Remove topology support for implicit solvation
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse2_double
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     __m128i          gbitab;
87     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
88     __m128d          minushalf = _mm_set1_pd(-0.5);
89     real             *invsqrta,*dvda,*gbtab;
90     int              nvdwtype;
91     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
95     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
99     real             *vftab;
100     __m128d          dummy_mask,cutoff_mask;
101     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102     __m128d          one     = _mm_set1_pd(1.0);
103     __m128d          two     = _mm_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_pd(fr->ic->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     invsqrta         = fr->invsqrta;
122     dvda             = fr->dvda;
123     gbtabscale       = _mm_set1_pd(fr->gbtab->scale);
124     gbtab            = fr->gbtab->data;
125     gbinvepsdiff     = _mm_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _mm_setzero_pd();
153         fiy0             = _mm_setzero_pd();
154         fiz0             = _mm_setzero_pd();
155
156         /* Load parameters for i particles */
157         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
158         isai0            = _mm_load1_pd(invsqrta+inr+0);
159         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         velecsum         = _mm_setzero_pd();
163         vgbsum           = _mm_setzero_pd();
164         vvdwsum          = _mm_setzero_pd();
165         dvdasum          = _mm_setzero_pd();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176
177             /* load j atom coordinates */
178             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_pd(ix0,jx0);
183             dy00             = _mm_sub_pd(iy0,jy0);
184             dz00             = _mm_sub_pd(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
188
189             rinv00           = sse2_invsqrt_d(rsq00);
190
191             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
195             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             r00              = _mm_mul_pd(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _mm_mul_pd(iq0,jq0);
207             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
208                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
209
210             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
211             isaprod          = _mm_mul_pd(isai0,isaj0);
212             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
213             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
214
215             /* Calculate generalized born table index - this is a separate table from the normal one,
216              * but we use the same procedure by multiplying r with scale and truncating to integer.
217              */
218             rt               = _mm_mul_pd(r00,gbscale);
219             gbitab           = _mm_cvttpd_epi32(rt);
220             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
221             gbitab           = _mm_slli_epi32(gbitab,2);
222
223             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
224             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
225             GMX_MM_TRANSPOSE2_PD(Y,F);
226             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
227             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
228             GMX_MM_TRANSPOSE2_PD(G,H);
229             Heps             = _mm_mul_pd(gbeps,H);
230             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
231             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
232             vgb              = _mm_mul_pd(gbqqfactor,VV);
233
234             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
235             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
236             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
237             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
238             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
239             velec            = _mm_mul_pd(qq00,rinv00);
240             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
241
242             /* LENNARD-JONES DISPERSION/REPULSION */
243
244             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
245             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
246             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
247             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
248             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             velecsum         = _mm_add_pd(velecsum,velec);
252             vgbsum           = _mm_add_pd(vgbsum,vgb);
253             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
254
255             fscal            = _mm_add_pd(felec,fvdw);
256
257             /* Calculate temporary vectorial force */
258             tx               = _mm_mul_pd(fscal,dx00);
259             ty               = _mm_mul_pd(fscal,dy00);
260             tz               = _mm_mul_pd(fscal,dz00);
261
262             /* Update vectorial force */
263             fix0             = _mm_add_pd(fix0,tx);
264             fiy0             = _mm_add_pd(fiy0,ty);
265             fiz0             = _mm_add_pd(fiz0,tz);
266
267             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
268
269             /* Inner loop uses 71 flops */
270         }
271
272         if(jidx<j_index_end)
273         {
274
275             jnrA             = jjnr[jidx];
276             j_coord_offsetA  = DIM*jnrA;
277
278             /* load j atom coordinates */
279             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
280                                               &jx0,&jy0,&jz0);
281
282             /* Calculate displacement vector */
283             dx00             = _mm_sub_pd(ix0,jx0);
284             dy00             = _mm_sub_pd(iy0,jy0);
285             dz00             = _mm_sub_pd(iz0,jz0);
286
287             /* Calculate squared distance and things based on it */
288             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
289
290             rinv00           = sse2_invsqrt_d(rsq00);
291
292             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
293
294             /* Load parameters for j particles */
295             jq0              = _mm_load_sd(charge+jnrA+0);
296             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
297             vdwjidx0A        = 2*vdwtype[jnrA+0];
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             r00              = _mm_mul_pd(rsq00,rinv00);
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq00             = _mm_mul_pd(iq0,jq0);
307             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
308
309             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
310             isaprod          = _mm_mul_pd(isai0,isaj0);
311             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
312             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
313
314             /* Calculate generalized born table index - this is a separate table from the normal one,
315              * but we use the same procedure by multiplying r with scale and truncating to integer.
316              */
317             rt               = _mm_mul_pd(r00,gbscale);
318             gbitab           = _mm_cvttpd_epi32(rt);
319             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
320             gbitab           = _mm_slli_epi32(gbitab,2);
321
322             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
323             F                = _mm_setzero_pd();
324             GMX_MM_TRANSPOSE2_PD(Y,F);
325             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
326             H                = _mm_setzero_pd();
327             GMX_MM_TRANSPOSE2_PD(G,H);
328             Heps             = _mm_mul_pd(gbeps,H);
329             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
330             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
331             vgb              = _mm_mul_pd(gbqqfactor,VV);
332
333             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
334             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
335             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
336             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
337             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
338             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
339             velec            = _mm_mul_pd(qq00,rinv00);
340             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
341
342             /* LENNARD-JONES DISPERSION/REPULSION */
343
344             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
345             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
346             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
347             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
348             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
349
350             /* Update potential sum for this i atom from the interaction with this j atom. */
351             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
352             velecsum         = _mm_add_pd(velecsum,velec);
353             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
354             vgbsum           = _mm_add_pd(vgbsum,vgb);
355             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
356             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
357
358             fscal            = _mm_add_pd(felec,fvdw);
359
360             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm_mul_pd(fscal,dx00);
364             ty               = _mm_mul_pd(fscal,dy00);
365             tz               = _mm_mul_pd(fscal,dz00);
366
367             /* Update vectorial force */
368             fix0             = _mm_add_pd(fix0,tx);
369             fiy0             = _mm_add_pd(fiy0,ty);
370             fiz0             = _mm_add_pd(fiz0,tz);
371
372             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
373
374             /* Inner loop uses 71 flops */
375         }
376
377         /* End of innermost loop */
378
379         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
380                                               f+i_coord_offset,fshift+i_shift_offset);
381
382         ggid                        = gid[iidx];
383         /* Update potential energies */
384         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
385         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
386         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
387         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
388         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
389
390         /* Increment number of inner iterations */
391         inneriter                  += j_index_end - j_index_start;
392
393         /* Outer loop uses 10 flops */
394     }
395
396     /* Increment number of outer iterations */
397     outeriter        += nri;
398
399     /* Update outer/inner flops */
400
401     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
402 }
403 /*
404  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse2_double
405  * Electrostatics interaction: GeneralizedBorn
406  * VdW interaction:            LennardJones
407  * Geometry:                   Particle-Particle
408  * Calculate force/pot:        Force
409  */
410 void
411 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_sse2_double
412                     (t_nblist                    * gmx_restrict       nlist,
413                      rvec                        * gmx_restrict          xx,
414                      rvec                        * gmx_restrict          ff,
415                      struct t_forcerec           * gmx_restrict          fr,
416                      t_mdatoms                   * gmx_restrict     mdatoms,
417                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
418                      t_nrnb                      * gmx_restrict        nrnb)
419 {
420     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
421      * just 0 for non-waters.
422      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
423      * jnr indices corresponding to data put in the four positions in the SIMD register.
424      */
425     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
426     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
427     int              jnrA,jnrB;
428     int              j_coord_offsetA,j_coord_offsetB;
429     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
430     real             rcutoff_scalar;
431     real             *shiftvec,*fshift,*x,*f;
432     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
433     int              vdwioffset0;
434     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
435     int              vdwjidx0A,vdwjidx0B;
436     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
437     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
438     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
439     real             *charge;
440     __m128i          gbitab;
441     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
442     __m128d          minushalf = _mm_set1_pd(-0.5);
443     real             *invsqrta,*dvda,*gbtab;
444     int              nvdwtype;
445     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
446     int              *vdwtype;
447     real             *vdwparam;
448     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
449     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
450     __m128i          vfitab;
451     __m128i          ifour       = _mm_set1_epi32(4);
452     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
453     real             *vftab;
454     __m128d          dummy_mask,cutoff_mask;
455     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
456     __m128d          one     = _mm_set1_pd(1.0);
457     __m128d          two     = _mm_set1_pd(2.0);
458     x                = xx[0];
459     f                = ff[0];
460
461     nri              = nlist->nri;
462     iinr             = nlist->iinr;
463     jindex           = nlist->jindex;
464     jjnr             = nlist->jjnr;
465     shiftidx         = nlist->shift;
466     gid              = nlist->gid;
467     shiftvec         = fr->shift_vec[0];
468     fshift           = fr->fshift[0];
469     facel            = _mm_set1_pd(fr->ic->epsfac);
470     charge           = mdatoms->chargeA;
471     nvdwtype         = fr->ntype;
472     vdwparam         = fr->nbfp;
473     vdwtype          = mdatoms->typeA;
474
475     invsqrta         = fr->invsqrta;
476     dvda             = fr->dvda;
477     gbtabscale       = _mm_set1_pd(fr->gbtab->scale);
478     gbtab            = fr->gbtab->data;
479     gbinvepsdiff     = _mm_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
480
481     /* Avoid stupid compiler warnings */
482     jnrA = jnrB = 0;
483     j_coord_offsetA = 0;
484     j_coord_offsetB = 0;
485
486     outeriter        = 0;
487     inneriter        = 0;
488
489     /* Start outer loop over neighborlists */
490     for(iidx=0; iidx<nri; iidx++)
491     {
492         /* Load shift vector for this list */
493         i_shift_offset   = DIM*shiftidx[iidx];
494
495         /* Load limits for loop over neighbors */
496         j_index_start    = jindex[iidx];
497         j_index_end      = jindex[iidx+1];
498
499         /* Get outer coordinate index */
500         inr              = iinr[iidx];
501         i_coord_offset   = DIM*inr;
502
503         /* Load i particle coords and add shift vector */
504         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
505
506         fix0             = _mm_setzero_pd();
507         fiy0             = _mm_setzero_pd();
508         fiz0             = _mm_setzero_pd();
509
510         /* Load parameters for i particles */
511         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
512         isai0            = _mm_load1_pd(invsqrta+inr+0);
513         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
514
515         dvdasum          = _mm_setzero_pd();
516
517         /* Start inner kernel loop */
518         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
519         {
520
521             /* Get j neighbor index, and coordinate index */
522             jnrA             = jjnr[jidx];
523             jnrB             = jjnr[jidx+1];
524             j_coord_offsetA  = DIM*jnrA;
525             j_coord_offsetB  = DIM*jnrB;
526
527             /* load j atom coordinates */
528             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
529                                               &jx0,&jy0,&jz0);
530
531             /* Calculate displacement vector */
532             dx00             = _mm_sub_pd(ix0,jx0);
533             dy00             = _mm_sub_pd(iy0,jy0);
534             dz00             = _mm_sub_pd(iz0,jz0);
535
536             /* Calculate squared distance and things based on it */
537             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
538
539             rinv00           = sse2_invsqrt_d(rsq00);
540
541             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
542
543             /* Load parameters for j particles */
544             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
545             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
546             vdwjidx0A        = 2*vdwtype[jnrA+0];
547             vdwjidx0B        = 2*vdwtype[jnrB+0];
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             r00              = _mm_mul_pd(rsq00,rinv00);
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq00             = _mm_mul_pd(iq0,jq0);
557             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
558                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
559
560             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
561             isaprod          = _mm_mul_pd(isai0,isaj0);
562             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
563             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
564
565             /* Calculate generalized born table index - this is a separate table from the normal one,
566              * but we use the same procedure by multiplying r with scale and truncating to integer.
567              */
568             rt               = _mm_mul_pd(r00,gbscale);
569             gbitab           = _mm_cvttpd_epi32(rt);
570             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
571             gbitab           = _mm_slli_epi32(gbitab,2);
572
573             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
574             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
575             GMX_MM_TRANSPOSE2_PD(Y,F);
576             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
577             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
578             GMX_MM_TRANSPOSE2_PD(G,H);
579             Heps             = _mm_mul_pd(gbeps,H);
580             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
581             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
582             vgb              = _mm_mul_pd(gbqqfactor,VV);
583
584             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
585             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
586             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
587             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
588             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
589             velec            = _mm_mul_pd(qq00,rinv00);
590             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
591
592             /* LENNARD-JONES DISPERSION/REPULSION */
593
594             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
595             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
596
597             fscal            = _mm_add_pd(felec,fvdw);
598
599             /* Calculate temporary vectorial force */
600             tx               = _mm_mul_pd(fscal,dx00);
601             ty               = _mm_mul_pd(fscal,dy00);
602             tz               = _mm_mul_pd(fscal,dz00);
603
604             /* Update vectorial force */
605             fix0             = _mm_add_pd(fix0,tx);
606             fiy0             = _mm_add_pd(fiy0,ty);
607             fiz0             = _mm_add_pd(fiz0,tz);
608
609             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
610
611             /* Inner loop uses 64 flops */
612         }
613
614         if(jidx<j_index_end)
615         {
616
617             jnrA             = jjnr[jidx];
618             j_coord_offsetA  = DIM*jnrA;
619
620             /* load j atom coordinates */
621             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
622                                               &jx0,&jy0,&jz0);
623
624             /* Calculate displacement vector */
625             dx00             = _mm_sub_pd(ix0,jx0);
626             dy00             = _mm_sub_pd(iy0,jy0);
627             dz00             = _mm_sub_pd(iz0,jz0);
628
629             /* Calculate squared distance and things based on it */
630             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
631
632             rinv00           = sse2_invsqrt_d(rsq00);
633
634             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
635
636             /* Load parameters for j particles */
637             jq0              = _mm_load_sd(charge+jnrA+0);
638             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
639             vdwjidx0A        = 2*vdwtype[jnrA+0];
640
641             /**************************
642              * CALCULATE INTERACTIONS *
643              **************************/
644
645             r00              = _mm_mul_pd(rsq00,rinv00);
646
647             /* Compute parameters for interactions between i and j atoms */
648             qq00             = _mm_mul_pd(iq0,jq0);
649             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
650
651             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
652             isaprod          = _mm_mul_pd(isai0,isaj0);
653             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
654             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
655
656             /* Calculate generalized born table index - this is a separate table from the normal one,
657              * but we use the same procedure by multiplying r with scale and truncating to integer.
658              */
659             rt               = _mm_mul_pd(r00,gbscale);
660             gbitab           = _mm_cvttpd_epi32(rt);
661             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
662             gbitab           = _mm_slli_epi32(gbitab,2);
663
664             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
665             F                = _mm_setzero_pd();
666             GMX_MM_TRANSPOSE2_PD(Y,F);
667             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
668             H                = _mm_setzero_pd();
669             GMX_MM_TRANSPOSE2_PD(G,H);
670             Heps             = _mm_mul_pd(gbeps,H);
671             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
672             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
673             vgb              = _mm_mul_pd(gbqqfactor,VV);
674
675             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
676             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
677             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
678             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
679             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
680             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
681             velec            = _mm_mul_pd(qq00,rinv00);
682             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
683
684             /* LENNARD-JONES DISPERSION/REPULSION */
685
686             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
687             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
688
689             fscal            = _mm_add_pd(felec,fvdw);
690
691             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
692
693             /* Calculate temporary vectorial force */
694             tx               = _mm_mul_pd(fscal,dx00);
695             ty               = _mm_mul_pd(fscal,dy00);
696             tz               = _mm_mul_pd(fscal,dz00);
697
698             /* Update vectorial force */
699             fix0             = _mm_add_pd(fix0,tx);
700             fiy0             = _mm_add_pd(fiy0,ty);
701             fiz0             = _mm_add_pd(fiz0,tz);
702
703             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
704
705             /* Inner loop uses 64 flops */
706         }
707
708         /* End of innermost loop */
709
710         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
711                                               f+i_coord_offset,fshift+i_shift_offset);
712
713         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
714         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
715
716         /* Increment number of inner iterations */
717         inneriter                  += j_index_end - j_index_start;
718
719         /* Outer loop uses 7 flops */
720     }
721
722     /* Increment number of outer iterations */
723     outeriter        += nri;
724
725     /* Update outer/inner flops */
726
727     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
728 }