Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse2_double
54  * Electrostatics interaction: None
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128d           c6grid_00;
94     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
95     real             *vdwgridparam;
96     __m128d           one_half = _mm_set1_pd(0.5);
97     __m128d           minus_one = _mm_set1_pd(-1.0);
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116     vdwgridparam     = fr->ljpme_c6grid;
117     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
118     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
119     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149
150         /* Load parameters for i particles */
151         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
152
153         /* Reset potential sums */
154         vvdwsum          = _mm_setzero_pd();
155
156         /* Start inner kernel loop */
157         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
158         {
159
160             /* Get j neighbor index, and coordinate index */
161             jnrA             = jjnr[jidx];
162             jnrB             = jjnr[jidx+1];
163             j_coord_offsetA  = DIM*jnrA;
164             j_coord_offsetB  = DIM*jnrB;
165
166             /* load j atom coordinates */
167             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
168                                               &jx0,&jy0,&jz0);
169
170             /* Calculate displacement vector */
171             dx00             = _mm_sub_pd(ix0,jx0);
172             dy00             = _mm_sub_pd(iy0,jy0);
173             dz00             = _mm_sub_pd(iz0,jz0);
174
175             /* Calculate squared distance and things based on it */
176             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
177
178             rinv00           = gmx_mm_invsqrt_pd(rsq00);
179
180             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
181
182             /* Load parameters for j particles */
183             vdwjidx0A        = 2*vdwtype[jnrA+0];
184             vdwjidx0B        = 2*vdwtype[jnrB+0];
185
186             /**************************
187              * CALCULATE INTERACTIONS *
188              **************************/
189
190             r00              = _mm_mul_pd(rsq00,rinv00);
191
192             /* Compute parameters for interactions between i and j atoms */
193             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
194                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
195
196             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
197                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
198
199             /* Analytical LJ-PME */
200             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
201             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
202             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
203             exponent         = gmx_simd_exp_d(ewcljrsq);
204             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
205             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
206             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
207             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
208             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
209             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
210             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
211             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
212
213             /* Update potential sum for this i atom from the interaction with this j atom. */
214             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
215
216             fscal            = fvdw;
217
218             /* Calculate temporary vectorial force */
219             tx               = _mm_mul_pd(fscal,dx00);
220             ty               = _mm_mul_pd(fscal,dy00);
221             tz               = _mm_mul_pd(fscal,dz00);
222
223             /* Update vectorial force */
224             fix0             = _mm_add_pd(fix0,tx);
225             fiy0             = _mm_add_pd(fiy0,ty);
226             fiz0             = _mm_add_pd(fiz0,tz);
227
228             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
229
230             /* Inner loop uses 51 flops */
231         }
232
233         if(jidx<j_index_end)
234         {
235
236             jnrA             = jjnr[jidx];
237             j_coord_offsetA  = DIM*jnrA;
238
239             /* load j atom coordinates */
240             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
241                                               &jx0,&jy0,&jz0);
242
243             /* Calculate displacement vector */
244             dx00             = _mm_sub_pd(ix0,jx0);
245             dy00             = _mm_sub_pd(iy0,jy0);
246             dz00             = _mm_sub_pd(iz0,jz0);
247
248             /* Calculate squared distance and things based on it */
249             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
250
251             rinv00           = gmx_mm_invsqrt_pd(rsq00);
252
253             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
254
255             /* Load parameters for j particles */
256             vdwjidx0A        = 2*vdwtype[jnrA+0];
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             r00              = _mm_mul_pd(rsq00,rinv00);
263
264             /* Compute parameters for interactions between i and j atoms */
265             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
266
267             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
268
269             /* Analytical LJ-PME */
270             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
271             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
272             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
273             exponent         = gmx_simd_exp_d(ewcljrsq);
274             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
275             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
276             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
277             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
278             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
279             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
280             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
281             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
285             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
286
287             fscal            = fvdw;
288
289             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
290
291             /* Calculate temporary vectorial force */
292             tx               = _mm_mul_pd(fscal,dx00);
293             ty               = _mm_mul_pd(fscal,dy00);
294             tz               = _mm_mul_pd(fscal,dz00);
295
296             /* Update vectorial force */
297             fix0             = _mm_add_pd(fix0,tx);
298             fiy0             = _mm_add_pd(fiy0,ty);
299             fiz0             = _mm_add_pd(fiz0,tz);
300
301             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
302
303             /* Inner loop uses 51 flops */
304         }
305
306         /* End of innermost loop */
307
308         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
309                                               f+i_coord_offset,fshift+i_shift_offset);
310
311         ggid                        = gid[iidx];
312         /* Update potential energies */
313         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
314
315         /* Increment number of inner iterations */
316         inneriter                  += j_index_end - j_index_start;
317
318         /* Outer loop uses 7 flops */
319     }
320
321     /* Increment number of outer iterations */
322     outeriter        += nri;
323
324     /* Update outer/inner flops */
325
326     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*51);
327 }
328 /*
329  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse2_double
330  * Electrostatics interaction: None
331  * VdW interaction:            LJEwald
332  * Geometry:                   Particle-Particle
333  * Calculate force/pot:        Force
334  */
335 void
336 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse2_double
337                     (t_nblist                    * gmx_restrict       nlist,
338                      rvec                        * gmx_restrict          xx,
339                      rvec                        * gmx_restrict          ff,
340                      t_forcerec                  * gmx_restrict          fr,
341                      t_mdatoms                   * gmx_restrict     mdatoms,
342                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
343                      t_nrnb                      * gmx_restrict        nrnb)
344 {
345     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
346      * just 0 for non-waters.
347      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
348      * jnr indices corresponding to data put in the four positions in the SIMD register.
349      */
350     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
351     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
352     int              jnrA,jnrB;
353     int              j_coord_offsetA,j_coord_offsetB;
354     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
355     real             rcutoff_scalar;
356     real             *shiftvec,*fshift,*x,*f;
357     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
358     int              vdwioffset0;
359     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
360     int              vdwjidx0A,vdwjidx0B;
361     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
362     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
363     int              nvdwtype;
364     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
365     int              *vdwtype;
366     real             *vdwparam;
367     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
368     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
369     __m128d           c6grid_00;
370     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
371     real             *vdwgridparam;
372     __m128d           one_half = _mm_set1_pd(0.5);
373     __m128d           minus_one = _mm_set1_pd(-1.0);
374     __m128d          dummy_mask,cutoff_mask;
375     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
376     __m128d          one     = _mm_set1_pd(1.0);
377     __m128d          two     = _mm_set1_pd(2.0);
378     x                = xx[0];
379     f                = ff[0];
380
381     nri              = nlist->nri;
382     iinr             = nlist->iinr;
383     jindex           = nlist->jindex;
384     jjnr             = nlist->jjnr;
385     shiftidx         = nlist->shift;
386     gid              = nlist->gid;
387     shiftvec         = fr->shift_vec[0];
388     fshift           = fr->fshift[0];
389     nvdwtype         = fr->ntype;
390     vdwparam         = fr->nbfp;
391     vdwtype          = mdatoms->typeA;
392     vdwgridparam     = fr->ljpme_c6grid;
393     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
394     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
395     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
396
397     /* Avoid stupid compiler warnings */
398     jnrA = jnrB = 0;
399     j_coord_offsetA = 0;
400     j_coord_offsetB = 0;
401
402     outeriter        = 0;
403     inneriter        = 0;
404
405     /* Start outer loop over neighborlists */
406     for(iidx=0; iidx<nri; iidx++)
407     {
408         /* Load shift vector for this list */
409         i_shift_offset   = DIM*shiftidx[iidx];
410
411         /* Load limits for loop over neighbors */
412         j_index_start    = jindex[iidx];
413         j_index_end      = jindex[iidx+1];
414
415         /* Get outer coordinate index */
416         inr              = iinr[iidx];
417         i_coord_offset   = DIM*inr;
418
419         /* Load i particle coords and add shift vector */
420         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
421
422         fix0             = _mm_setzero_pd();
423         fiy0             = _mm_setzero_pd();
424         fiz0             = _mm_setzero_pd();
425
426         /* Load parameters for i particles */
427         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
428
429         /* Start inner kernel loop */
430         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
431         {
432
433             /* Get j neighbor index, and coordinate index */
434             jnrA             = jjnr[jidx];
435             jnrB             = jjnr[jidx+1];
436             j_coord_offsetA  = DIM*jnrA;
437             j_coord_offsetB  = DIM*jnrB;
438
439             /* load j atom coordinates */
440             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
441                                               &jx0,&jy0,&jz0);
442
443             /* Calculate displacement vector */
444             dx00             = _mm_sub_pd(ix0,jx0);
445             dy00             = _mm_sub_pd(iy0,jy0);
446             dz00             = _mm_sub_pd(iz0,jz0);
447
448             /* Calculate squared distance and things based on it */
449             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
450
451             rinv00           = gmx_mm_invsqrt_pd(rsq00);
452
453             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
454
455             /* Load parameters for j particles */
456             vdwjidx0A        = 2*vdwtype[jnrA+0];
457             vdwjidx0B        = 2*vdwtype[jnrB+0];
458
459             /**************************
460              * CALCULATE INTERACTIONS *
461              **************************/
462
463             r00              = _mm_mul_pd(rsq00,rinv00);
464
465             /* Compute parameters for interactions between i and j atoms */
466             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
467                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
468
469             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
470                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
471
472             /* Analytical LJ-PME */
473             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
474             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
475             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
476             exponent         = gmx_simd_exp_d(ewcljrsq);
477             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
478             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
479             /* f6A = 6 * C6grid * (1 - poly) */
480             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
481             /* f6B = C6grid * exponent * beta^6 */
482             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
483             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
484             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
485
486             fscal            = fvdw;
487
488             /* Calculate temporary vectorial force */
489             tx               = _mm_mul_pd(fscal,dx00);
490             ty               = _mm_mul_pd(fscal,dy00);
491             tz               = _mm_mul_pd(fscal,dz00);
492
493             /* Update vectorial force */
494             fix0             = _mm_add_pd(fix0,tx);
495             fiy0             = _mm_add_pd(fiy0,ty);
496             fiz0             = _mm_add_pd(fiz0,tz);
497
498             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
499
500             /* Inner loop uses 46 flops */
501         }
502
503         if(jidx<j_index_end)
504         {
505
506             jnrA             = jjnr[jidx];
507             j_coord_offsetA  = DIM*jnrA;
508
509             /* load j atom coordinates */
510             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
511                                               &jx0,&jy0,&jz0);
512
513             /* Calculate displacement vector */
514             dx00             = _mm_sub_pd(ix0,jx0);
515             dy00             = _mm_sub_pd(iy0,jy0);
516             dz00             = _mm_sub_pd(iz0,jz0);
517
518             /* Calculate squared distance and things based on it */
519             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
520
521             rinv00           = gmx_mm_invsqrt_pd(rsq00);
522
523             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
524
525             /* Load parameters for j particles */
526             vdwjidx0A        = 2*vdwtype[jnrA+0];
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             r00              = _mm_mul_pd(rsq00,rinv00);
533
534             /* Compute parameters for interactions between i and j atoms */
535             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
536
537             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
538
539             /* Analytical LJ-PME */
540             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
541             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
542             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
543             exponent         = gmx_simd_exp_d(ewcljrsq);
544             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
545             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
546             /* f6A = 6 * C6grid * (1 - poly) */
547             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
548             /* f6B = C6grid * exponent * beta^6 */
549             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
550             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
551             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
552
553             fscal            = fvdw;
554
555             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
556
557             /* Calculate temporary vectorial force */
558             tx               = _mm_mul_pd(fscal,dx00);
559             ty               = _mm_mul_pd(fscal,dy00);
560             tz               = _mm_mul_pd(fscal,dz00);
561
562             /* Update vectorial force */
563             fix0             = _mm_add_pd(fix0,tx);
564             fiy0             = _mm_add_pd(fiy0,ty);
565             fiz0             = _mm_add_pd(fiz0,tz);
566
567             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
568
569             /* Inner loop uses 46 flops */
570         }
571
572         /* End of innermost loop */
573
574         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
575                                               f+i_coord_offset,fshift+i_shift_offset);
576
577         /* Increment number of inner iterations */
578         inneriter                  += j_index_end - j_index_start;
579
580         /* Outer loop uses 6 flops */
581     }
582
583     /* Increment number of outer iterations */
584     outeriter        += nri;
585
586     /* Update outer/inner flops */
587
588     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*46);
589 }