Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse2_double
52  * Electrostatics interaction: None
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     int              nvdwtype;
86     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
90     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
91     __m128d           c6grid_00;
92     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
93     real             *vdwgridparam;
94     __m128d           one_half = _mm_set1_pd(0.5);
95     __m128d           minus_one = _mm_set1_pd(-1.0);
96     __m128d          dummy_mask,cutoff_mask;
97     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
98     __m128d          one     = _mm_set1_pd(1.0);
99     __m128d          two     = _mm_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114     vdwgridparam     = fr->ljpme_c6grid;
115     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
116     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
117     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
143
144         fix0             = _mm_setzero_pd();
145         fiy0             = _mm_setzero_pd();
146         fiz0             = _mm_setzero_pd();
147
148         /* Load parameters for i particles */
149         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151         /* Reset potential sums */
152         vvdwsum          = _mm_setzero_pd();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163
164             /* load j atom coordinates */
165             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
166                                               &jx0,&jy0,&jz0);
167
168             /* Calculate displacement vector */
169             dx00             = _mm_sub_pd(ix0,jx0);
170             dy00             = _mm_sub_pd(iy0,jy0);
171             dz00             = _mm_sub_pd(iz0,jz0);
172
173             /* Calculate squared distance and things based on it */
174             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
175
176             rinv00           = gmx_mm_invsqrt_pd(rsq00);
177
178             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
179
180             /* Load parameters for j particles */
181             vdwjidx0A        = 2*vdwtype[jnrA+0];
182             vdwjidx0B        = 2*vdwtype[jnrB+0];
183
184             /**************************
185              * CALCULATE INTERACTIONS *
186              **************************/
187
188             r00              = _mm_mul_pd(rsq00,rinv00);
189
190             /* Compute parameters for interactions between i and j atoms */
191             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
192                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
193
194             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
195                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
196
197             /* Analytical LJ-PME */
198             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
199             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
200             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
201             exponent         = gmx_simd_exp_d(ewcljrsq);
202             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
203             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
204             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
205             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
206             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
207             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
208             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
209             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
210
211             /* Update potential sum for this i atom from the interaction with this j atom. */
212             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
213
214             fscal            = fvdw;
215
216             /* Calculate temporary vectorial force */
217             tx               = _mm_mul_pd(fscal,dx00);
218             ty               = _mm_mul_pd(fscal,dy00);
219             tz               = _mm_mul_pd(fscal,dz00);
220
221             /* Update vectorial force */
222             fix0             = _mm_add_pd(fix0,tx);
223             fiy0             = _mm_add_pd(fiy0,ty);
224             fiz0             = _mm_add_pd(fiz0,tz);
225
226             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
227
228             /* Inner loop uses 51 flops */
229         }
230
231         if(jidx<j_index_end)
232         {
233
234             jnrA             = jjnr[jidx];
235             j_coord_offsetA  = DIM*jnrA;
236
237             /* load j atom coordinates */
238             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
239                                               &jx0,&jy0,&jz0);
240
241             /* Calculate displacement vector */
242             dx00             = _mm_sub_pd(ix0,jx0);
243             dy00             = _mm_sub_pd(iy0,jy0);
244             dz00             = _mm_sub_pd(iz0,jz0);
245
246             /* Calculate squared distance and things based on it */
247             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
248
249             rinv00           = gmx_mm_invsqrt_pd(rsq00);
250
251             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
252
253             /* Load parameters for j particles */
254             vdwjidx0A        = 2*vdwtype[jnrA+0];
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             r00              = _mm_mul_pd(rsq00,rinv00);
261
262             /* Compute parameters for interactions between i and j atoms */
263             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
264
265             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
266
267             /* Analytical LJ-PME */
268             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
269             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
270             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
271             exponent         = gmx_simd_exp_d(ewcljrsq);
272             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
273             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
274             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
275             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
276             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
277             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
278             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
279             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
283             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
284
285             fscal            = fvdw;
286
287             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
288
289             /* Calculate temporary vectorial force */
290             tx               = _mm_mul_pd(fscal,dx00);
291             ty               = _mm_mul_pd(fscal,dy00);
292             tz               = _mm_mul_pd(fscal,dz00);
293
294             /* Update vectorial force */
295             fix0             = _mm_add_pd(fix0,tx);
296             fiy0             = _mm_add_pd(fiy0,ty);
297             fiz0             = _mm_add_pd(fiz0,tz);
298
299             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
300
301             /* Inner loop uses 51 flops */
302         }
303
304         /* End of innermost loop */
305
306         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
307                                               f+i_coord_offset,fshift+i_shift_offset);
308
309         ggid                        = gid[iidx];
310         /* Update potential energies */
311         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
312
313         /* Increment number of inner iterations */
314         inneriter                  += j_index_end - j_index_start;
315
316         /* Outer loop uses 7 flops */
317     }
318
319     /* Increment number of outer iterations */
320     outeriter        += nri;
321
322     /* Update outer/inner flops */
323
324     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*51);
325 }
326 /*
327  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse2_double
328  * Electrostatics interaction: None
329  * VdW interaction:            LJEwald
330  * Geometry:                   Particle-Particle
331  * Calculate force/pot:        Force
332  */
333 void
334 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse2_double
335                     (t_nblist                    * gmx_restrict       nlist,
336                      rvec                        * gmx_restrict          xx,
337                      rvec                        * gmx_restrict          ff,
338                      t_forcerec                  * gmx_restrict          fr,
339                      t_mdatoms                   * gmx_restrict     mdatoms,
340                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
341                      t_nrnb                      * gmx_restrict        nrnb)
342 {
343     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
344      * just 0 for non-waters.
345      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
346      * jnr indices corresponding to data put in the four positions in the SIMD register.
347      */
348     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
349     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
350     int              jnrA,jnrB;
351     int              j_coord_offsetA,j_coord_offsetB;
352     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
353     real             rcutoff_scalar;
354     real             *shiftvec,*fshift,*x,*f;
355     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
356     int              vdwioffset0;
357     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
358     int              vdwjidx0A,vdwjidx0B;
359     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
360     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
361     int              nvdwtype;
362     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
363     int              *vdwtype;
364     real             *vdwparam;
365     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
366     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
367     __m128d           c6grid_00;
368     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
369     real             *vdwgridparam;
370     __m128d           one_half = _mm_set1_pd(0.5);
371     __m128d           minus_one = _mm_set1_pd(-1.0);
372     __m128d          dummy_mask,cutoff_mask;
373     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
374     __m128d          one     = _mm_set1_pd(1.0);
375     __m128d          two     = _mm_set1_pd(2.0);
376     x                = xx[0];
377     f                = ff[0];
378
379     nri              = nlist->nri;
380     iinr             = nlist->iinr;
381     jindex           = nlist->jindex;
382     jjnr             = nlist->jjnr;
383     shiftidx         = nlist->shift;
384     gid              = nlist->gid;
385     shiftvec         = fr->shift_vec[0];
386     fshift           = fr->fshift[0];
387     nvdwtype         = fr->ntype;
388     vdwparam         = fr->nbfp;
389     vdwtype          = mdatoms->typeA;
390     vdwgridparam     = fr->ljpme_c6grid;
391     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
392     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
393     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
394
395     /* Avoid stupid compiler warnings */
396     jnrA = jnrB = 0;
397     j_coord_offsetA = 0;
398     j_coord_offsetB = 0;
399
400     outeriter        = 0;
401     inneriter        = 0;
402
403     /* Start outer loop over neighborlists */
404     for(iidx=0; iidx<nri; iidx++)
405     {
406         /* Load shift vector for this list */
407         i_shift_offset   = DIM*shiftidx[iidx];
408
409         /* Load limits for loop over neighbors */
410         j_index_start    = jindex[iidx];
411         j_index_end      = jindex[iidx+1];
412
413         /* Get outer coordinate index */
414         inr              = iinr[iidx];
415         i_coord_offset   = DIM*inr;
416
417         /* Load i particle coords and add shift vector */
418         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
419
420         fix0             = _mm_setzero_pd();
421         fiy0             = _mm_setzero_pd();
422         fiz0             = _mm_setzero_pd();
423
424         /* Load parameters for i particles */
425         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
426
427         /* Start inner kernel loop */
428         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
429         {
430
431             /* Get j neighbor index, and coordinate index */
432             jnrA             = jjnr[jidx];
433             jnrB             = jjnr[jidx+1];
434             j_coord_offsetA  = DIM*jnrA;
435             j_coord_offsetB  = DIM*jnrB;
436
437             /* load j atom coordinates */
438             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
439                                               &jx0,&jy0,&jz0);
440
441             /* Calculate displacement vector */
442             dx00             = _mm_sub_pd(ix0,jx0);
443             dy00             = _mm_sub_pd(iy0,jy0);
444             dz00             = _mm_sub_pd(iz0,jz0);
445
446             /* Calculate squared distance and things based on it */
447             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
448
449             rinv00           = gmx_mm_invsqrt_pd(rsq00);
450
451             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
452
453             /* Load parameters for j particles */
454             vdwjidx0A        = 2*vdwtype[jnrA+0];
455             vdwjidx0B        = 2*vdwtype[jnrB+0];
456
457             /**************************
458              * CALCULATE INTERACTIONS *
459              **************************/
460
461             r00              = _mm_mul_pd(rsq00,rinv00);
462
463             /* Compute parameters for interactions between i and j atoms */
464             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
465                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
466
467             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
468                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
469
470             /* Analytical LJ-PME */
471             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
472             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
473             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
474             exponent         = gmx_simd_exp_d(ewcljrsq);
475             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
476             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
477             /* f6A = 6 * C6grid * (1 - poly) */
478             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
479             /* f6B = C6grid * exponent * beta^6 */
480             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
481             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
482             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
483
484             fscal            = fvdw;
485
486             /* Calculate temporary vectorial force */
487             tx               = _mm_mul_pd(fscal,dx00);
488             ty               = _mm_mul_pd(fscal,dy00);
489             tz               = _mm_mul_pd(fscal,dz00);
490
491             /* Update vectorial force */
492             fix0             = _mm_add_pd(fix0,tx);
493             fiy0             = _mm_add_pd(fiy0,ty);
494             fiz0             = _mm_add_pd(fiz0,tz);
495
496             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
497
498             /* Inner loop uses 46 flops */
499         }
500
501         if(jidx<j_index_end)
502         {
503
504             jnrA             = jjnr[jidx];
505             j_coord_offsetA  = DIM*jnrA;
506
507             /* load j atom coordinates */
508             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
509                                               &jx0,&jy0,&jz0);
510
511             /* Calculate displacement vector */
512             dx00             = _mm_sub_pd(ix0,jx0);
513             dy00             = _mm_sub_pd(iy0,jy0);
514             dz00             = _mm_sub_pd(iz0,jz0);
515
516             /* Calculate squared distance and things based on it */
517             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
518
519             rinv00           = gmx_mm_invsqrt_pd(rsq00);
520
521             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
522
523             /* Load parameters for j particles */
524             vdwjidx0A        = 2*vdwtype[jnrA+0];
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             r00              = _mm_mul_pd(rsq00,rinv00);
531
532             /* Compute parameters for interactions between i and j atoms */
533             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
534
535             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
536
537             /* Analytical LJ-PME */
538             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
539             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
540             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
541             exponent         = gmx_simd_exp_d(ewcljrsq);
542             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
543             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
544             /* f6A = 6 * C6grid * (1 - poly) */
545             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
546             /* f6B = C6grid * exponent * beta^6 */
547             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
548             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
549             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
550
551             fscal            = fvdw;
552
553             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
554
555             /* Calculate temporary vectorial force */
556             tx               = _mm_mul_pd(fscal,dx00);
557             ty               = _mm_mul_pd(fscal,dy00);
558             tz               = _mm_mul_pd(fscal,dz00);
559
560             /* Update vectorial force */
561             fix0             = _mm_add_pd(fix0,tx);
562             fiy0             = _mm_add_pd(fiy0,ty);
563             fiz0             = _mm_add_pd(fiz0,tz);
564
565             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
566
567             /* Inner loop uses 46 flops */
568         }
569
570         /* End of innermost loop */
571
572         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
573                                               f+i_coord_offset,fshift+i_shift_offset);
574
575         /* Increment number of inner iterations */
576         inneriter                  += j_index_end - j_index_start;
577
578         /* Outer loop uses 6 flops */
579     }
580
581     /* Increment number of outer iterations */
582     outeriter        += nri;
583
584     /* Update outer/inner flops */
585
586     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*46);
587 }