Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse2_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
91     __m128d          minushalf = _mm_set1_pd(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     invsqrta         = fr->invsqrta;
125     dvda             = fr->dvda;
126     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
127     gbtab            = fr->gbtab.data;
128     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155         fix0             = _mm_setzero_pd();
156         fiy0             = _mm_setzero_pd();
157         fiz0             = _mm_setzero_pd();
158
159         /* Load parameters for i particles */
160         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
161         isai0            = _mm_load1_pd(invsqrta+inr+0);
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166         vgbsum           = _mm_setzero_pd();
167         vvdwsum          = _mm_setzero_pd();
168         dvdasum          = _mm_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_pd(ix0,jx0);
186             dy00             = _mm_sub_pd(iy0,jy0);
187             dz00             = _mm_sub_pd(iz0,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
191
192             rinv00           = gmx_mm_invsqrt_pd(rsq00);
193
194             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
198             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
199             vdwjidx0A        = 2*vdwtype[jnrA+0];
200             vdwjidx0B        = 2*vdwtype[jnrB+0];
201
202             /**************************
203              * CALCULATE INTERACTIONS *
204              **************************/
205
206             r00              = _mm_mul_pd(rsq00,rinv00);
207
208             /* Compute parameters for interactions between i and j atoms */
209             qq00             = _mm_mul_pd(iq0,jq0);
210             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
211                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
212
213             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
214             isaprod          = _mm_mul_pd(isai0,isaj0);
215             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
216             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
217
218             /* Calculate generalized born table index - this is a separate table from the normal one,
219              * but we use the same procedure by multiplying r with scale and truncating to integer.
220              */
221             rt               = _mm_mul_pd(r00,gbscale);
222             gbitab           = _mm_cvttpd_epi32(rt);
223             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
224             gbitab           = _mm_slli_epi32(gbitab,2);
225
226             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
227             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
228             GMX_MM_TRANSPOSE2_PD(Y,F);
229             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
230             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
231             GMX_MM_TRANSPOSE2_PD(G,H);
232             Heps             = _mm_mul_pd(gbeps,H);
233             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
234             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
235             vgb              = _mm_mul_pd(gbqqfactor,VV);
236
237             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
238             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
239             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
240             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
241             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
242             velec            = _mm_mul_pd(qq00,rinv00);
243             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
244
245             /* LENNARD-JONES DISPERSION/REPULSION */
246
247             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
248             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
249             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
250             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
251             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
252
253             /* Update potential sum for this i atom from the interaction with this j atom. */
254             velecsum         = _mm_add_pd(velecsum,velec);
255             vgbsum           = _mm_add_pd(vgbsum,vgb);
256             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
257
258             fscal            = _mm_add_pd(felec,fvdw);
259
260             /* Calculate temporary vectorial force */
261             tx               = _mm_mul_pd(fscal,dx00);
262             ty               = _mm_mul_pd(fscal,dy00);
263             tz               = _mm_mul_pd(fscal,dz00);
264
265             /* Update vectorial force */
266             fix0             = _mm_add_pd(fix0,tx);
267             fiy0             = _mm_add_pd(fiy0,ty);
268             fiz0             = _mm_add_pd(fiz0,tz);
269
270             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
271
272             /* Inner loop uses 71 flops */
273         }
274
275         if(jidx<j_index_end)
276         {
277
278             jnrA             = jjnr[jidx];
279             j_coord_offsetA  = DIM*jnrA;
280
281             /* load j atom coordinates */
282             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
283                                               &jx0,&jy0,&jz0);
284
285             /* Calculate displacement vector */
286             dx00             = _mm_sub_pd(ix0,jx0);
287             dy00             = _mm_sub_pd(iy0,jy0);
288             dz00             = _mm_sub_pd(iz0,jz0);
289
290             /* Calculate squared distance and things based on it */
291             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
292
293             rinv00           = gmx_mm_invsqrt_pd(rsq00);
294
295             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
296
297             /* Load parameters for j particles */
298             jq0              = _mm_load_sd(charge+jnrA+0);
299             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
300             vdwjidx0A        = 2*vdwtype[jnrA+0];
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             r00              = _mm_mul_pd(rsq00,rinv00);
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq00             = _mm_mul_pd(iq0,jq0);
310             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
311
312             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
313             isaprod          = _mm_mul_pd(isai0,isaj0);
314             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
315             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
316
317             /* Calculate generalized born table index - this is a separate table from the normal one,
318              * but we use the same procedure by multiplying r with scale and truncating to integer.
319              */
320             rt               = _mm_mul_pd(r00,gbscale);
321             gbitab           = _mm_cvttpd_epi32(rt);
322             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
323             gbitab           = _mm_slli_epi32(gbitab,2);
324
325             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
326             F                = _mm_setzero_pd();
327             GMX_MM_TRANSPOSE2_PD(Y,F);
328             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
329             H                = _mm_setzero_pd();
330             GMX_MM_TRANSPOSE2_PD(G,H);
331             Heps             = _mm_mul_pd(gbeps,H);
332             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
333             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
334             vgb              = _mm_mul_pd(gbqqfactor,VV);
335
336             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
337             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
338             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
339             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
340             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
341             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
342             velec            = _mm_mul_pd(qq00,rinv00);
343             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
344
345             /* LENNARD-JONES DISPERSION/REPULSION */
346
347             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
348             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
349             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
350             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
351             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
355             velecsum         = _mm_add_pd(velecsum,velec);
356             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
357             vgbsum           = _mm_add_pd(vgbsum,vgb);
358             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
359             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
360
361             fscal            = _mm_add_pd(felec,fvdw);
362
363             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm_mul_pd(fscal,dx00);
367             ty               = _mm_mul_pd(fscal,dy00);
368             tz               = _mm_mul_pd(fscal,dz00);
369
370             /* Update vectorial force */
371             fix0             = _mm_add_pd(fix0,tx);
372             fiy0             = _mm_add_pd(fiy0,ty);
373             fiz0             = _mm_add_pd(fiz0,tz);
374
375             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
376
377             /* Inner loop uses 71 flops */
378         }
379
380         /* End of innermost loop */
381
382         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
383                                               f+i_coord_offset,fshift+i_shift_offset);
384
385         ggid                        = gid[iidx];
386         /* Update potential energies */
387         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
388         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
389         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
390         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
391         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
392
393         /* Increment number of inner iterations */
394         inneriter                  += j_index_end - j_index_start;
395
396         /* Outer loop uses 10 flops */
397     }
398
399     /* Increment number of outer iterations */
400     outeriter        += nri;
401
402     /* Update outer/inner flops */
403
404     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
405 }
406 /*
407  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse2_double
408  * Electrostatics interaction: GeneralizedBorn
409  * VdW interaction:            LennardJones
410  * Geometry:                   Particle-Particle
411  * Calculate force/pot:        Force
412  */
413 void
414 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse2_double
415                     (t_nblist                    * gmx_restrict       nlist,
416                      rvec                        * gmx_restrict          xx,
417                      rvec                        * gmx_restrict          ff,
418                      t_forcerec                  * gmx_restrict          fr,
419                      t_mdatoms                   * gmx_restrict     mdatoms,
420                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
421                      t_nrnb                      * gmx_restrict        nrnb)
422 {
423     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
424      * just 0 for non-waters.
425      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
426      * jnr indices corresponding to data put in the four positions in the SIMD register.
427      */
428     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
429     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
430     int              jnrA,jnrB;
431     int              j_coord_offsetA,j_coord_offsetB;
432     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
433     real             rcutoff_scalar;
434     real             *shiftvec,*fshift,*x,*f;
435     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
436     int              vdwioffset0;
437     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
438     int              vdwjidx0A,vdwjidx0B;
439     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
440     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
441     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
442     real             *charge;
443     __m128i          gbitab;
444     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
445     __m128d          minushalf = _mm_set1_pd(-0.5);
446     real             *invsqrta,*dvda,*gbtab;
447     int              nvdwtype;
448     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
449     int              *vdwtype;
450     real             *vdwparam;
451     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
452     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
453     __m128i          vfitab;
454     __m128i          ifour       = _mm_set1_epi32(4);
455     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
456     real             *vftab;
457     __m128d          dummy_mask,cutoff_mask;
458     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
459     __m128d          one     = _mm_set1_pd(1.0);
460     __m128d          two     = _mm_set1_pd(2.0);
461     x                = xx[0];
462     f                = ff[0];
463
464     nri              = nlist->nri;
465     iinr             = nlist->iinr;
466     jindex           = nlist->jindex;
467     jjnr             = nlist->jjnr;
468     shiftidx         = nlist->shift;
469     gid              = nlist->gid;
470     shiftvec         = fr->shift_vec[0];
471     fshift           = fr->fshift[0];
472     facel            = _mm_set1_pd(fr->epsfac);
473     charge           = mdatoms->chargeA;
474     nvdwtype         = fr->ntype;
475     vdwparam         = fr->nbfp;
476     vdwtype          = mdatoms->typeA;
477
478     invsqrta         = fr->invsqrta;
479     dvda             = fr->dvda;
480     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
481     gbtab            = fr->gbtab.data;
482     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
483
484     /* Avoid stupid compiler warnings */
485     jnrA = jnrB = 0;
486     j_coord_offsetA = 0;
487     j_coord_offsetB = 0;
488
489     outeriter        = 0;
490     inneriter        = 0;
491
492     /* Start outer loop over neighborlists */
493     for(iidx=0; iidx<nri; iidx++)
494     {
495         /* Load shift vector for this list */
496         i_shift_offset   = DIM*shiftidx[iidx];
497
498         /* Load limits for loop over neighbors */
499         j_index_start    = jindex[iidx];
500         j_index_end      = jindex[iidx+1];
501
502         /* Get outer coordinate index */
503         inr              = iinr[iidx];
504         i_coord_offset   = DIM*inr;
505
506         /* Load i particle coords and add shift vector */
507         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
508
509         fix0             = _mm_setzero_pd();
510         fiy0             = _mm_setzero_pd();
511         fiz0             = _mm_setzero_pd();
512
513         /* Load parameters for i particles */
514         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
515         isai0            = _mm_load1_pd(invsqrta+inr+0);
516         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
517
518         dvdasum          = _mm_setzero_pd();
519
520         /* Start inner kernel loop */
521         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
522         {
523
524             /* Get j neighbor index, and coordinate index */
525             jnrA             = jjnr[jidx];
526             jnrB             = jjnr[jidx+1];
527             j_coord_offsetA  = DIM*jnrA;
528             j_coord_offsetB  = DIM*jnrB;
529
530             /* load j atom coordinates */
531             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
532                                               &jx0,&jy0,&jz0);
533
534             /* Calculate displacement vector */
535             dx00             = _mm_sub_pd(ix0,jx0);
536             dy00             = _mm_sub_pd(iy0,jy0);
537             dz00             = _mm_sub_pd(iz0,jz0);
538
539             /* Calculate squared distance and things based on it */
540             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
541
542             rinv00           = gmx_mm_invsqrt_pd(rsq00);
543
544             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
545
546             /* Load parameters for j particles */
547             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
548             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
549             vdwjidx0A        = 2*vdwtype[jnrA+0];
550             vdwjidx0B        = 2*vdwtype[jnrB+0];
551
552             /**************************
553              * CALCULATE INTERACTIONS *
554              **************************/
555
556             r00              = _mm_mul_pd(rsq00,rinv00);
557
558             /* Compute parameters for interactions between i and j atoms */
559             qq00             = _mm_mul_pd(iq0,jq0);
560             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
561                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
562
563             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
564             isaprod          = _mm_mul_pd(isai0,isaj0);
565             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
566             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
567
568             /* Calculate generalized born table index - this is a separate table from the normal one,
569              * but we use the same procedure by multiplying r with scale and truncating to integer.
570              */
571             rt               = _mm_mul_pd(r00,gbscale);
572             gbitab           = _mm_cvttpd_epi32(rt);
573             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
574             gbitab           = _mm_slli_epi32(gbitab,2);
575
576             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
577             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
578             GMX_MM_TRANSPOSE2_PD(Y,F);
579             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
580             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
581             GMX_MM_TRANSPOSE2_PD(G,H);
582             Heps             = _mm_mul_pd(gbeps,H);
583             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
584             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
585             vgb              = _mm_mul_pd(gbqqfactor,VV);
586
587             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
588             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
589             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
590             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
591             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
592             velec            = _mm_mul_pd(qq00,rinv00);
593             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
594
595             /* LENNARD-JONES DISPERSION/REPULSION */
596
597             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
598             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
599
600             fscal            = _mm_add_pd(felec,fvdw);
601
602             /* Calculate temporary vectorial force */
603             tx               = _mm_mul_pd(fscal,dx00);
604             ty               = _mm_mul_pd(fscal,dy00);
605             tz               = _mm_mul_pd(fscal,dz00);
606
607             /* Update vectorial force */
608             fix0             = _mm_add_pd(fix0,tx);
609             fiy0             = _mm_add_pd(fiy0,ty);
610             fiz0             = _mm_add_pd(fiz0,tz);
611
612             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
613
614             /* Inner loop uses 64 flops */
615         }
616
617         if(jidx<j_index_end)
618         {
619
620             jnrA             = jjnr[jidx];
621             j_coord_offsetA  = DIM*jnrA;
622
623             /* load j atom coordinates */
624             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
625                                               &jx0,&jy0,&jz0);
626
627             /* Calculate displacement vector */
628             dx00             = _mm_sub_pd(ix0,jx0);
629             dy00             = _mm_sub_pd(iy0,jy0);
630             dz00             = _mm_sub_pd(iz0,jz0);
631
632             /* Calculate squared distance and things based on it */
633             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
634
635             rinv00           = gmx_mm_invsqrt_pd(rsq00);
636
637             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
638
639             /* Load parameters for j particles */
640             jq0              = _mm_load_sd(charge+jnrA+0);
641             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
642             vdwjidx0A        = 2*vdwtype[jnrA+0];
643
644             /**************************
645              * CALCULATE INTERACTIONS *
646              **************************/
647
648             r00              = _mm_mul_pd(rsq00,rinv00);
649
650             /* Compute parameters for interactions between i and j atoms */
651             qq00             = _mm_mul_pd(iq0,jq0);
652             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
653
654             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
655             isaprod          = _mm_mul_pd(isai0,isaj0);
656             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
657             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
658
659             /* Calculate generalized born table index - this is a separate table from the normal one,
660              * but we use the same procedure by multiplying r with scale and truncating to integer.
661              */
662             rt               = _mm_mul_pd(r00,gbscale);
663             gbitab           = _mm_cvttpd_epi32(rt);
664             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
665             gbitab           = _mm_slli_epi32(gbitab,2);
666
667             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
668             F                = _mm_setzero_pd();
669             GMX_MM_TRANSPOSE2_PD(Y,F);
670             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
671             H                = _mm_setzero_pd();
672             GMX_MM_TRANSPOSE2_PD(G,H);
673             Heps             = _mm_mul_pd(gbeps,H);
674             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
675             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
676             vgb              = _mm_mul_pd(gbqqfactor,VV);
677
678             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
679             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
680             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
681             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
682             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
683             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
684             velec            = _mm_mul_pd(qq00,rinv00);
685             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
686
687             /* LENNARD-JONES DISPERSION/REPULSION */
688
689             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
690             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
691
692             fscal            = _mm_add_pd(felec,fvdw);
693
694             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
695
696             /* Calculate temporary vectorial force */
697             tx               = _mm_mul_pd(fscal,dx00);
698             ty               = _mm_mul_pd(fscal,dy00);
699             tz               = _mm_mul_pd(fscal,dz00);
700
701             /* Update vectorial force */
702             fix0             = _mm_add_pd(fix0,tx);
703             fiy0             = _mm_add_pd(fiy0,ty);
704             fiz0             = _mm_add_pd(fiz0,tz);
705
706             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
707
708             /* Inner loop uses 64 flops */
709         }
710
711         /* End of innermost loop */
712
713         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
714                                               f+i_coord_offset,fshift+i_shift_offset);
715
716         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
717         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
718
719         /* Increment number of inner iterations */
720         inneriter                  += j_index_end - j_index_start;
721
722         /* Outer loop uses 7 flops */
723     }
724
725     /* Increment number of outer iterations */
726     outeriter        += nri;
727
728     /* Update outer/inner flops */
729
730     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
731 }