9f96a56a0490b828a464e74aa9b453b6e6b6bdf4
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_double
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     __m128i          gbitab;
87     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
88     __m128d          minushalf = _mm_set1_pd(-0.5);
89     real             *invsqrta,*dvda,*gbtab;
90     int              nvdwtype;
91     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
95     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
99     real             *vftab;
100     __m128d          dummy_mask,cutoff_mask;
101     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102     __m128d          one     = _mm_set1_pd(1.0);
103     __m128d          two     = _mm_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_pd(fr->ic->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_vdw->data;
122     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
123
124     invsqrta         = fr->invsqrta;
125     dvda             = fr->dvda;
126     gbtabscale       = _mm_set1_pd(fr->gbtab->scale);
127     gbtab            = fr->gbtab->data;
128     gbinvepsdiff     = _mm_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155         fix0             = _mm_setzero_pd();
156         fiy0             = _mm_setzero_pd();
157         fiz0             = _mm_setzero_pd();
158
159         /* Load parameters for i particles */
160         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
161         isai0            = _mm_load1_pd(invsqrta+inr+0);
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166         vgbsum           = _mm_setzero_pd();
167         vvdwsum          = _mm_setzero_pd();
168         dvdasum          = _mm_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_pd(ix0,jx0);
186             dy00             = _mm_sub_pd(iy0,jy0);
187             dz00             = _mm_sub_pd(iz0,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
191
192             rinv00           = sse2_invsqrt_d(rsq00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
196             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
197             vdwjidx0A        = 2*vdwtype[jnrA+0];
198             vdwjidx0B        = 2*vdwtype[jnrB+0];
199
200             /**************************
201              * CALCULATE INTERACTIONS *
202              **************************/
203
204             r00              = _mm_mul_pd(rsq00,rinv00);
205
206             /* Compute parameters for interactions between i and j atoms */
207             qq00             = _mm_mul_pd(iq0,jq0);
208             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
209                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
210
211             /* Calculate table index by multiplying r with table scale and truncate to integer */
212             rt               = _mm_mul_pd(r00,vftabscale);
213             vfitab           = _mm_cvttpd_epi32(rt);
214             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
215             vfitab           = _mm_slli_epi32(vfitab,3);
216
217             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
218             isaprod          = _mm_mul_pd(isai0,isaj0);
219             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
220             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
221
222             /* Calculate generalized born table index - this is a separate table from the normal one,
223              * but we use the same procedure by multiplying r with scale and truncating to integer.
224              */
225             rt               = _mm_mul_pd(r00,gbscale);
226             gbitab           = _mm_cvttpd_epi32(rt);
227             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
228             gbitab           = _mm_slli_epi32(gbitab,2);
229
230             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
231             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
232             GMX_MM_TRANSPOSE2_PD(Y,F);
233             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
234             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
235             GMX_MM_TRANSPOSE2_PD(G,H);
236             Heps             = _mm_mul_pd(gbeps,H);
237             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
238             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
239             vgb              = _mm_mul_pd(gbqqfactor,VV);
240
241             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
242             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
243             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
244             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
245             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
246             velec            = _mm_mul_pd(qq00,rinv00);
247             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
248
249             /* CUBIC SPLINE TABLE DISPERSION */
250             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
251             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
252             GMX_MM_TRANSPOSE2_PD(Y,F);
253             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
254             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
255             GMX_MM_TRANSPOSE2_PD(G,H);
256             Heps             = _mm_mul_pd(vfeps,H);
257             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
258             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
259             vvdw6            = _mm_mul_pd(c6_00,VV);
260             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
261             fvdw6            = _mm_mul_pd(c6_00,FF);
262
263             /* CUBIC SPLINE TABLE REPULSION */
264             vfitab           = _mm_add_epi32(vfitab,ifour);
265             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
266             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
267             GMX_MM_TRANSPOSE2_PD(Y,F);
268             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
269             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
270             GMX_MM_TRANSPOSE2_PD(G,H);
271             Heps             = _mm_mul_pd(vfeps,H);
272             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
273             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
274             vvdw12           = _mm_mul_pd(c12_00,VV);
275             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
276             fvdw12           = _mm_mul_pd(c12_00,FF);
277             vvdw             = _mm_add_pd(vvdw12,vvdw6);
278             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm_add_pd(velecsum,velec);
282             vgbsum           = _mm_add_pd(vgbsum,vgb);
283             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
284
285             fscal            = _mm_add_pd(felec,fvdw);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm_mul_pd(fscal,dx00);
289             ty               = _mm_mul_pd(fscal,dy00);
290             tz               = _mm_mul_pd(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm_add_pd(fix0,tx);
294             fiy0             = _mm_add_pd(fiy0,ty);
295             fiz0             = _mm_add_pd(fiz0,tz);
296
297             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
298
299             /* Inner loop uses 92 flops */
300         }
301
302         if(jidx<j_index_end)
303         {
304
305             jnrA             = jjnr[jidx];
306             j_coord_offsetA  = DIM*jnrA;
307
308             /* load j atom coordinates */
309             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
310                                               &jx0,&jy0,&jz0);
311
312             /* Calculate displacement vector */
313             dx00             = _mm_sub_pd(ix0,jx0);
314             dy00             = _mm_sub_pd(iy0,jy0);
315             dz00             = _mm_sub_pd(iz0,jz0);
316
317             /* Calculate squared distance and things based on it */
318             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
319
320             rinv00           = sse2_invsqrt_d(rsq00);
321
322             /* Load parameters for j particles */
323             jq0              = _mm_load_sd(charge+jnrA+0);
324             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
325             vdwjidx0A        = 2*vdwtype[jnrA+0];
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             r00              = _mm_mul_pd(rsq00,rinv00);
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq00             = _mm_mul_pd(iq0,jq0);
335             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
336
337             /* Calculate table index by multiplying r with table scale and truncate to integer */
338             rt               = _mm_mul_pd(r00,vftabscale);
339             vfitab           = _mm_cvttpd_epi32(rt);
340             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
341             vfitab           = _mm_slli_epi32(vfitab,3);
342
343             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
344             isaprod          = _mm_mul_pd(isai0,isaj0);
345             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
346             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
347
348             /* Calculate generalized born table index - this is a separate table from the normal one,
349              * but we use the same procedure by multiplying r with scale and truncating to integer.
350              */
351             rt               = _mm_mul_pd(r00,gbscale);
352             gbitab           = _mm_cvttpd_epi32(rt);
353             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
354             gbitab           = _mm_slli_epi32(gbitab,2);
355
356             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
357             F                = _mm_setzero_pd();
358             GMX_MM_TRANSPOSE2_PD(Y,F);
359             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
360             H                = _mm_setzero_pd();
361             GMX_MM_TRANSPOSE2_PD(G,H);
362             Heps             = _mm_mul_pd(gbeps,H);
363             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
364             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
365             vgb              = _mm_mul_pd(gbqqfactor,VV);
366
367             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
368             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
369             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
370             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
371             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
372             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
373             velec            = _mm_mul_pd(qq00,rinv00);
374             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
375
376             /* CUBIC SPLINE TABLE DISPERSION */
377             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
378             F                = _mm_setzero_pd();
379             GMX_MM_TRANSPOSE2_PD(Y,F);
380             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
381             H                = _mm_setzero_pd();
382             GMX_MM_TRANSPOSE2_PD(G,H);
383             Heps             = _mm_mul_pd(vfeps,H);
384             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
385             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
386             vvdw6            = _mm_mul_pd(c6_00,VV);
387             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
388             fvdw6            = _mm_mul_pd(c6_00,FF);
389
390             /* CUBIC SPLINE TABLE REPULSION */
391             vfitab           = _mm_add_epi32(vfitab,ifour);
392             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
393             F                = _mm_setzero_pd();
394             GMX_MM_TRANSPOSE2_PD(Y,F);
395             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
396             H                = _mm_setzero_pd();
397             GMX_MM_TRANSPOSE2_PD(G,H);
398             Heps             = _mm_mul_pd(vfeps,H);
399             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
400             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
401             vvdw12           = _mm_mul_pd(c12_00,VV);
402             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
403             fvdw12           = _mm_mul_pd(c12_00,FF);
404             vvdw             = _mm_add_pd(vvdw12,vvdw6);
405             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
409             velecsum         = _mm_add_pd(velecsum,velec);
410             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
411             vgbsum           = _mm_add_pd(vgbsum,vgb);
412             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
413             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
414
415             fscal            = _mm_add_pd(felec,fvdw);
416
417             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
418
419             /* Calculate temporary vectorial force */
420             tx               = _mm_mul_pd(fscal,dx00);
421             ty               = _mm_mul_pd(fscal,dy00);
422             tz               = _mm_mul_pd(fscal,dz00);
423
424             /* Update vectorial force */
425             fix0             = _mm_add_pd(fix0,tx);
426             fiy0             = _mm_add_pd(fiy0,ty);
427             fiz0             = _mm_add_pd(fiz0,tz);
428
429             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
430
431             /* Inner loop uses 92 flops */
432         }
433
434         /* End of innermost loop */
435
436         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
437                                               f+i_coord_offset,fshift+i_shift_offset);
438
439         ggid                        = gid[iidx];
440         /* Update potential energies */
441         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
442         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
443         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
444         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
445         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
446
447         /* Increment number of inner iterations */
448         inneriter                  += j_index_end - j_index_start;
449
450         /* Outer loop uses 10 flops */
451     }
452
453     /* Increment number of outer iterations */
454     outeriter        += nri;
455
456     /* Update outer/inner flops */
457
458     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
459 }
460 /*
461  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_double
462  * Electrostatics interaction: GeneralizedBorn
463  * VdW interaction:            CubicSplineTable
464  * Geometry:                   Particle-Particle
465  * Calculate force/pot:        Force
466  */
467 void
468 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_double
469                     (t_nblist                    * gmx_restrict       nlist,
470                      rvec                        * gmx_restrict          xx,
471                      rvec                        * gmx_restrict          ff,
472                      struct t_forcerec           * gmx_restrict          fr,
473                      t_mdatoms                   * gmx_restrict     mdatoms,
474                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
475                      t_nrnb                      * gmx_restrict        nrnb)
476 {
477     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
478      * just 0 for non-waters.
479      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
480      * jnr indices corresponding to data put in the four positions in the SIMD register.
481      */
482     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
483     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
484     int              jnrA,jnrB;
485     int              j_coord_offsetA,j_coord_offsetB;
486     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
487     real             rcutoff_scalar;
488     real             *shiftvec,*fshift,*x,*f;
489     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
490     int              vdwioffset0;
491     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
492     int              vdwjidx0A,vdwjidx0B;
493     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
494     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
495     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
496     real             *charge;
497     __m128i          gbitab;
498     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
499     __m128d          minushalf = _mm_set1_pd(-0.5);
500     real             *invsqrta,*dvda,*gbtab;
501     int              nvdwtype;
502     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
503     int              *vdwtype;
504     real             *vdwparam;
505     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
506     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
507     __m128i          vfitab;
508     __m128i          ifour       = _mm_set1_epi32(4);
509     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
510     real             *vftab;
511     __m128d          dummy_mask,cutoff_mask;
512     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
513     __m128d          one     = _mm_set1_pd(1.0);
514     __m128d          two     = _mm_set1_pd(2.0);
515     x                = xx[0];
516     f                = ff[0];
517
518     nri              = nlist->nri;
519     iinr             = nlist->iinr;
520     jindex           = nlist->jindex;
521     jjnr             = nlist->jjnr;
522     shiftidx         = nlist->shift;
523     gid              = nlist->gid;
524     shiftvec         = fr->shift_vec[0];
525     fshift           = fr->fshift[0];
526     facel            = _mm_set1_pd(fr->ic->epsfac);
527     charge           = mdatoms->chargeA;
528     nvdwtype         = fr->ntype;
529     vdwparam         = fr->nbfp;
530     vdwtype          = mdatoms->typeA;
531
532     vftab            = kernel_data->table_vdw->data;
533     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
534
535     invsqrta         = fr->invsqrta;
536     dvda             = fr->dvda;
537     gbtabscale       = _mm_set1_pd(fr->gbtab->scale);
538     gbtab            = fr->gbtab->data;
539     gbinvepsdiff     = _mm_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
540
541     /* Avoid stupid compiler warnings */
542     jnrA = jnrB = 0;
543     j_coord_offsetA = 0;
544     j_coord_offsetB = 0;
545
546     outeriter        = 0;
547     inneriter        = 0;
548
549     /* Start outer loop over neighborlists */
550     for(iidx=0; iidx<nri; iidx++)
551     {
552         /* Load shift vector for this list */
553         i_shift_offset   = DIM*shiftidx[iidx];
554
555         /* Load limits for loop over neighbors */
556         j_index_start    = jindex[iidx];
557         j_index_end      = jindex[iidx+1];
558
559         /* Get outer coordinate index */
560         inr              = iinr[iidx];
561         i_coord_offset   = DIM*inr;
562
563         /* Load i particle coords and add shift vector */
564         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
565
566         fix0             = _mm_setzero_pd();
567         fiy0             = _mm_setzero_pd();
568         fiz0             = _mm_setzero_pd();
569
570         /* Load parameters for i particles */
571         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
572         isai0            = _mm_load1_pd(invsqrta+inr+0);
573         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
574
575         dvdasum          = _mm_setzero_pd();
576
577         /* Start inner kernel loop */
578         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
579         {
580
581             /* Get j neighbor index, and coordinate index */
582             jnrA             = jjnr[jidx];
583             jnrB             = jjnr[jidx+1];
584             j_coord_offsetA  = DIM*jnrA;
585             j_coord_offsetB  = DIM*jnrB;
586
587             /* load j atom coordinates */
588             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
589                                               &jx0,&jy0,&jz0);
590
591             /* Calculate displacement vector */
592             dx00             = _mm_sub_pd(ix0,jx0);
593             dy00             = _mm_sub_pd(iy0,jy0);
594             dz00             = _mm_sub_pd(iz0,jz0);
595
596             /* Calculate squared distance and things based on it */
597             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
598
599             rinv00           = sse2_invsqrt_d(rsq00);
600
601             /* Load parameters for j particles */
602             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
603             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
604             vdwjidx0A        = 2*vdwtype[jnrA+0];
605             vdwjidx0B        = 2*vdwtype[jnrB+0];
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             r00              = _mm_mul_pd(rsq00,rinv00);
612
613             /* Compute parameters for interactions between i and j atoms */
614             qq00             = _mm_mul_pd(iq0,jq0);
615             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
616                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
617
618             /* Calculate table index by multiplying r with table scale and truncate to integer */
619             rt               = _mm_mul_pd(r00,vftabscale);
620             vfitab           = _mm_cvttpd_epi32(rt);
621             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
622             vfitab           = _mm_slli_epi32(vfitab,3);
623
624             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
625             isaprod          = _mm_mul_pd(isai0,isaj0);
626             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
627             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
628
629             /* Calculate generalized born table index - this is a separate table from the normal one,
630              * but we use the same procedure by multiplying r with scale and truncating to integer.
631              */
632             rt               = _mm_mul_pd(r00,gbscale);
633             gbitab           = _mm_cvttpd_epi32(rt);
634             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
635             gbitab           = _mm_slli_epi32(gbitab,2);
636
637             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
638             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
639             GMX_MM_TRANSPOSE2_PD(Y,F);
640             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
641             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
642             GMX_MM_TRANSPOSE2_PD(G,H);
643             Heps             = _mm_mul_pd(gbeps,H);
644             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
645             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
646             vgb              = _mm_mul_pd(gbqqfactor,VV);
647
648             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
649             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
650             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
651             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
652             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
653             velec            = _mm_mul_pd(qq00,rinv00);
654             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
655
656             /* CUBIC SPLINE TABLE DISPERSION */
657             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
658             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
659             GMX_MM_TRANSPOSE2_PD(Y,F);
660             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
661             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
662             GMX_MM_TRANSPOSE2_PD(G,H);
663             Heps             = _mm_mul_pd(vfeps,H);
664             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
665             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
666             fvdw6            = _mm_mul_pd(c6_00,FF);
667
668             /* CUBIC SPLINE TABLE REPULSION */
669             vfitab           = _mm_add_epi32(vfitab,ifour);
670             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
671             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
672             GMX_MM_TRANSPOSE2_PD(Y,F);
673             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
674             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
675             GMX_MM_TRANSPOSE2_PD(G,H);
676             Heps             = _mm_mul_pd(vfeps,H);
677             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
678             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
679             fvdw12           = _mm_mul_pd(c12_00,FF);
680             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
681
682             fscal            = _mm_add_pd(felec,fvdw);
683
684             /* Calculate temporary vectorial force */
685             tx               = _mm_mul_pd(fscal,dx00);
686             ty               = _mm_mul_pd(fscal,dy00);
687             tz               = _mm_mul_pd(fscal,dz00);
688
689             /* Update vectorial force */
690             fix0             = _mm_add_pd(fix0,tx);
691             fiy0             = _mm_add_pd(fiy0,ty);
692             fiz0             = _mm_add_pd(fiz0,tz);
693
694             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
695
696             /* Inner loop uses 82 flops */
697         }
698
699         if(jidx<j_index_end)
700         {
701
702             jnrA             = jjnr[jidx];
703             j_coord_offsetA  = DIM*jnrA;
704
705             /* load j atom coordinates */
706             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
707                                               &jx0,&jy0,&jz0);
708
709             /* Calculate displacement vector */
710             dx00             = _mm_sub_pd(ix0,jx0);
711             dy00             = _mm_sub_pd(iy0,jy0);
712             dz00             = _mm_sub_pd(iz0,jz0);
713
714             /* Calculate squared distance and things based on it */
715             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
716
717             rinv00           = sse2_invsqrt_d(rsq00);
718
719             /* Load parameters for j particles */
720             jq0              = _mm_load_sd(charge+jnrA+0);
721             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
722             vdwjidx0A        = 2*vdwtype[jnrA+0];
723
724             /**************************
725              * CALCULATE INTERACTIONS *
726              **************************/
727
728             r00              = _mm_mul_pd(rsq00,rinv00);
729
730             /* Compute parameters for interactions between i and j atoms */
731             qq00             = _mm_mul_pd(iq0,jq0);
732             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
733
734             /* Calculate table index by multiplying r with table scale and truncate to integer */
735             rt               = _mm_mul_pd(r00,vftabscale);
736             vfitab           = _mm_cvttpd_epi32(rt);
737             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
738             vfitab           = _mm_slli_epi32(vfitab,3);
739
740             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
741             isaprod          = _mm_mul_pd(isai0,isaj0);
742             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
743             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
744
745             /* Calculate generalized born table index - this is a separate table from the normal one,
746              * but we use the same procedure by multiplying r with scale and truncating to integer.
747              */
748             rt               = _mm_mul_pd(r00,gbscale);
749             gbitab           = _mm_cvttpd_epi32(rt);
750             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
751             gbitab           = _mm_slli_epi32(gbitab,2);
752
753             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
754             F                = _mm_setzero_pd();
755             GMX_MM_TRANSPOSE2_PD(Y,F);
756             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
757             H                = _mm_setzero_pd();
758             GMX_MM_TRANSPOSE2_PD(G,H);
759             Heps             = _mm_mul_pd(gbeps,H);
760             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
761             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
762             vgb              = _mm_mul_pd(gbqqfactor,VV);
763
764             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
765             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
766             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
767             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
768             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
769             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
770             velec            = _mm_mul_pd(qq00,rinv00);
771             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
772
773             /* CUBIC SPLINE TABLE DISPERSION */
774             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
775             F                = _mm_setzero_pd();
776             GMX_MM_TRANSPOSE2_PD(Y,F);
777             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
778             H                = _mm_setzero_pd();
779             GMX_MM_TRANSPOSE2_PD(G,H);
780             Heps             = _mm_mul_pd(vfeps,H);
781             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
782             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
783             fvdw6            = _mm_mul_pd(c6_00,FF);
784
785             /* CUBIC SPLINE TABLE REPULSION */
786             vfitab           = _mm_add_epi32(vfitab,ifour);
787             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
788             F                = _mm_setzero_pd();
789             GMX_MM_TRANSPOSE2_PD(Y,F);
790             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
791             H                = _mm_setzero_pd();
792             GMX_MM_TRANSPOSE2_PD(G,H);
793             Heps             = _mm_mul_pd(vfeps,H);
794             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
795             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
796             fvdw12           = _mm_mul_pd(c12_00,FF);
797             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
798
799             fscal            = _mm_add_pd(felec,fvdw);
800
801             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
802
803             /* Calculate temporary vectorial force */
804             tx               = _mm_mul_pd(fscal,dx00);
805             ty               = _mm_mul_pd(fscal,dy00);
806             tz               = _mm_mul_pd(fscal,dz00);
807
808             /* Update vectorial force */
809             fix0             = _mm_add_pd(fix0,tx);
810             fiy0             = _mm_add_pd(fiy0,ty);
811             fiz0             = _mm_add_pd(fiz0,tz);
812
813             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
814
815             /* Inner loop uses 82 flops */
816         }
817
818         /* End of innermost loop */
819
820         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
821                                               f+i_coord_offset,fshift+i_shift_offset);
822
823         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
824         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
825
826         /* Increment number of inner iterations */
827         inneriter                  += j_index_end - j_index_start;
828
829         /* Outer loop uses 7 flops */
830     }
831
832     /* Increment number of outer iterations */
833     outeriter        += nri;
834
835     /* Update outer/inner flops */
836
837     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
838 }