Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecNone_VdwLJ_GeomP1P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_sse2_double
38  * Electrostatics interaction: None
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     int              nvdwtype;
72     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
73     int              *vdwtype;
74     real             *vdwparam;
75     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
76     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
77     __m128d          dummy_mask,cutoff_mask;
78     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
79     __m128d          one     = _mm_set1_pd(1.0);
80     __m128d          two     = _mm_set1_pd(2.0);
81     x                = xx[0];
82     f                = ff[0];
83
84     nri              = nlist->nri;
85     iinr             = nlist->iinr;
86     jindex           = nlist->jindex;
87     jjnr             = nlist->jjnr;
88     shiftidx         = nlist->shift;
89     gid              = nlist->gid;
90     shiftvec         = fr->shift_vec[0];
91     fshift           = fr->fshift[0];
92     nvdwtype         = fr->ntype;
93     vdwparam         = fr->nbfp;
94     vdwtype          = mdatoms->typeA;
95
96     /* Avoid stupid compiler warnings */
97     jnrA = jnrB = 0;
98     j_coord_offsetA = 0;
99     j_coord_offsetB = 0;
100
101     outeriter        = 0;
102     inneriter        = 0;
103
104     /* Start outer loop over neighborlists */
105     for(iidx=0; iidx<nri; iidx++)
106     {
107         /* Load shift vector for this list */
108         i_shift_offset   = DIM*shiftidx[iidx];
109
110         /* Load limits for loop over neighbors */
111         j_index_start    = jindex[iidx];
112         j_index_end      = jindex[iidx+1];
113
114         /* Get outer coordinate index */
115         inr              = iinr[iidx];
116         i_coord_offset   = DIM*inr;
117
118         /* Load i particle coords and add shift vector */
119         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
120
121         fix0             = _mm_setzero_pd();
122         fiy0             = _mm_setzero_pd();
123         fiz0             = _mm_setzero_pd();
124
125         /* Load parameters for i particles */
126         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
127
128         /* Reset potential sums */
129         vvdwsum          = _mm_setzero_pd();
130
131         /* Start inner kernel loop */
132         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
133         {
134
135             /* Get j neighbor index, and coordinate index */
136             jnrA             = jjnr[jidx];
137             jnrB             = jjnr[jidx+1];
138             j_coord_offsetA  = DIM*jnrA;
139             j_coord_offsetB  = DIM*jnrB;
140             
141             /* load j atom coordinates */
142             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
143                                               &jx0,&jy0,&jz0);
144             
145             /* Calculate displacement vector */
146             dx00             = _mm_sub_pd(ix0,jx0);
147             dy00             = _mm_sub_pd(iy0,jy0);
148             dz00             = _mm_sub_pd(iz0,jz0);
149
150             /* Calculate squared distance and things based on it */
151             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
152
153             rinvsq00         = gmx_mm_inv_pd(rsq00);
154
155             /* Load parameters for j particles */
156             vdwjidx0A        = 2*vdwtype[jnrA+0];
157             vdwjidx0B        = 2*vdwtype[jnrB+0];
158
159             /**************************
160              * CALCULATE INTERACTIONS *
161              **************************/
162
163             /* Compute parameters for interactions between i and j atoms */
164             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
165                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
166
167             /* LENNARD-JONES DISPERSION/REPULSION */
168
169             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
170             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
171             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
172             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
173             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
174
175             /* Update potential sum for this i atom from the interaction with this j atom. */
176             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
177
178             fscal            = fvdw;
179
180             /* Calculate temporary vectorial force */
181             tx               = _mm_mul_pd(fscal,dx00);
182             ty               = _mm_mul_pd(fscal,dy00);
183             tz               = _mm_mul_pd(fscal,dz00);
184
185             /* Update vectorial force */
186             fix0             = _mm_add_pd(fix0,tx);
187             fiy0             = _mm_add_pd(fiy0,ty);
188             fiz0             = _mm_add_pd(fiz0,tz);
189
190             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
191
192             /* Inner loop uses 32 flops */
193         }
194
195         if(jidx<j_index_end)
196         {
197
198             jnrA             = jjnr[jidx];
199             j_coord_offsetA  = DIM*jnrA;
200
201             /* load j atom coordinates */
202             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
203                                               &jx0,&jy0,&jz0);
204             
205             /* Calculate displacement vector */
206             dx00             = _mm_sub_pd(ix0,jx0);
207             dy00             = _mm_sub_pd(iy0,jy0);
208             dz00             = _mm_sub_pd(iz0,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
212
213             rinvsq00         = gmx_mm_inv_pd(rsq00);
214
215             /* Load parameters for j particles */
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             /* Compute parameters for interactions between i and j atoms */
223             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
224
225             /* LENNARD-JONES DISPERSION/REPULSION */
226
227             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
228             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
229             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
230             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
231             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
232
233             /* Update potential sum for this i atom from the interaction with this j atom. */
234             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
235             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
236
237             fscal            = fvdw;
238
239             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
240
241             /* Calculate temporary vectorial force */
242             tx               = _mm_mul_pd(fscal,dx00);
243             ty               = _mm_mul_pd(fscal,dy00);
244             tz               = _mm_mul_pd(fscal,dz00);
245
246             /* Update vectorial force */
247             fix0             = _mm_add_pd(fix0,tx);
248             fiy0             = _mm_add_pd(fiy0,ty);
249             fiz0             = _mm_add_pd(fiz0,tz);
250
251             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
252
253             /* Inner loop uses 32 flops */
254         }
255
256         /* End of innermost loop */
257
258         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
259                                               f+i_coord_offset,fshift+i_shift_offset);
260
261         ggid                        = gid[iidx];
262         /* Update potential energies */
263         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
264
265         /* Increment number of inner iterations */
266         inneriter                  += j_index_end - j_index_start;
267
268         /* Outer loop uses 7 flops */
269     }
270
271     /* Increment number of outer iterations */
272     outeriter        += nri;
273
274     /* Update outer/inner flops */
275
276     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*32);
277 }
278 /*
279  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_sse2_double
280  * Electrostatics interaction: None
281  * VdW interaction:            LennardJones
282  * Geometry:                   Particle-Particle
283  * Calculate force/pot:        Force
284  */
285 void
286 nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_sse2_double
287                     (t_nblist * gmx_restrict                nlist,
288                      rvec * gmx_restrict                    xx,
289                      rvec * gmx_restrict                    ff,
290                      t_forcerec * gmx_restrict              fr,
291                      t_mdatoms * gmx_restrict               mdatoms,
292                      nb_kernel_data_t * gmx_restrict        kernel_data,
293                      t_nrnb * gmx_restrict                  nrnb)
294 {
295     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
296      * just 0 for non-waters.
297      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
298      * jnr indices corresponding to data put in the four positions in the SIMD register.
299      */
300     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
301     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
302     int              jnrA,jnrB;
303     int              j_coord_offsetA,j_coord_offsetB;
304     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
305     real             rcutoff_scalar;
306     real             *shiftvec,*fshift,*x,*f;
307     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
308     int              vdwioffset0;
309     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
310     int              vdwjidx0A,vdwjidx0B;
311     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
312     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
313     int              nvdwtype;
314     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
315     int              *vdwtype;
316     real             *vdwparam;
317     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
318     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
319     __m128d          dummy_mask,cutoff_mask;
320     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
321     __m128d          one     = _mm_set1_pd(1.0);
322     __m128d          two     = _mm_set1_pd(2.0);
323     x                = xx[0];
324     f                = ff[0];
325
326     nri              = nlist->nri;
327     iinr             = nlist->iinr;
328     jindex           = nlist->jindex;
329     jjnr             = nlist->jjnr;
330     shiftidx         = nlist->shift;
331     gid              = nlist->gid;
332     shiftvec         = fr->shift_vec[0];
333     fshift           = fr->fshift[0];
334     nvdwtype         = fr->ntype;
335     vdwparam         = fr->nbfp;
336     vdwtype          = mdatoms->typeA;
337
338     /* Avoid stupid compiler warnings */
339     jnrA = jnrB = 0;
340     j_coord_offsetA = 0;
341     j_coord_offsetB = 0;
342
343     outeriter        = 0;
344     inneriter        = 0;
345
346     /* Start outer loop over neighborlists */
347     for(iidx=0; iidx<nri; iidx++)
348     {
349         /* Load shift vector for this list */
350         i_shift_offset   = DIM*shiftidx[iidx];
351
352         /* Load limits for loop over neighbors */
353         j_index_start    = jindex[iidx];
354         j_index_end      = jindex[iidx+1];
355
356         /* Get outer coordinate index */
357         inr              = iinr[iidx];
358         i_coord_offset   = DIM*inr;
359
360         /* Load i particle coords and add shift vector */
361         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
362
363         fix0             = _mm_setzero_pd();
364         fiy0             = _mm_setzero_pd();
365         fiz0             = _mm_setzero_pd();
366
367         /* Load parameters for i particles */
368         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
369
370         /* Start inner kernel loop */
371         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
372         {
373
374             /* Get j neighbor index, and coordinate index */
375             jnrA             = jjnr[jidx];
376             jnrB             = jjnr[jidx+1];
377             j_coord_offsetA  = DIM*jnrA;
378             j_coord_offsetB  = DIM*jnrB;
379             
380             /* load j atom coordinates */
381             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
382                                               &jx0,&jy0,&jz0);
383             
384             /* Calculate displacement vector */
385             dx00             = _mm_sub_pd(ix0,jx0);
386             dy00             = _mm_sub_pd(iy0,jy0);
387             dz00             = _mm_sub_pd(iz0,jz0);
388
389             /* Calculate squared distance and things based on it */
390             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
391
392             rinvsq00         = gmx_mm_inv_pd(rsq00);
393
394             /* Load parameters for j particles */
395             vdwjidx0A        = 2*vdwtype[jnrA+0];
396             vdwjidx0B        = 2*vdwtype[jnrB+0];
397
398             /**************************
399              * CALCULATE INTERACTIONS *
400              **************************/
401
402             /* Compute parameters for interactions between i and j atoms */
403             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
404                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
405
406             /* LENNARD-JONES DISPERSION/REPULSION */
407
408             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
409             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
410
411             fscal            = fvdw;
412
413             /* Calculate temporary vectorial force */
414             tx               = _mm_mul_pd(fscal,dx00);
415             ty               = _mm_mul_pd(fscal,dy00);
416             tz               = _mm_mul_pd(fscal,dz00);
417
418             /* Update vectorial force */
419             fix0             = _mm_add_pd(fix0,tx);
420             fiy0             = _mm_add_pd(fiy0,ty);
421             fiz0             = _mm_add_pd(fiz0,tz);
422
423             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
424
425             /* Inner loop uses 27 flops */
426         }
427
428         if(jidx<j_index_end)
429         {
430
431             jnrA             = jjnr[jidx];
432             j_coord_offsetA  = DIM*jnrA;
433
434             /* load j atom coordinates */
435             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
436                                               &jx0,&jy0,&jz0);
437             
438             /* Calculate displacement vector */
439             dx00             = _mm_sub_pd(ix0,jx0);
440             dy00             = _mm_sub_pd(iy0,jy0);
441             dz00             = _mm_sub_pd(iz0,jz0);
442
443             /* Calculate squared distance and things based on it */
444             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
445
446             rinvsq00         = gmx_mm_inv_pd(rsq00);
447
448             /* Load parameters for j particles */
449             vdwjidx0A        = 2*vdwtype[jnrA+0];
450
451             /**************************
452              * CALCULATE INTERACTIONS *
453              **************************/
454
455             /* Compute parameters for interactions between i and j atoms */
456             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
457
458             /* LENNARD-JONES DISPERSION/REPULSION */
459
460             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
461             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
462
463             fscal            = fvdw;
464
465             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
466
467             /* Calculate temporary vectorial force */
468             tx               = _mm_mul_pd(fscal,dx00);
469             ty               = _mm_mul_pd(fscal,dy00);
470             tz               = _mm_mul_pd(fscal,dz00);
471
472             /* Update vectorial force */
473             fix0             = _mm_add_pd(fix0,tx);
474             fiy0             = _mm_add_pd(fiy0,ty);
475             fiz0             = _mm_add_pd(fiz0,tz);
476
477             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
478
479             /* Inner loop uses 27 flops */
480         }
481
482         /* End of innermost loop */
483
484         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
485                                               f+i_coord_offset,fshift+i_shift_offset);
486
487         /* Increment number of inner iterations */
488         inneriter                  += j_index_end - j_index_start;
489
490         /* Outer loop uses 6 flops */
491     }
492
493     /* Increment number of outer iterations */
494     outeriter        += nri;
495
496     /* Update outer/inner flops */
497
498     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*27);
499 }