
449                                               &jx0,&jy0,&jz0);
450
451             /* Calculate displacement vector */
452             dx00             = _mm_sub_pd(ix0,jx0);
453             dy00             = _mm_sub_pd(iy0,jy0);
454             dz00             = _mm_sub_pd(iz0,jz0);
455
456             /* Calculate squared distance and things based on it */
457             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
458
459             rinvsq00         = sse2_inv_d(rsq00);
460
461             /* Load parameters for j particles */
462             vdwjidx0A        = 2*vdwtype[jnrA+0];
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             /* Compute parameters for interactions between i and j atoms */
469             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
470
471             /* LENNARD-JONES DISPERSION/REPULSION */
472
473             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
474             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
475
476             fscal            = fvdw;
477
478             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
479
480             /* Calculate temporary vectorial force */
481             tx               = _mm_mul_pd(fscal,dx00);
482             ty               = _mm_mul_pd(fscal,dy00);
483             tz               = _mm_mul_pd(fscal,dz00);
484
485             /* Update vectorial force */
486             fix0             = _mm_add_pd(fix0,tx);
487             fiy0             = _mm_add_pd(fiy0,ty);
488             fiz0             = _mm_add_pd(fiz0,tz);
489
490             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
491
492             /* Inner loop uses 27 flops */
493         }
494
495         /* End of innermost loop */
496
497         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
498                                               f+i_coord_offset,fshift+i_shift_offset);
499
500         /* Increment number of inner iterations */
501         inneriter                  += j_index_end - j_index_start;
502
503         /* Outer loop uses 6 flops */
504     }
505
506     /* Increment number of outer iterations */
507     outeriter        += nri;
508
509     /* Update outer/inner flops */
510
511     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*27);
512 }