Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sse2_double.c
1 /*
2  * Note: this file was generated by the Gromacs sse2_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_sse2_double.h"
34 #include "kernelutil_x86_sse2_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
75     __m128d          minushalf = _mm_set1_pd(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     int              nvdwtype;
78     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
82     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
86     real             *vftab;
87     __m128d          dummy_mask,cutoff_mask;
88     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
89     __m128d          one     = _mm_set1_pd(1.0);
90     __m128d          two     = _mm_set1_pd(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_pd(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     vftab            = kernel_data->table_vdw->data;
109     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
110
111     invsqrta         = fr->invsqrta;
112     dvda             = fr->dvda;
113     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
114     gbtab            = fr->gbtab.data;
115     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141
142         fix0             = _mm_setzero_pd();
143         fiy0             = _mm_setzero_pd();
144         fiz0             = _mm_setzero_pd();
145
146         /* Load parameters for i particles */
147         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
148         isai0            = _mm_load1_pd(invsqrta+inr+0);
149         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151         /* Reset potential sums */
152         velecsum         = _mm_setzero_pd();
153         vgbsum           = _mm_setzero_pd();
154         vvdwsum          = _mm_setzero_pd();
155         dvdasum          = _mm_setzero_pd();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166             
167             /* load j atom coordinates */
168             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               &jx0,&jy0,&jz0);
170             
171             /* Calculate displacement vector */
172             dx00             = _mm_sub_pd(ix0,jx0);
173             dy00             = _mm_sub_pd(iy0,jy0);
174             dz00             = _mm_sub_pd(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
178
179             rinv00           = gmx_mm_invsqrt_pd(rsq00);
180
181             /* Load parameters for j particles */
182             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
183             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
184             vdwjidx0A        = 2*vdwtype[jnrA+0];
185             vdwjidx0B        = 2*vdwtype[jnrB+0];
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             r00              = _mm_mul_pd(rsq00,rinv00);
192
193             /* Compute parameters for interactions between i and j atoms */
194             qq00             = _mm_mul_pd(iq0,jq0);
195             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
196                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
197
198             /* Calculate table index by multiplying r with table scale and truncate to integer */
199             rt               = _mm_mul_pd(r00,vftabscale);
200             vfitab           = _mm_cvttpd_epi32(rt);
201             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
202             vfitab           = _mm_slli_epi32(vfitab,3);
203
204             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
205             isaprod          = _mm_mul_pd(isai0,isaj0);
206             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
207             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
208
209             /* Calculate generalized born table index - this is a separate table from the normal one,
210              * but we use the same procedure by multiplying r with scale and truncating to integer.
211              */
212             rt               = _mm_mul_pd(r00,gbscale);
213             gbitab           = _mm_cvttpd_epi32(rt);
214             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
215             gbitab           = _mm_slli_epi32(gbitab,2);
216
217             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
218             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
219             GMX_MM_TRANSPOSE2_PD(Y,F);
220             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
221             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
222             GMX_MM_TRANSPOSE2_PD(G,H);
223             Heps             = _mm_mul_pd(gbeps,H);
224             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
225             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
226             vgb              = _mm_mul_pd(gbqqfactor,VV);
227
228             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
229             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
230             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
231             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
232             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
233             velec            = _mm_mul_pd(qq00,rinv00);
234             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
235
236             /* CUBIC SPLINE TABLE DISPERSION */
237             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
238             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
239             GMX_MM_TRANSPOSE2_PD(Y,F);
240             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
241             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
242             GMX_MM_TRANSPOSE2_PD(G,H);
243             Heps             = _mm_mul_pd(vfeps,H);
244             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
245             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
246             vvdw6            = _mm_mul_pd(c6_00,VV);
247             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
248             fvdw6            = _mm_mul_pd(c6_00,FF);
249
250             /* CUBIC SPLINE TABLE REPULSION */
251             vfitab           = _mm_add_epi32(vfitab,ifour);
252             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
253             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
254             GMX_MM_TRANSPOSE2_PD(Y,F);
255             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
256             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
257             GMX_MM_TRANSPOSE2_PD(G,H);
258             Heps             = _mm_mul_pd(vfeps,H);
259             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
260             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
261             vvdw12           = _mm_mul_pd(c12_00,VV);
262             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
263             fvdw12           = _mm_mul_pd(c12_00,FF);
264             vvdw             = _mm_add_pd(vvdw12,vvdw6);
265             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             velecsum         = _mm_add_pd(velecsum,velec);
269             vgbsum           = _mm_add_pd(vgbsum,vgb);
270             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
271
272             fscal            = _mm_add_pd(felec,fvdw);
273
274             /* Calculate temporary vectorial force */
275             tx               = _mm_mul_pd(fscal,dx00);
276             ty               = _mm_mul_pd(fscal,dy00);
277             tz               = _mm_mul_pd(fscal,dz00);
278
279             /* Update vectorial force */
280             fix0             = _mm_add_pd(fix0,tx);
281             fiy0             = _mm_add_pd(fiy0,ty);
282             fiz0             = _mm_add_pd(fiz0,tz);
283
284             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
285
286             /* Inner loop uses 92 flops */
287         }
288
289         if(jidx<j_index_end)
290         {
291
292             jnrA             = jjnr[jidx];
293             j_coord_offsetA  = DIM*jnrA;
294
295             /* load j atom coordinates */
296             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
297                                               &jx0,&jy0,&jz0);
298             
299             /* Calculate displacement vector */
300             dx00             = _mm_sub_pd(ix0,jx0);
301             dy00             = _mm_sub_pd(iy0,jy0);
302             dz00             = _mm_sub_pd(iz0,jz0);
303
304             /* Calculate squared distance and things based on it */
305             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
306
307             rinv00           = gmx_mm_invsqrt_pd(rsq00);
308
309             /* Load parameters for j particles */
310             jq0              = _mm_load_sd(charge+jnrA+0);
311             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
312             vdwjidx0A        = 2*vdwtype[jnrA+0];
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r00              = _mm_mul_pd(rsq00,rinv00);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq00             = _mm_mul_pd(iq0,jq0);
322             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
323
324             /* Calculate table index by multiplying r with table scale and truncate to integer */
325             rt               = _mm_mul_pd(r00,vftabscale);
326             vfitab           = _mm_cvttpd_epi32(rt);
327             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
328             vfitab           = _mm_slli_epi32(vfitab,3);
329
330             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
331             isaprod          = _mm_mul_pd(isai0,isaj0);
332             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
333             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
334
335             /* Calculate generalized born table index - this is a separate table from the normal one,
336              * but we use the same procedure by multiplying r with scale and truncating to integer.
337              */
338             rt               = _mm_mul_pd(r00,gbscale);
339             gbitab           = _mm_cvttpd_epi32(rt);
340             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
341             gbitab           = _mm_slli_epi32(gbitab,2);
342
343             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
344             F                = _mm_setzero_pd();
345             GMX_MM_TRANSPOSE2_PD(Y,F);
346             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
347             H                = _mm_setzero_pd();
348             GMX_MM_TRANSPOSE2_PD(G,H);
349             Heps             = _mm_mul_pd(gbeps,H);
350             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
351             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
352             vgb              = _mm_mul_pd(gbqqfactor,VV);
353
354             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
355             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
356             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
357             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
358             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
359             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
360             velec            = _mm_mul_pd(qq00,rinv00);
361             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
362
363             /* CUBIC SPLINE TABLE DISPERSION */
364             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
365             F                = _mm_setzero_pd();
366             GMX_MM_TRANSPOSE2_PD(Y,F);
367             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
368             H                = _mm_setzero_pd();
369             GMX_MM_TRANSPOSE2_PD(G,H);
370             Heps             = _mm_mul_pd(vfeps,H);
371             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
372             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
373             vvdw6            = _mm_mul_pd(c6_00,VV);
374             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
375             fvdw6            = _mm_mul_pd(c6_00,FF);
376
377             /* CUBIC SPLINE TABLE REPULSION */
378             vfitab           = _mm_add_epi32(vfitab,ifour);
379             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
380             F                = _mm_setzero_pd();
381             GMX_MM_TRANSPOSE2_PD(Y,F);
382             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
383             H                = _mm_setzero_pd();
384             GMX_MM_TRANSPOSE2_PD(G,H);
385             Heps             = _mm_mul_pd(vfeps,H);
386             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
387             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
388             vvdw12           = _mm_mul_pd(c12_00,VV);
389             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
390             fvdw12           = _mm_mul_pd(c12_00,FF);
391             vvdw             = _mm_add_pd(vvdw12,vvdw6);
392             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
393
394             /* Update potential sum for this i atom from the interaction with this j atom. */
395             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
396             velecsum         = _mm_add_pd(velecsum,velec);
397             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
398             vgbsum           = _mm_add_pd(vgbsum,vgb);
399             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
400             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
401
402             fscal            = _mm_add_pd(felec,fvdw);
403
404             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
405
406             /* Calculate temporary vectorial force */
407             tx               = _mm_mul_pd(fscal,dx00);
408             ty               = _mm_mul_pd(fscal,dy00);
409             tz               = _mm_mul_pd(fscal,dz00);
410
411             /* Update vectorial force */
412             fix0             = _mm_add_pd(fix0,tx);
413             fiy0             = _mm_add_pd(fiy0,ty);
414             fiz0             = _mm_add_pd(fiz0,tz);
415
416             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
417
418             /* Inner loop uses 92 flops */
419         }
420
421         /* End of innermost loop */
422
423         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
424                                               f+i_coord_offset,fshift+i_shift_offset);
425
426         ggid                        = gid[iidx];
427         /* Update potential energies */
428         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
429         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
430         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
431         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
432         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
433
434         /* Increment number of inner iterations */
435         inneriter                  += j_index_end - j_index_start;
436
437         /* Outer loop uses 10 flops */
438     }
439
440     /* Increment number of outer iterations */
441     outeriter        += nri;
442
443     /* Update outer/inner flops */
444
445     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
446 }
447 /*
448  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_double
449  * Electrostatics interaction: GeneralizedBorn
450  * VdW interaction:            CubicSplineTable
451  * Geometry:                   Particle-Particle
452  * Calculate force/pot:        Force
453  */
454 void
455 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_double
456                     (t_nblist * gmx_restrict                nlist,
457                      rvec * gmx_restrict                    xx,
458                      rvec * gmx_restrict                    ff,
459                      t_forcerec * gmx_restrict              fr,
460                      t_mdatoms * gmx_restrict               mdatoms,
461                      nb_kernel_data_t * gmx_restrict        kernel_data,
462                      t_nrnb * gmx_restrict                  nrnb)
463 {
464     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
465      * just 0 for non-waters.
466      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
467      * jnr indices corresponding to data put in the four positions in the SIMD register.
468      */
469     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
470     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
471     int              jnrA,jnrB;
472     int              j_coord_offsetA,j_coord_offsetB;
473     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
474     real             rcutoff_scalar;
475     real             *shiftvec,*fshift,*x,*f;
476     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
477     int              vdwioffset0;
478     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
479     int              vdwjidx0A,vdwjidx0B;
480     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
481     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
482     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
483     real             *charge;
484     __m128i          gbitab;
485     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
486     __m128d          minushalf = _mm_set1_pd(-0.5);
487     real             *invsqrta,*dvda,*gbtab;
488     int              nvdwtype;
489     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
490     int              *vdwtype;
491     real             *vdwparam;
492     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
493     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
494     __m128i          vfitab;
495     __m128i          ifour       = _mm_set1_epi32(4);
496     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
497     real             *vftab;
498     __m128d          dummy_mask,cutoff_mask;
499     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
500     __m128d          one     = _mm_set1_pd(1.0);
501     __m128d          two     = _mm_set1_pd(2.0);
502     x                = xx[0];
503     f                = ff[0];
504
505     nri              = nlist->nri;
506     iinr             = nlist->iinr;
507     jindex           = nlist->jindex;
508     jjnr             = nlist->jjnr;
509     shiftidx         = nlist->shift;
510     gid              = nlist->gid;
511     shiftvec         = fr->shift_vec[0];
512     fshift           = fr->fshift[0];
513     facel            = _mm_set1_pd(fr->epsfac);
514     charge           = mdatoms->chargeA;
515     nvdwtype         = fr->ntype;
516     vdwparam         = fr->nbfp;
517     vdwtype          = mdatoms->typeA;
518
519     vftab            = kernel_data->table_vdw->data;
520     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
521
522     invsqrta         = fr->invsqrta;
523     dvda             = fr->dvda;
524     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
525     gbtab            = fr->gbtab.data;
526     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
527
528     /* Avoid stupid compiler warnings */
529     jnrA = jnrB = 0;
530     j_coord_offsetA = 0;
531     j_coord_offsetB = 0;
532
533     outeriter        = 0;
534     inneriter        = 0;
535
536     /* Start outer loop over neighborlists */
537     for(iidx=0; iidx<nri; iidx++)
538     {
539         /* Load shift vector for this list */
540         i_shift_offset   = DIM*shiftidx[iidx];
541
542         /* Load limits for loop over neighbors */
543         j_index_start    = jindex[iidx];
544         j_index_end      = jindex[iidx+1];
545
546         /* Get outer coordinate index */
547         inr              = iinr[iidx];
548         i_coord_offset   = DIM*inr;
549
550         /* Load i particle coords and add shift vector */
551         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
552
553         fix0             = _mm_setzero_pd();
554         fiy0             = _mm_setzero_pd();
555         fiz0             = _mm_setzero_pd();
556
557         /* Load parameters for i particles */
558         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
559         isai0            = _mm_load1_pd(invsqrta+inr+0);
560         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
561
562         dvdasum          = _mm_setzero_pd();
563
564         /* Start inner kernel loop */
565         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
566         {
567
568             /* Get j neighbor index, and coordinate index */
569             jnrA             = jjnr[jidx];
570             jnrB             = jjnr[jidx+1];
571             j_coord_offsetA  = DIM*jnrA;
572             j_coord_offsetB  = DIM*jnrB;
573             
574             /* load j atom coordinates */
575             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
576                                               &jx0,&jy0,&jz0);
577             
578             /* Calculate displacement vector */
579             dx00             = _mm_sub_pd(ix0,jx0);
580             dy00             = _mm_sub_pd(iy0,jy0);
581             dz00             = _mm_sub_pd(iz0,jz0);
582
583             /* Calculate squared distance and things based on it */
584             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
585
586             rinv00           = gmx_mm_invsqrt_pd(rsq00);
587
588             /* Load parameters for j particles */
589             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
590             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
591             vdwjidx0A        = 2*vdwtype[jnrA+0];
592             vdwjidx0B        = 2*vdwtype[jnrB+0];
593
594             /**************************
595              * CALCULATE INTERACTIONS *
596              **************************/
597
598             r00              = _mm_mul_pd(rsq00,rinv00);
599
600             /* Compute parameters for interactions between i and j atoms */
601             qq00             = _mm_mul_pd(iq0,jq0);
602             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
603                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
604
605             /* Calculate table index by multiplying r with table scale and truncate to integer */
606             rt               = _mm_mul_pd(r00,vftabscale);
607             vfitab           = _mm_cvttpd_epi32(rt);
608             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
609             vfitab           = _mm_slli_epi32(vfitab,3);
610
611             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
612             isaprod          = _mm_mul_pd(isai0,isaj0);
613             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
614             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
615
616             /* Calculate generalized born table index - this is a separate table from the normal one,
617              * but we use the same procedure by multiplying r with scale and truncating to integer.
618              */
619             rt               = _mm_mul_pd(r00,gbscale);
620             gbitab           = _mm_cvttpd_epi32(rt);
621             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
622             gbitab           = _mm_slli_epi32(gbitab,2);
623
624             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
625             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
626             GMX_MM_TRANSPOSE2_PD(Y,F);
627             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
628             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
629             GMX_MM_TRANSPOSE2_PD(G,H);
630             Heps             = _mm_mul_pd(gbeps,H);
631             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
632             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
633             vgb              = _mm_mul_pd(gbqqfactor,VV);
634
635             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
636             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
637             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
638             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
639             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
640             velec            = _mm_mul_pd(qq00,rinv00);
641             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
642
643             /* CUBIC SPLINE TABLE DISPERSION */
644             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
645             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
646             GMX_MM_TRANSPOSE2_PD(Y,F);
647             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
648             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
649             GMX_MM_TRANSPOSE2_PD(G,H);
650             Heps             = _mm_mul_pd(vfeps,H);
651             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
652             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
653             fvdw6            = _mm_mul_pd(c6_00,FF);
654
655             /* CUBIC SPLINE TABLE REPULSION */
656             vfitab           = _mm_add_epi32(vfitab,ifour);
657             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
658             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
659             GMX_MM_TRANSPOSE2_PD(Y,F);
660             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
661             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
662             GMX_MM_TRANSPOSE2_PD(G,H);
663             Heps             = _mm_mul_pd(vfeps,H);
664             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
665             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
666             fvdw12           = _mm_mul_pd(c12_00,FF);
667             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
668
669             fscal            = _mm_add_pd(felec,fvdw);
670
671             /* Calculate temporary vectorial force */
672             tx               = _mm_mul_pd(fscal,dx00);
673             ty               = _mm_mul_pd(fscal,dy00);
674             tz               = _mm_mul_pd(fscal,dz00);
675
676             /* Update vectorial force */
677             fix0             = _mm_add_pd(fix0,tx);
678             fiy0             = _mm_add_pd(fiy0,ty);
679             fiz0             = _mm_add_pd(fiz0,tz);
680
681             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
682
683             /* Inner loop uses 82 flops */
684         }
685
686         if(jidx<j_index_end)
687         {
688
689             jnrA             = jjnr[jidx];
690             j_coord_offsetA  = DIM*jnrA;
691
692             /* load j atom coordinates */
693             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
694                                               &jx0,&jy0,&jz0);
695             
696             /* Calculate displacement vector */
697             dx00             = _mm_sub_pd(ix0,jx0);
698             dy00             = _mm_sub_pd(iy0,jy0);
699             dz00             = _mm_sub_pd(iz0,jz0);
700
701             /* Calculate squared distance and things based on it */
702             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
703
704             rinv00           = gmx_mm_invsqrt_pd(rsq00);
705
706             /* Load parameters for j particles */
707             jq0              = _mm_load_sd(charge+jnrA+0);
708             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
709             vdwjidx0A        = 2*vdwtype[jnrA+0];
710
711             /**************************
712              * CALCULATE INTERACTIONS *
713              **************************/
714
715             r00              = _mm_mul_pd(rsq00,rinv00);
716
717             /* Compute parameters for interactions between i and j atoms */
718             qq00             = _mm_mul_pd(iq0,jq0);
719             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
720
721             /* Calculate table index by multiplying r with table scale and truncate to integer */
722             rt               = _mm_mul_pd(r00,vftabscale);
723             vfitab           = _mm_cvttpd_epi32(rt);
724             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
725             vfitab           = _mm_slli_epi32(vfitab,3);
726
727             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
728             isaprod          = _mm_mul_pd(isai0,isaj0);
729             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
730             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
731
732             /* Calculate generalized born table index - this is a separate table from the normal one,
733              * but we use the same procedure by multiplying r with scale and truncating to integer.
734              */
735             rt               = _mm_mul_pd(r00,gbscale);
736             gbitab           = _mm_cvttpd_epi32(rt);
737             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
738             gbitab           = _mm_slli_epi32(gbitab,2);
739
740             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
741             F                = _mm_setzero_pd();
742             GMX_MM_TRANSPOSE2_PD(Y,F);
743             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
744             H                = _mm_setzero_pd();
745             GMX_MM_TRANSPOSE2_PD(G,H);
746             Heps             = _mm_mul_pd(gbeps,H);
747             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
748             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
749             vgb              = _mm_mul_pd(gbqqfactor,VV);
750
751             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
752             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
753             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
754             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
755             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
756             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
757             velec            = _mm_mul_pd(qq00,rinv00);
758             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
759
760             /* CUBIC SPLINE TABLE DISPERSION */
761             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
762             F                = _mm_setzero_pd();
763             GMX_MM_TRANSPOSE2_PD(Y,F);
764             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
765             H                = _mm_setzero_pd();
766             GMX_MM_TRANSPOSE2_PD(G,H);
767             Heps             = _mm_mul_pd(vfeps,H);
768             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
769             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
770             fvdw6            = _mm_mul_pd(c6_00,FF);
771
772             /* CUBIC SPLINE TABLE REPULSION */
773             vfitab           = _mm_add_epi32(vfitab,ifour);
774             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
775             F                = _mm_setzero_pd();
776             GMX_MM_TRANSPOSE2_PD(Y,F);
777             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
778             H                = _mm_setzero_pd();
779             GMX_MM_TRANSPOSE2_PD(G,H);
780             Heps             = _mm_mul_pd(vfeps,H);
781             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
782             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
783             fvdw12           = _mm_mul_pd(c12_00,FF);
784             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
785
786             fscal            = _mm_add_pd(felec,fvdw);
787
788             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
789
790             /* Calculate temporary vectorial force */
791             tx               = _mm_mul_pd(fscal,dx00);
792             ty               = _mm_mul_pd(fscal,dy00);
793             tz               = _mm_mul_pd(fscal,dz00);
794
795             /* Update vectorial force */
796             fix0             = _mm_add_pd(fix0,tx);
797             fiy0             = _mm_add_pd(fiy0,ty);
798             fiz0             = _mm_add_pd(fiz0,tz);
799
800             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
801
802             /* Inner loop uses 82 flops */
803         }
804
805         /* End of innermost loop */
806
807         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
808                                               f+i_coord_offset,fshift+i_shift_offset);
809
810         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
811         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
812
813         /* Increment number of inner iterations */
814         inneriter                  += j_index_end - j_index_start;
815
816         /* Outer loop uses 7 flops */
817     }
818
819     /* Increment number of outer iterations */
820     outeriter        += nri;
821
822     /* Update outer/inner flops */
823
824     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
825 }