Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse2_double
54  * Electrostatics interaction: None
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128d           c6grid_00;
94     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
95     real             *vdwgridparam;
96     __m128d           one_half = _mm_set1_pd(0.5);
97     __m128d           minus_one = _mm_set1_pd(-1.0);
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116     vdwgridparam     = fr->ljpme_c6grid;
117     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
118     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
119     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
120
121     rcutoff_scalar   = fr->rvdw;
122     rcutoff          = _mm_set1_pd(rcutoff_scalar);
123     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
124
125     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
126     rvdw             = _mm_set1_pd(fr->rvdw);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
152
153         fix0             = _mm_setzero_pd();
154         fiy0             = _mm_setzero_pd();
155         fiz0             = _mm_setzero_pd();
156
157         /* Load parameters for i particles */
158         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
159
160         /* Reset potential sums */
161         vvdwsum          = _mm_setzero_pd();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172
173             /* load j atom coordinates */
174             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
175                                               &jx0,&jy0,&jz0);
176
177             /* Calculate displacement vector */
178             dx00             = _mm_sub_pd(ix0,jx0);
179             dy00             = _mm_sub_pd(iy0,jy0);
180             dz00             = _mm_sub_pd(iz0,jz0);
181
182             /* Calculate squared distance and things based on it */
183             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
184
185             rinv00           = gmx_mm_invsqrt_pd(rsq00);
186
187             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
188
189             /* Load parameters for j particles */
190             vdwjidx0A        = 2*vdwtype[jnrA+0];
191             vdwjidx0B        = 2*vdwtype[jnrB+0];
192
193             /**************************
194              * CALCULATE INTERACTIONS *
195              **************************/
196
197             if (gmx_mm_any_lt(rsq00,rcutoff2))
198             {
199
200             r00              = _mm_mul_pd(rsq00,rinv00);
201
202             /* Compute parameters for interactions between i and j atoms */
203             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
204                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
205
206             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
207                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
208
209             /* Analytical LJ-PME */
210             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
211             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
212             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
213             exponent         = gmx_simd_exp_d(ewcljrsq);
214             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
215             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
216             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
217             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
218             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
219             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
220                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
221             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
222             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
223
224             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
225
226             /* Update potential sum for this i atom from the interaction with this j atom. */
227             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
228             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
229
230             fscal            = fvdw;
231
232             fscal            = _mm_and_pd(fscal,cutoff_mask);
233
234             /* Calculate temporary vectorial force */
235             tx               = _mm_mul_pd(fscal,dx00);
236             ty               = _mm_mul_pd(fscal,dy00);
237             tz               = _mm_mul_pd(fscal,dz00);
238
239             /* Update vectorial force */
240             fix0             = _mm_add_pd(fix0,tx);
241             fiy0             = _mm_add_pd(fiy0,ty);
242             fiz0             = _mm_add_pd(fiz0,tz);
243
244             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
245
246             }
247
248             /* Inner loop uses 62 flops */
249         }
250
251         if(jidx<j_index_end)
252         {
253
254             jnrA             = jjnr[jidx];
255             j_coord_offsetA  = DIM*jnrA;
256
257             /* load j atom coordinates */
258             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
259                                               &jx0,&jy0,&jz0);
260
261             /* Calculate displacement vector */
262             dx00             = _mm_sub_pd(ix0,jx0);
263             dy00             = _mm_sub_pd(iy0,jy0);
264             dz00             = _mm_sub_pd(iz0,jz0);
265
266             /* Calculate squared distance and things based on it */
267             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
268
269             rinv00           = gmx_mm_invsqrt_pd(rsq00);
270
271             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
272
273             /* Load parameters for j particles */
274             vdwjidx0A        = 2*vdwtype[jnrA+0];
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             if (gmx_mm_any_lt(rsq00,rcutoff2))
281             {
282
283             r00              = _mm_mul_pd(rsq00,rinv00);
284
285             /* Compute parameters for interactions between i and j atoms */
286             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
287
288             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
289
290             /* Analytical LJ-PME */
291             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
292             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
293             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
294             exponent         = gmx_simd_exp_d(ewcljrsq);
295             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
296             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
297             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
298             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
299             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
300             vvdw             = _mm_sub_pd(_mm_mul_pd( _mm_sub_pd(vvdw12 , _mm_mul_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
301                                _mm_mul_pd( _mm_sub_pd(vvdw6,_mm_add_pd(_mm_mul_pd(c6_00,sh_vdw_invrcut6),_mm_mul_pd(c6grid_00,sh_lj_ewald))),one_sixth));
302             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
303             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
304
305             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
309             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
310             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
311
312             fscal            = fvdw;
313
314             fscal            = _mm_and_pd(fscal,cutoff_mask);
315
316             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
317
318             /* Calculate temporary vectorial force */
319             tx               = _mm_mul_pd(fscal,dx00);
320             ty               = _mm_mul_pd(fscal,dy00);
321             tz               = _mm_mul_pd(fscal,dz00);
322
323             /* Update vectorial force */
324             fix0             = _mm_add_pd(fix0,tx);
325             fiy0             = _mm_add_pd(fiy0,ty);
326             fiz0             = _mm_add_pd(fiz0,tz);
327
328             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
329
330             }
331
332             /* Inner loop uses 62 flops */
333         }
334
335         /* End of innermost loop */
336
337         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
338                                               f+i_coord_offset,fshift+i_shift_offset);
339
340         ggid                        = gid[iidx];
341         /* Update potential energies */
342         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
343
344         /* Increment number of inner iterations */
345         inneriter                  += j_index_end - j_index_start;
346
347         /* Outer loop uses 7 flops */
348     }
349
350     /* Increment number of outer iterations */
351     outeriter        += nri;
352
353     /* Update outer/inner flops */
354
355     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*62);
356 }
357 /*
358  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse2_double
359  * Electrostatics interaction: None
360  * VdW interaction:            LJEwald
361  * Geometry:                   Particle-Particle
362  * Calculate force/pot:        Force
363  */
364 void
365 nb_kernel_ElecNone_VdwLJEwSh_GeomP1P1_F_sse2_double
366                     (t_nblist                    * gmx_restrict       nlist,
367                      rvec                        * gmx_restrict          xx,
368                      rvec                        * gmx_restrict          ff,
369                      t_forcerec                  * gmx_restrict          fr,
370                      t_mdatoms                   * gmx_restrict     mdatoms,
371                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
372                      t_nrnb                      * gmx_restrict        nrnb)
373 {
374     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
375      * just 0 for non-waters.
376      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
377      * jnr indices corresponding to data put in the four positions in the SIMD register.
378      */
379     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
380     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
381     int              jnrA,jnrB;
382     int              j_coord_offsetA,j_coord_offsetB;
383     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
384     real             rcutoff_scalar;
385     real             *shiftvec,*fshift,*x,*f;
386     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
387     int              vdwioffset0;
388     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
389     int              vdwjidx0A,vdwjidx0B;
390     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
391     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
392     int              nvdwtype;
393     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
394     int              *vdwtype;
395     real             *vdwparam;
396     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
397     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
398     __m128d           c6grid_00;
399     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
400     real             *vdwgridparam;
401     __m128d           one_half = _mm_set1_pd(0.5);
402     __m128d           minus_one = _mm_set1_pd(-1.0);
403     __m128d          dummy_mask,cutoff_mask;
404     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
405     __m128d          one     = _mm_set1_pd(1.0);
406     __m128d          two     = _mm_set1_pd(2.0);
407     x                = xx[0];
408     f                = ff[0];
409
410     nri              = nlist->nri;
411     iinr             = nlist->iinr;
412     jindex           = nlist->jindex;
413     jjnr             = nlist->jjnr;
414     shiftidx         = nlist->shift;
415     gid              = nlist->gid;
416     shiftvec         = fr->shift_vec[0];
417     fshift           = fr->fshift[0];
418     nvdwtype         = fr->ntype;
419     vdwparam         = fr->nbfp;
420     vdwtype          = mdatoms->typeA;
421     vdwgridparam     = fr->ljpme_c6grid;
422     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
423     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
424     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
425
426     rcutoff_scalar   = fr->rvdw;
427     rcutoff          = _mm_set1_pd(rcutoff_scalar);
428     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
429
430     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
431     rvdw             = _mm_set1_pd(fr->rvdw);
432
433     /* Avoid stupid compiler warnings */
434     jnrA = jnrB = 0;
435     j_coord_offsetA = 0;
436     j_coord_offsetB = 0;
437
438     outeriter        = 0;
439     inneriter        = 0;
440
441     /* Start outer loop over neighborlists */
442     for(iidx=0; iidx<nri; iidx++)
443     {
444         /* Load shift vector for this list */
445         i_shift_offset   = DIM*shiftidx[iidx];
446
447         /* Load limits for loop over neighbors */
448         j_index_start    = jindex[iidx];
449         j_index_end      = jindex[iidx+1];
450
451         /* Get outer coordinate index */
452         inr              = iinr[iidx];
453         i_coord_offset   = DIM*inr;
454
455         /* Load i particle coords and add shift vector */
456         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
457
458         fix0             = _mm_setzero_pd();
459         fiy0             = _mm_setzero_pd();
460         fiz0             = _mm_setzero_pd();
461
462         /* Load parameters for i particles */
463         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
464
465         /* Start inner kernel loop */
466         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
467         {
468
469             /* Get j neighbor index, and coordinate index */
470             jnrA             = jjnr[jidx];
471             jnrB             = jjnr[jidx+1];
472             j_coord_offsetA  = DIM*jnrA;
473             j_coord_offsetB  = DIM*jnrB;
474
475             /* load j atom coordinates */
476             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
477                                               &jx0,&jy0,&jz0);
478
479             /* Calculate displacement vector */
480             dx00             = _mm_sub_pd(ix0,jx0);
481             dy00             = _mm_sub_pd(iy0,jy0);
482             dz00             = _mm_sub_pd(iz0,jz0);
483
484             /* Calculate squared distance and things based on it */
485             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
486
487             rinv00           = gmx_mm_invsqrt_pd(rsq00);
488
489             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
490
491             /* Load parameters for j particles */
492             vdwjidx0A        = 2*vdwtype[jnrA+0];
493             vdwjidx0B        = 2*vdwtype[jnrB+0];
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             if (gmx_mm_any_lt(rsq00,rcutoff2))
500             {
501
502             r00              = _mm_mul_pd(rsq00,rinv00);
503
504             /* Compute parameters for interactions between i and j atoms */
505             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
506                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
507
508             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
509                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
510
511             /* Analytical LJ-PME */
512             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
513             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
514             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
515             exponent         = gmx_simd_exp_d(ewcljrsq);
516             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
517             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
518             /* f6A = 6 * C6grid * (1 - poly) */
519             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
520             /* f6B = C6grid * exponent * beta^6 */
521             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
522             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
523             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
524
525             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
526
527             fscal            = fvdw;
528
529             fscal            = _mm_and_pd(fscal,cutoff_mask);
530
531             /* Calculate temporary vectorial force */
532             tx               = _mm_mul_pd(fscal,dx00);
533             ty               = _mm_mul_pd(fscal,dy00);
534             tz               = _mm_mul_pd(fscal,dz00);
535
536             /* Update vectorial force */
537             fix0             = _mm_add_pd(fix0,tx);
538             fiy0             = _mm_add_pd(fiy0,ty);
539             fiz0             = _mm_add_pd(fiz0,tz);
540
541             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
542
543             }
544
545             /* Inner loop uses 49 flops */
546         }
547
548         if(jidx<j_index_end)
549         {
550
551             jnrA             = jjnr[jidx];
552             j_coord_offsetA  = DIM*jnrA;
553
554             /* load j atom coordinates */
555             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
556                                               &jx0,&jy0,&jz0);
557
558             /* Calculate displacement vector */
559             dx00             = _mm_sub_pd(ix0,jx0);
560             dy00             = _mm_sub_pd(iy0,jy0);
561             dz00             = _mm_sub_pd(iz0,jz0);
562
563             /* Calculate squared distance and things based on it */
564             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
565
566             rinv00           = gmx_mm_invsqrt_pd(rsq00);
567
568             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
569
570             /* Load parameters for j particles */
571             vdwjidx0A        = 2*vdwtype[jnrA+0];
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             if (gmx_mm_any_lt(rsq00,rcutoff2))
578             {
579
580             r00              = _mm_mul_pd(rsq00,rinv00);
581
582             /* Compute parameters for interactions between i and j atoms */
583             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
584
585             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
586
587             /* Analytical LJ-PME */
588             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
589             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
590             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
591             exponent         = gmx_simd_exp_d(ewcljrsq);
592             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
593             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
594             /* f6A = 6 * C6grid * (1 - poly) */
595             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
596             /* f6B = C6grid * exponent * beta^6 */
597             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
598             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
599             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
600
601             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
602
603             fscal            = fvdw;
604
605             fscal            = _mm_and_pd(fscal,cutoff_mask);
606
607             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
608
609             /* Calculate temporary vectorial force */
610             tx               = _mm_mul_pd(fscal,dx00);
611             ty               = _mm_mul_pd(fscal,dy00);
612             tz               = _mm_mul_pd(fscal,dz00);
613
614             /* Update vectorial force */
615             fix0             = _mm_add_pd(fix0,tx);
616             fiy0             = _mm_add_pd(fiy0,ty);
617             fiz0             = _mm_add_pd(fiz0,tz);
618
619             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
620
621             }
622
623             /* Inner loop uses 49 flops */
624         }
625
626         /* End of innermost loop */
627
628         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
629                                               f+i_coord_offset,fshift+i_shift_offset);
630
631         /* Increment number of inner iterations */
632         inneriter                  += j_index_end - j_index_start;
633
634         /* Outer loop uses 6 flops */
635     }
636
637     /* Increment number of outer iterations */
638     outeriter        += nri;
639
640     /* Update outer/inner flops */
641
642     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*49);
643 }