Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
91     __m128d          minushalf = _mm_set1_pd(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
126
127     invsqrta         = fr->invsqrta;
128     dvda             = fr->dvda;
129     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
130     gbtab            = fr->gbtab.data;
131     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm_setzero_pd();
159         fiy0             = _mm_setzero_pd();
160         fiz0             = _mm_setzero_pd();
161
162         /* Load parameters for i particles */
163         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
164         isai0            = _mm_load1_pd(invsqrta+inr+0);
165         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
166
167         /* Reset potential sums */
168         velecsum         = _mm_setzero_pd();
169         vgbsum           = _mm_setzero_pd();
170         vvdwsum          = _mm_setzero_pd();
171         dvdasum          = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_pd(ix0,jx0);
189             dy00             = _mm_sub_pd(iy0,jy0);
190             dz00             = _mm_sub_pd(iz0,jz0);
191
192             /* Calculate squared distance and things based on it */
193             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
194
195             rinv00           = gmx_mm_invsqrt_pd(rsq00);
196
197             /* Load parameters for j particles */
198             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
199             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             r00              = _mm_mul_pd(rsq00,rinv00);
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _mm_mul_pd(iq0,jq0);
211             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
212                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
213
214             /* Calculate table index by multiplying r with table scale and truncate to integer */
215             rt               = _mm_mul_pd(r00,vftabscale);
216             vfitab           = _mm_cvttpd_epi32(rt);
217             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
218             vfitab           = _mm_slli_epi32(vfitab,3);
219
220             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
221             isaprod          = _mm_mul_pd(isai0,isaj0);
222             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
223             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
224
225             /* Calculate generalized born table index - this is a separate table from the normal one,
226              * but we use the same procedure by multiplying r with scale and truncating to integer.
227              */
228             rt               = _mm_mul_pd(r00,gbscale);
229             gbitab           = _mm_cvttpd_epi32(rt);
230             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
231             gbitab           = _mm_slli_epi32(gbitab,2);
232
233             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
234             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
235             GMX_MM_TRANSPOSE2_PD(Y,F);
236             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
237             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
238             GMX_MM_TRANSPOSE2_PD(G,H);
239             Heps             = _mm_mul_pd(gbeps,H);
240             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
241             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
242             vgb              = _mm_mul_pd(gbqqfactor,VV);
243
244             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
245             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
246             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
247             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
248             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
249             velec            = _mm_mul_pd(qq00,rinv00);
250             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
251
252             /* CUBIC SPLINE TABLE DISPERSION */
253             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
254             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
255             GMX_MM_TRANSPOSE2_PD(Y,F);
256             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
257             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
258             GMX_MM_TRANSPOSE2_PD(G,H);
259             Heps             = _mm_mul_pd(vfeps,H);
260             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
261             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
262             vvdw6            = _mm_mul_pd(c6_00,VV);
263             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
264             fvdw6            = _mm_mul_pd(c6_00,FF);
265
266             /* CUBIC SPLINE TABLE REPULSION */
267             vfitab           = _mm_add_epi32(vfitab,ifour);
268             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
269             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
270             GMX_MM_TRANSPOSE2_PD(Y,F);
271             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
272             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
273             GMX_MM_TRANSPOSE2_PD(G,H);
274             Heps             = _mm_mul_pd(vfeps,H);
275             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
276             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
277             vvdw12           = _mm_mul_pd(c12_00,VV);
278             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
279             fvdw12           = _mm_mul_pd(c12_00,FF);
280             vvdw             = _mm_add_pd(vvdw12,vvdw6);
281             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velecsum         = _mm_add_pd(velecsum,velec);
285             vgbsum           = _mm_add_pd(vgbsum,vgb);
286             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
287
288             fscal            = _mm_add_pd(felec,fvdw);
289
290             /* Calculate temporary vectorial force */
291             tx               = _mm_mul_pd(fscal,dx00);
292             ty               = _mm_mul_pd(fscal,dy00);
293             tz               = _mm_mul_pd(fscal,dz00);
294
295             /* Update vectorial force */
296             fix0             = _mm_add_pd(fix0,tx);
297             fiy0             = _mm_add_pd(fiy0,ty);
298             fiz0             = _mm_add_pd(fiz0,tz);
299
300             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
301
302             /* Inner loop uses 92 flops */
303         }
304
305         if(jidx<j_index_end)
306         {
307
308             jnrA             = jjnr[jidx];
309             j_coord_offsetA  = DIM*jnrA;
310
311             /* load j atom coordinates */
312             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
313                                               &jx0,&jy0,&jz0);
314
315             /* Calculate displacement vector */
316             dx00             = _mm_sub_pd(ix0,jx0);
317             dy00             = _mm_sub_pd(iy0,jy0);
318             dz00             = _mm_sub_pd(iz0,jz0);
319
320             /* Calculate squared distance and things based on it */
321             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
322
323             rinv00           = gmx_mm_invsqrt_pd(rsq00);
324
325             /* Load parameters for j particles */
326             jq0              = _mm_load_sd(charge+jnrA+0);
327             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
328             vdwjidx0A        = 2*vdwtype[jnrA+0];
329
330             /**************************
331              * CALCULATE INTERACTIONS *
332              **************************/
333
334             r00              = _mm_mul_pd(rsq00,rinv00);
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq00             = _mm_mul_pd(iq0,jq0);
338             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
339
340             /* Calculate table index by multiplying r with table scale and truncate to integer */
341             rt               = _mm_mul_pd(r00,vftabscale);
342             vfitab           = _mm_cvttpd_epi32(rt);
343             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
344             vfitab           = _mm_slli_epi32(vfitab,3);
345
346             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
347             isaprod          = _mm_mul_pd(isai0,isaj0);
348             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
349             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
350
351             /* Calculate generalized born table index - this is a separate table from the normal one,
352              * but we use the same procedure by multiplying r with scale and truncating to integer.
353              */
354             rt               = _mm_mul_pd(r00,gbscale);
355             gbitab           = _mm_cvttpd_epi32(rt);
356             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
357             gbitab           = _mm_slli_epi32(gbitab,2);
358
359             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
360             F                = _mm_setzero_pd();
361             GMX_MM_TRANSPOSE2_PD(Y,F);
362             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
363             H                = _mm_setzero_pd();
364             GMX_MM_TRANSPOSE2_PD(G,H);
365             Heps             = _mm_mul_pd(gbeps,H);
366             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
367             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
368             vgb              = _mm_mul_pd(gbqqfactor,VV);
369
370             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
371             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
372             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
373             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
374             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
375             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
376             velec            = _mm_mul_pd(qq00,rinv00);
377             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
378
379             /* CUBIC SPLINE TABLE DISPERSION */
380             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
381             F                = _mm_setzero_pd();
382             GMX_MM_TRANSPOSE2_PD(Y,F);
383             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
384             H                = _mm_setzero_pd();
385             GMX_MM_TRANSPOSE2_PD(G,H);
386             Heps             = _mm_mul_pd(vfeps,H);
387             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
388             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
389             vvdw6            = _mm_mul_pd(c6_00,VV);
390             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
391             fvdw6            = _mm_mul_pd(c6_00,FF);
392
393             /* CUBIC SPLINE TABLE REPULSION */
394             vfitab           = _mm_add_epi32(vfitab,ifour);
395             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
396             F                = _mm_setzero_pd();
397             GMX_MM_TRANSPOSE2_PD(Y,F);
398             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
399             H                = _mm_setzero_pd();
400             GMX_MM_TRANSPOSE2_PD(G,H);
401             Heps             = _mm_mul_pd(vfeps,H);
402             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
403             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
404             vvdw12           = _mm_mul_pd(c12_00,VV);
405             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
406             fvdw12           = _mm_mul_pd(c12_00,FF);
407             vvdw             = _mm_add_pd(vvdw12,vvdw6);
408             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
409
410             /* Update potential sum for this i atom from the interaction with this j atom. */
411             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
412             velecsum         = _mm_add_pd(velecsum,velec);
413             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
414             vgbsum           = _mm_add_pd(vgbsum,vgb);
415             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
416             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
417
418             fscal            = _mm_add_pd(felec,fvdw);
419
420             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
421
422             /* Calculate temporary vectorial force */
423             tx               = _mm_mul_pd(fscal,dx00);
424             ty               = _mm_mul_pd(fscal,dy00);
425             tz               = _mm_mul_pd(fscal,dz00);
426
427             /* Update vectorial force */
428             fix0             = _mm_add_pd(fix0,tx);
429             fiy0             = _mm_add_pd(fiy0,ty);
430             fiz0             = _mm_add_pd(fiz0,tz);
431
432             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
433
434             /* Inner loop uses 92 flops */
435         }
436
437         /* End of innermost loop */
438
439         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
440                                               f+i_coord_offset,fshift+i_shift_offset);
441
442         ggid                        = gid[iidx];
443         /* Update potential energies */
444         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
445         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
446         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
447         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
448         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
449
450         /* Increment number of inner iterations */
451         inneriter                  += j_index_end - j_index_start;
452
453         /* Outer loop uses 10 flops */
454     }
455
456     /* Increment number of outer iterations */
457     outeriter        += nri;
458
459     /* Update outer/inner flops */
460
461     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
462 }
463 /*
464  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_double
465  * Electrostatics interaction: GeneralizedBorn
466  * VdW interaction:            CubicSplineTable
467  * Geometry:                   Particle-Particle
468  * Calculate force/pot:        Force
469  */
470 void
471 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_double
472                     (t_nblist                    * gmx_restrict       nlist,
473                      rvec                        * gmx_restrict          xx,
474                      rvec                        * gmx_restrict          ff,
475                      t_forcerec                  * gmx_restrict          fr,
476                      t_mdatoms                   * gmx_restrict     mdatoms,
477                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
478                      t_nrnb                      * gmx_restrict        nrnb)
479 {
480     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
481      * just 0 for non-waters.
482      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
483      * jnr indices corresponding to data put in the four positions in the SIMD register.
484      */
485     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
486     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
487     int              jnrA,jnrB;
488     int              j_coord_offsetA,j_coord_offsetB;
489     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
490     real             rcutoff_scalar;
491     real             *shiftvec,*fshift,*x,*f;
492     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
493     int              vdwioffset0;
494     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
495     int              vdwjidx0A,vdwjidx0B;
496     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
497     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
498     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
499     real             *charge;
500     __m128i          gbitab;
501     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
502     __m128d          minushalf = _mm_set1_pd(-0.5);
503     real             *invsqrta,*dvda,*gbtab;
504     int              nvdwtype;
505     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
506     int              *vdwtype;
507     real             *vdwparam;
508     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
509     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
510     __m128i          vfitab;
511     __m128i          ifour       = _mm_set1_epi32(4);
512     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
513     real             *vftab;
514     __m128d          dummy_mask,cutoff_mask;
515     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
516     __m128d          one     = _mm_set1_pd(1.0);
517     __m128d          two     = _mm_set1_pd(2.0);
518     x                = xx[0];
519     f                = ff[0];
520
521     nri              = nlist->nri;
522     iinr             = nlist->iinr;
523     jindex           = nlist->jindex;
524     jjnr             = nlist->jjnr;
525     shiftidx         = nlist->shift;
526     gid              = nlist->gid;
527     shiftvec         = fr->shift_vec[0];
528     fshift           = fr->fshift[0];
529     facel            = _mm_set1_pd(fr->epsfac);
530     charge           = mdatoms->chargeA;
531     nvdwtype         = fr->ntype;
532     vdwparam         = fr->nbfp;
533     vdwtype          = mdatoms->typeA;
534
535     vftab            = kernel_data->table_vdw->data;
536     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
537
538     invsqrta         = fr->invsqrta;
539     dvda             = fr->dvda;
540     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
541     gbtab            = fr->gbtab.data;
542     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
543
544     /* Avoid stupid compiler warnings */
545     jnrA = jnrB = 0;
546     j_coord_offsetA = 0;
547     j_coord_offsetB = 0;
548
549     outeriter        = 0;
550     inneriter        = 0;
551
552     /* Start outer loop over neighborlists */
553     for(iidx=0; iidx<nri; iidx++)
554     {
555         /* Load shift vector for this list */
556         i_shift_offset   = DIM*shiftidx[iidx];
557
558         /* Load limits for loop over neighbors */
559         j_index_start    = jindex[iidx];
560         j_index_end      = jindex[iidx+1];
561
562         /* Get outer coordinate index */
563         inr              = iinr[iidx];
564         i_coord_offset   = DIM*inr;
565
566         /* Load i particle coords and add shift vector */
567         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
568
569         fix0             = _mm_setzero_pd();
570         fiy0             = _mm_setzero_pd();
571         fiz0             = _mm_setzero_pd();
572
573         /* Load parameters for i particles */
574         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
575         isai0            = _mm_load1_pd(invsqrta+inr+0);
576         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
577
578         dvdasum          = _mm_setzero_pd();
579
580         /* Start inner kernel loop */
581         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
582         {
583
584             /* Get j neighbor index, and coordinate index */
585             jnrA             = jjnr[jidx];
586             jnrB             = jjnr[jidx+1];
587             j_coord_offsetA  = DIM*jnrA;
588             j_coord_offsetB  = DIM*jnrB;
589
590             /* load j atom coordinates */
591             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
592                                               &jx0,&jy0,&jz0);
593
594             /* Calculate displacement vector */
595             dx00             = _mm_sub_pd(ix0,jx0);
596             dy00             = _mm_sub_pd(iy0,jy0);
597             dz00             = _mm_sub_pd(iz0,jz0);
598
599             /* Calculate squared distance and things based on it */
600             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
601
602             rinv00           = gmx_mm_invsqrt_pd(rsq00);
603
604             /* Load parameters for j particles */
605             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
606             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
607             vdwjidx0A        = 2*vdwtype[jnrA+0];
608             vdwjidx0B        = 2*vdwtype[jnrB+0];
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             r00              = _mm_mul_pd(rsq00,rinv00);
615
616             /* Compute parameters for interactions between i and j atoms */
617             qq00             = _mm_mul_pd(iq0,jq0);
618             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
619                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
620
621             /* Calculate table index by multiplying r with table scale and truncate to integer */
622             rt               = _mm_mul_pd(r00,vftabscale);
623             vfitab           = _mm_cvttpd_epi32(rt);
624             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
625             vfitab           = _mm_slli_epi32(vfitab,3);
626
627             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
628             isaprod          = _mm_mul_pd(isai0,isaj0);
629             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
630             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
631
632             /* Calculate generalized born table index - this is a separate table from the normal one,
633              * but we use the same procedure by multiplying r with scale and truncating to integer.
634              */
635             rt               = _mm_mul_pd(r00,gbscale);
636             gbitab           = _mm_cvttpd_epi32(rt);
637             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
638             gbitab           = _mm_slli_epi32(gbitab,2);
639
640             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
641             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
642             GMX_MM_TRANSPOSE2_PD(Y,F);
643             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
644             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
645             GMX_MM_TRANSPOSE2_PD(G,H);
646             Heps             = _mm_mul_pd(gbeps,H);
647             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
648             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
649             vgb              = _mm_mul_pd(gbqqfactor,VV);
650
651             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
652             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
653             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
654             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
655             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
656             velec            = _mm_mul_pd(qq00,rinv00);
657             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
658
659             /* CUBIC SPLINE TABLE DISPERSION */
660             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
661             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
662             GMX_MM_TRANSPOSE2_PD(Y,F);
663             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
664             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
665             GMX_MM_TRANSPOSE2_PD(G,H);
666             Heps             = _mm_mul_pd(vfeps,H);
667             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
668             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
669             fvdw6            = _mm_mul_pd(c6_00,FF);
670
671             /* CUBIC SPLINE TABLE REPULSION */
672             vfitab           = _mm_add_epi32(vfitab,ifour);
673             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
674             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
675             GMX_MM_TRANSPOSE2_PD(Y,F);
676             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
677             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
678             GMX_MM_TRANSPOSE2_PD(G,H);
679             Heps             = _mm_mul_pd(vfeps,H);
680             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
681             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
682             fvdw12           = _mm_mul_pd(c12_00,FF);
683             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
684
685             fscal            = _mm_add_pd(felec,fvdw);
686
687             /* Calculate temporary vectorial force */
688             tx               = _mm_mul_pd(fscal,dx00);
689             ty               = _mm_mul_pd(fscal,dy00);
690             tz               = _mm_mul_pd(fscal,dz00);
691
692             /* Update vectorial force */
693             fix0             = _mm_add_pd(fix0,tx);
694             fiy0             = _mm_add_pd(fiy0,ty);
695             fiz0             = _mm_add_pd(fiz0,tz);
696
697             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
698
699             /* Inner loop uses 82 flops */
700         }
701
702         if(jidx<j_index_end)
703         {
704
705             jnrA             = jjnr[jidx];
706             j_coord_offsetA  = DIM*jnrA;
707
708             /* load j atom coordinates */
709             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
710                                               &jx0,&jy0,&jz0);
711
712             /* Calculate displacement vector */
713             dx00             = _mm_sub_pd(ix0,jx0);
714             dy00             = _mm_sub_pd(iy0,jy0);
715             dz00             = _mm_sub_pd(iz0,jz0);
716
717             /* Calculate squared distance and things based on it */
718             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
719
720             rinv00           = gmx_mm_invsqrt_pd(rsq00);
721
722             /* Load parameters for j particles */
723             jq0              = _mm_load_sd(charge+jnrA+0);
724             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
725             vdwjidx0A        = 2*vdwtype[jnrA+0];
726
727             /**************************
728              * CALCULATE INTERACTIONS *
729              **************************/
730
731             r00              = _mm_mul_pd(rsq00,rinv00);
732
733             /* Compute parameters for interactions between i and j atoms */
734             qq00             = _mm_mul_pd(iq0,jq0);
735             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
736
737             /* Calculate table index by multiplying r with table scale and truncate to integer */
738             rt               = _mm_mul_pd(r00,vftabscale);
739             vfitab           = _mm_cvttpd_epi32(rt);
740             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
741             vfitab           = _mm_slli_epi32(vfitab,3);
742
743             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
744             isaprod          = _mm_mul_pd(isai0,isaj0);
745             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
746             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
747
748             /* Calculate generalized born table index - this is a separate table from the normal one,
749              * but we use the same procedure by multiplying r with scale and truncating to integer.
750              */
751             rt               = _mm_mul_pd(r00,gbscale);
752             gbitab           = _mm_cvttpd_epi32(rt);
753             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
754             gbitab           = _mm_slli_epi32(gbitab,2);
755
756             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
757             F                = _mm_setzero_pd();
758             GMX_MM_TRANSPOSE2_PD(Y,F);
759             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
760             H                = _mm_setzero_pd();
761             GMX_MM_TRANSPOSE2_PD(G,H);
762             Heps             = _mm_mul_pd(gbeps,H);
763             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
764             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
765             vgb              = _mm_mul_pd(gbqqfactor,VV);
766
767             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
768             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
769             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
770             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
771             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
772             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
773             velec            = _mm_mul_pd(qq00,rinv00);
774             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
775
776             /* CUBIC SPLINE TABLE DISPERSION */
777             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
778             F                = _mm_setzero_pd();
779             GMX_MM_TRANSPOSE2_PD(Y,F);
780             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
781             H                = _mm_setzero_pd();
782             GMX_MM_TRANSPOSE2_PD(G,H);
783             Heps             = _mm_mul_pd(vfeps,H);
784             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
785             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
786             fvdw6            = _mm_mul_pd(c6_00,FF);
787
788             /* CUBIC SPLINE TABLE REPULSION */
789             vfitab           = _mm_add_epi32(vfitab,ifour);
790             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
791             F                = _mm_setzero_pd();
792             GMX_MM_TRANSPOSE2_PD(Y,F);
793             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
794             H                = _mm_setzero_pd();
795             GMX_MM_TRANSPOSE2_PD(G,H);
796             Heps             = _mm_mul_pd(vfeps,H);
797             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
798             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
799             fvdw12           = _mm_mul_pd(c12_00,FF);
800             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
801
802             fscal            = _mm_add_pd(felec,fvdw);
803
804             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
805
806             /* Calculate temporary vectorial force */
807             tx               = _mm_mul_pd(fscal,dx00);
808             ty               = _mm_mul_pd(fscal,dy00);
809             tz               = _mm_mul_pd(fscal,dz00);
810
811             /* Update vectorial force */
812             fix0             = _mm_add_pd(fix0,tx);
813             fiy0             = _mm_add_pd(fiy0,ty);
814             fiz0             = _mm_add_pd(fiz0,tz);
815
816             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
817
818             /* Inner loop uses 82 flops */
819         }
820
821         /* End of innermost loop */
822
823         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
824                                               f+i_coord_offset,fshift+i_shift_offset);
825
826         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
827         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
828
829         /* Increment number of inner iterations */
830         inneriter                  += j_index_end - j_index_start;
831
832         /* Outer loop uses 7 flops */
833     }
834
835     /* Increment number of outer iterations */
836     outeriter        += nri;
837
838     /* Update outer/inner flops */
839
840     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
841 }