Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_double
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     __m128i          gbitab;
88     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
89     __m128d          minushalf = _mm_set1_pd(-0.5);
90     real             *invsqrta,*dvda,*gbtab;
91     int              nvdwtype;
92     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
96     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
97     __m128i          vfitab;
98     __m128i          ifour       = _mm_set1_epi32(4);
99     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
100     real             *vftab;
101     __m128d          dummy_mask,cutoff_mask;
102     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103     __m128d          one     = _mm_set1_pd(1.0);
104     __m128d          two     = _mm_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_pd(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     vftab            = kernel_data->table_vdw->data;
123     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
124
125     invsqrta         = fr->invsqrta;
126     dvda             = fr->dvda;
127     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
128     gbtab            = fr->gbtab.data;
129     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm_setzero_pd();
157         fiy0             = _mm_setzero_pd();
158         fiz0             = _mm_setzero_pd();
159
160         /* Load parameters for i particles */
161         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
162         isai0            = _mm_load1_pd(invsqrta+inr+0);
163         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
164
165         /* Reset potential sums */
166         velecsum         = _mm_setzero_pd();
167         vgbsum           = _mm_setzero_pd();
168         vvdwsum          = _mm_setzero_pd();
169         dvdasum          = _mm_setzero_pd();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180
181             /* load j atom coordinates */
182             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
183                                               &jx0,&jy0,&jz0);
184
185             /* Calculate displacement vector */
186             dx00             = _mm_sub_pd(ix0,jx0);
187             dy00             = _mm_sub_pd(iy0,jy0);
188             dz00             = _mm_sub_pd(iz0,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
192
193             rinv00           = gmx_mm_invsqrt_pd(rsq00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
197             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
198             vdwjidx0A        = 2*vdwtype[jnrA+0];
199             vdwjidx0B        = 2*vdwtype[jnrB+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _mm_mul_pd(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _mm_mul_pd(iq0,jq0);
209             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
210                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
211
212             /* Calculate table index by multiplying r with table scale and truncate to integer */
213             rt               = _mm_mul_pd(r00,vftabscale);
214             vfitab           = _mm_cvttpd_epi32(rt);
215             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
216             vfitab           = _mm_slli_epi32(vfitab,3);
217
218             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
219             isaprod          = _mm_mul_pd(isai0,isaj0);
220             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
221             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
222
223             /* Calculate generalized born table index - this is a separate table from the normal one,
224              * but we use the same procedure by multiplying r with scale and truncating to integer.
225              */
226             rt               = _mm_mul_pd(r00,gbscale);
227             gbitab           = _mm_cvttpd_epi32(rt);
228             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
229             gbitab           = _mm_slli_epi32(gbitab,2);
230
231             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
232             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
233             GMX_MM_TRANSPOSE2_PD(Y,F);
234             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
235             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
236             GMX_MM_TRANSPOSE2_PD(G,H);
237             Heps             = _mm_mul_pd(gbeps,H);
238             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
239             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
240             vgb              = _mm_mul_pd(gbqqfactor,VV);
241
242             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
243             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
244             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
245             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
246             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
247             velec            = _mm_mul_pd(qq00,rinv00);
248             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
249
250             /* CUBIC SPLINE TABLE DISPERSION */
251             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
252             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
253             GMX_MM_TRANSPOSE2_PD(Y,F);
254             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
255             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
256             GMX_MM_TRANSPOSE2_PD(G,H);
257             Heps             = _mm_mul_pd(vfeps,H);
258             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
259             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
260             vvdw6            = _mm_mul_pd(c6_00,VV);
261             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
262             fvdw6            = _mm_mul_pd(c6_00,FF);
263
264             /* CUBIC SPLINE TABLE REPULSION */
265             vfitab           = _mm_add_epi32(vfitab,ifour);
266             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
267             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
268             GMX_MM_TRANSPOSE2_PD(Y,F);
269             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
270             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
271             GMX_MM_TRANSPOSE2_PD(G,H);
272             Heps             = _mm_mul_pd(vfeps,H);
273             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
274             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
275             vvdw12           = _mm_mul_pd(c12_00,VV);
276             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
277             fvdw12           = _mm_mul_pd(c12_00,FF);
278             vvdw             = _mm_add_pd(vvdw12,vvdw6);
279             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm_add_pd(velecsum,velec);
283             vgbsum           = _mm_add_pd(vgbsum,vgb);
284             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
285
286             fscal            = _mm_add_pd(felec,fvdw);
287
288             /* Calculate temporary vectorial force */
289             tx               = _mm_mul_pd(fscal,dx00);
290             ty               = _mm_mul_pd(fscal,dy00);
291             tz               = _mm_mul_pd(fscal,dz00);
292
293             /* Update vectorial force */
294             fix0             = _mm_add_pd(fix0,tx);
295             fiy0             = _mm_add_pd(fiy0,ty);
296             fiz0             = _mm_add_pd(fiz0,tz);
297
298             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
299
300             /* Inner loop uses 92 flops */
301         }
302
303         if(jidx<j_index_end)
304         {
305
306             jnrA             = jjnr[jidx];
307             j_coord_offsetA  = DIM*jnrA;
308
309             /* load j atom coordinates */
310             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
311                                               &jx0,&jy0,&jz0);
312
313             /* Calculate displacement vector */
314             dx00             = _mm_sub_pd(ix0,jx0);
315             dy00             = _mm_sub_pd(iy0,jy0);
316             dz00             = _mm_sub_pd(iz0,jz0);
317
318             /* Calculate squared distance and things based on it */
319             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
320
321             rinv00           = gmx_mm_invsqrt_pd(rsq00);
322
323             /* Load parameters for j particles */
324             jq0              = _mm_load_sd(charge+jnrA+0);
325             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
326             vdwjidx0A        = 2*vdwtype[jnrA+0];
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             r00              = _mm_mul_pd(rsq00,rinv00);
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq00             = _mm_mul_pd(iq0,jq0);
336             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
337
338             /* Calculate table index by multiplying r with table scale and truncate to integer */
339             rt               = _mm_mul_pd(r00,vftabscale);
340             vfitab           = _mm_cvttpd_epi32(rt);
341             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
342             vfitab           = _mm_slli_epi32(vfitab,3);
343
344             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
345             isaprod          = _mm_mul_pd(isai0,isaj0);
346             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
347             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
348
349             /* Calculate generalized born table index - this is a separate table from the normal one,
350              * but we use the same procedure by multiplying r with scale and truncating to integer.
351              */
352             rt               = _mm_mul_pd(r00,gbscale);
353             gbitab           = _mm_cvttpd_epi32(rt);
354             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
355             gbitab           = _mm_slli_epi32(gbitab,2);
356
357             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
358             F                = _mm_setzero_pd();
359             GMX_MM_TRANSPOSE2_PD(Y,F);
360             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
361             H                = _mm_setzero_pd();
362             GMX_MM_TRANSPOSE2_PD(G,H);
363             Heps             = _mm_mul_pd(gbeps,H);
364             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
365             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
366             vgb              = _mm_mul_pd(gbqqfactor,VV);
367
368             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
369             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
370             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
371             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
372             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
373             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
374             velec            = _mm_mul_pd(qq00,rinv00);
375             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
376
377             /* CUBIC SPLINE TABLE DISPERSION */
378             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
379             F                = _mm_setzero_pd();
380             GMX_MM_TRANSPOSE2_PD(Y,F);
381             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
382             H                = _mm_setzero_pd();
383             GMX_MM_TRANSPOSE2_PD(G,H);
384             Heps             = _mm_mul_pd(vfeps,H);
385             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
386             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
387             vvdw6            = _mm_mul_pd(c6_00,VV);
388             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
389             fvdw6            = _mm_mul_pd(c6_00,FF);
390
391             /* CUBIC SPLINE TABLE REPULSION */
392             vfitab           = _mm_add_epi32(vfitab,ifour);
393             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
394             F                = _mm_setzero_pd();
395             GMX_MM_TRANSPOSE2_PD(Y,F);
396             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
397             H                = _mm_setzero_pd();
398             GMX_MM_TRANSPOSE2_PD(G,H);
399             Heps             = _mm_mul_pd(vfeps,H);
400             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
401             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
402             vvdw12           = _mm_mul_pd(c12_00,VV);
403             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
404             fvdw12           = _mm_mul_pd(c12_00,FF);
405             vvdw             = _mm_add_pd(vvdw12,vvdw6);
406             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
407
408             /* Update potential sum for this i atom from the interaction with this j atom. */
409             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
410             velecsum         = _mm_add_pd(velecsum,velec);
411             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
412             vgbsum           = _mm_add_pd(vgbsum,vgb);
413             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
414             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
415
416             fscal            = _mm_add_pd(felec,fvdw);
417
418             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
419
420             /* Calculate temporary vectorial force */
421             tx               = _mm_mul_pd(fscal,dx00);
422             ty               = _mm_mul_pd(fscal,dy00);
423             tz               = _mm_mul_pd(fscal,dz00);
424
425             /* Update vectorial force */
426             fix0             = _mm_add_pd(fix0,tx);
427             fiy0             = _mm_add_pd(fiy0,ty);
428             fiz0             = _mm_add_pd(fiz0,tz);
429
430             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
431
432             /* Inner loop uses 92 flops */
433         }
434
435         /* End of innermost loop */
436
437         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
438                                               f+i_coord_offset,fshift+i_shift_offset);
439
440         ggid                        = gid[iidx];
441         /* Update potential energies */
442         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
443         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
444         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
445         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
446         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
447
448         /* Increment number of inner iterations */
449         inneriter                  += j_index_end - j_index_start;
450
451         /* Outer loop uses 10 flops */
452     }
453
454     /* Increment number of outer iterations */
455     outeriter        += nri;
456
457     /* Update outer/inner flops */
458
459     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
460 }
461 /*
462  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_double
463  * Electrostatics interaction: GeneralizedBorn
464  * VdW interaction:            CubicSplineTable
465  * Geometry:                   Particle-Particle
466  * Calculate force/pot:        Force
467  */
468 void
469 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_sse2_double
470                     (t_nblist                    * gmx_restrict       nlist,
471                      rvec                        * gmx_restrict          xx,
472                      rvec                        * gmx_restrict          ff,
473                      t_forcerec                  * gmx_restrict          fr,
474                      t_mdatoms                   * gmx_restrict     mdatoms,
475                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
476                      t_nrnb                      * gmx_restrict        nrnb)
477 {
478     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
479      * just 0 for non-waters.
480      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
481      * jnr indices corresponding to data put in the four positions in the SIMD register.
482      */
483     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
484     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
485     int              jnrA,jnrB;
486     int              j_coord_offsetA,j_coord_offsetB;
487     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
488     real             rcutoff_scalar;
489     real             *shiftvec,*fshift,*x,*f;
490     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
491     int              vdwioffset0;
492     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
493     int              vdwjidx0A,vdwjidx0B;
494     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
495     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
496     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
497     real             *charge;
498     __m128i          gbitab;
499     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
500     __m128d          minushalf = _mm_set1_pd(-0.5);
501     real             *invsqrta,*dvda,*gbtab;
502     int              nvdwtype;
503     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
504     int              *vdwtype;
505     real             *vdwparam;
506     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
507     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
508     __m128i          vfitab;
509     __m128i          ifour       = _mm_set1_epi32(4);
510     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
511     real             *vftab;
512     __m128d          dummy_mask,cutoff_mask;
513     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
514     __m128d          one     = _mm_set1_pd(1.0);
515     __m128d          two     = _mm_set1_pd(2.0);
516     x                = xx[0];
517     f                = ff[0];
518
519     nri              = nlist->nri;
520     iinr             = nlist->iinr;
521     jindex           = nlist->jindex;
522     jjnr             = nlist->jjnr;
523     shiftidx         = nlist->shift;
524     gid              = nlist->gid;
525     shiftvec         = fr->shift_vec[0];
526     fshift           = fr->fshift[0];
527     facel            = _mm_set1_pd(fr->epsfac);
528     charge           = mdatoms->chargeA;
529     nvdwtype         = fr->ntype;
530     vdwparam         = fr->nbfp;
531     vdwtype          = mdatoms->typeA;
532
533     vftab            = kernel_data->table_vdw->data;
534     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
535
536     invsqrta         = fr->invsqrta;
537     dvda             = fr->dvda;
538     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
539     gbtab            = fr->gbtab.data;
540     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
541
542     /* Avoid stupid compiler warnings */
543     jnrA = jnrB = 0;
544     j_coord_offsetA = 0;
545     j_coord_offsetB = 0;
546
547     outeriter        = 0;
548     inneriter        = 0;
549
550     /* Start outer loop over neighborlists */
551     for(iidx=0; iidx<nri; iidx++)
552     {
553         /* Load shift vector for this list */
554         i_shift_offset   = DIM*shiftidx[iidx];
555
556         /* Load limits for loop over neighbors */
557         j_index_start    = jindex[iidx];
558         j_index_end      = jindex[iidx+1];
559
560         /* Get outer coordinate index */
561         inr              = iinr[iidx];
562         i_coord_offset   = DIM*inr;
563
564         /* Load i particle coords and add shift vector */
565         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
566
567         fix0             = _mm_setzero_pd();
568         fiy0             = _mm_setzero_pd();
569         fiz0             = _mm_setzero_pd();
570
571         /* Load parameters for i particles */
572         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
573         isai0            = _mm_load1_pd(invsqrta+inr+0);
574         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
575
576         dvdasum          = _mm_setzero_pd();
577
578         /* Start inner kernel loop */
579         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
580         {
581
582             /* Get j neighbor index, and coordinate index */
583             jnrA             = jjnr[jidx];
584             jnrB             = jjnr[jidx+1];
585             j_coord_offsetA  = DIM*jnrA;
586             j_coord_offsetB  = DIM*jnrB;
587
588             /* load j atom coordinates */
589             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
590                                               &jx0,&jy0,&jz0);
591
592             /* Calculate displacement vector */
593             dx00             = _mm_sub_pd(ix0,jx0);
594             dy00             = _mm_sub_pd(iy0,jy0);
595             dz00             = _mm_sub_pd(iz0,jz0);
596
597             /* Calculate squared distance and things based on it */
598             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
599
600             rinv00           = gmx_mm_invsqrt_pd(rsq00);
601
602             /* Load parameters for j particles */
603             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
604             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
605             vdwjidx0A        = 2*vdwtype[jnrA+0];
606             vdwjidx0B        = 2*vdwtype[jnrB+0];
607
608             /**************************
609              * CALCULATE INTERACTIONS *
610              **************************/
611
612             r00              = _mm_mul_pd(rsq00,rinv00);
613
614             /* Compute parameters for interactions between i and j atoms */
615             qq00             = _mm_mul_pd(iq0,jq0);
616             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
617                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
618
619             /* Calculate table index by multiplying r with table scale and truncate to integer */
620             rt               = _mm_mul_pd(r00,vftabscale);
621             vfitab           = _mm_cvttpd_epi32(rt);
622             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
623             vfitab           = _mm_slli_epi32(vfitab,3);
624
625             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
626             isaprod          = _mm_mul_pd(isai0,isaj0);
627             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
628             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
629
630             /* Calculate generalized born table index - this is a separate table from the normal one,
631              * but we use the same procedure by multiplying r with scale and truncating to integer.
632              */
633             rt               = _mm_mul_pd(r00,gbscale);
634             gbitab           = _mm_cvttpd_epi32(rt);
635             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
636             gbitab           = _mm_slli_epi32(gbitab,2);
637
638             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
639             F                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) );
640             GMX_MM_TRANSPOSE2_PD(Y,F);
641             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
642             H                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,1) +2);
643             GMX_MM_TRANSPOSE2_PD(G,H);
644             Heps             = _mm_mul_pd(gbeps,H);
645             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
646             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
647             vgb              = _mm_mul_pd(gbqqfactor,VV);
648
649             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
650             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
651             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
652             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
653             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
654             velec            = _mm_mul_pd(qq00,rinv00);
655             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
656
657             /* CUBIC SPLINE TABLE DISPERSION */
658             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
659             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
660             GMX_MM_TRANSPOSE2_PD(Y,F);
661             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
662             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
663             GMX_MM_TRANSPOSE2_PD(G,H);
664             Heps             = _mm_mul_pd(vfeps,H);
665             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
666             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
667             fvdw6            = _mm_mul_pd(c6_00,FF);
668
669             /* CUBIC SPLINE TABLE REPULSION */
670             vfitab           = _mm_add_epi32(vfitab,ifour);
671             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
672             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
673             GMX_MM_TRANSPOSE2_PD(Y,F);
674             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
675             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
676             GMX_MM_TRANSPOSE2_PD(G,H);
677             Heps             = _mm_mul_pd(vfeps,H);
678             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
679             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
680             fvdw12           = _mm_mul_pd(c12_00,FF);
681             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
682
683             fscal            = _mm_add_pd(felec,fvdw);
684
685             /* Calculate temporary vectorial force */
686             tx               = _mm_mul_pd(fscal,dx00);
687             ty               = _mm_mul_pd(fscal,dy00);
688             tz               = _mm_mul_pd(fscal,dz00);
689
690             /* Update vectorial force */
691             fix0             = _mm_add_pd(fix0,tx);
692             fiy0             = _mm_add_pd(fiy0,ty);
693             fiz0             = _mm_add_pd(fiz0,tz);
694
695             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
696
697             /* Inner loop uses 82 flops */
698         }
699
700         if(jidx<j_index_end)
701         {
702
703             jnrA             = jjnr[jidx];
704             j_coord_offsetA  = DIM*jnrA;
705
706             /* load j atom coordinates */
707             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
708                                               &jx0,&jy0,&jz0);
709
710             /* Calculate displacement vector */
711             dx00             = _mm_sub_pd(ix0,jx0);
712             dy00             = _mm_sub_pd(iy0,jy0);
713             dz00             = _mm_sub_pd(iz0,jz0);
714
715             /* Calculate squared distance and things based on it */
716             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
717
718             rinv00           = gmx_mm_invsqrt_pd(rsq00);
719
720             /* Load parameters for j particles */
721             jq0              = _mm_load_sd(charge+jnrA+0);
722             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
723             vdwjidx0A        = 2*vdwtype[jnrA+0];
724
725             /**************************
726              * CALCULATE INTERACTIONS *
727              **************************/
728
729             r00              = _mm_mul_pd(rsq00,rinv00);
730
731             /* Compute parameters for interactions between i and j atoms */
732             qq00             = _mm_mul_pd(iq0,jq0);
733             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
734
735             /* Calculate table index by multiplying r with table scale and truncate to integer */
736             rt               = _mm_mul_pd(r00,vftabscale);
737             vfitab           = _mm_cvttpd_epi32(rt);
738             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
739             vfitab           = _mm_slli_epi32(vfitab,3);
740
741             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
742             isaprod          = _mm_mul_pd(isai0,isaj0);
743             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
744             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
745
746             /* Calculate generalized born table index - this is a separate table from the normal one,
747              * but we use the same procedure by multiplying r with scale and truncating to integer.
748              */
749             rt               = _mm_mul_pd(r00,gbscale);
750             gbitab           = _mm_cvttpd_epi32(rt);
751             gbeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(gbitab));
752             gbitab           = _mm_slli_epi32(gbitab,2);
753
754             Y                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) );
755             F                = _mm_setzero_pd();
756             GMX_MM_TRANSPOSE2_PD(Y,F);
757             G                = _mm_load_pd( gbtab + gmx_mm_extract_epi32(gbitab,0) +2);
758             H                = _mm_setzero_pd();
759             GMX_MM_TRANSPOSE2_PD(G,H);
760             Heps             = _mm_mul_pd(gbeps,H);
761             Fp               = _mm_add_pd(F,_mm_mul_pd(gbeps,_mm_add_pd(G,Heps)));
762             VV               = _mm_add_pd(Y,_mm_mul_pd(gbeps,Fp));
763             vgb              = _mm_mul_pd(gbqqfactor,VV);
764
765             FF               = _mm_add_pd(Fp,_mm_mul_pd(gbeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
766             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
767             dvdatmp          = _mm_mul_pd(minushalf,_mm_add_pd(vgb,_mm_mul_pd(fgb,r00)));
768             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
769             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
770             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
771             velec            = _mm_mul_pd(qq00,rinv00);
772             felec            = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(velec,rinv00),fgb),rinv00);
773
774             /* CUBIC SPLINE TABLE DISPERSION */
775             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
776             F                = _mm_setzero_pd();
777             GMX_MM_TRANSPOSE2_PD(Y,F);
778             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
779             H                = _mm_setzero_pd();
780             GMX_MM_TRANSPOSE2_PD(G,H);
781             Heps             = _mm_mul_pd(vfeps,H);
782             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
783             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
784             fvdw6            = _mm_mul_pd(c6_00,FF);
785
786             /* CUBIC SPLINE TABLE REPULSION */
787             vfitab           = _mm_add_epi32(vfitab,ifour);
788             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
789             F                = _mm_setzero_pd();
790             GMX_MM_TRANSPOSE2_PD(Y,F);
791             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
792             H                = _mm_setzero_pd();
793             GMX_MM_TRANSPOSE2_PD(G,H);
794             Heps             = _mm_mul_pd(vfeps,H);
795             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
796             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
797             fvdw12           = _mm_mul_pd(c12_00,FF);
798             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
799
800             fscal            = _mm_add_pd(felec,fvdw);
801
802             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
803
804             /* Calculate temporary vectorial force */
805             tx               = _mm_mul_pd(fscal,dx00);
806             ty               = _mm_mul_pd(fscal,dy00);
807             tz               = _mm_mul_pd(fscal,dz00);
808
809             /* Update vectorial force */
810             fix0             = _mm_add_pd(fix0,tx);
811             fiy0             = _mm_add_pd(fiy0,ty);
812             fiz0             = _mm_add_pd(fiz0,tz);
813
814             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
815
816             /* Inner loop uses 82 flops */
817         }
818
819         /* End of innermost loop */
820
821         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
822                                               f+i_coord_offset,fshift+i_shift_offset);
823
824         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
825         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
826
827         /* Increment number of inner iterations */
828         inneriter                  += j_index_end - j_index_start;
829
830         /* Outer loop uses 7 flops */
831     }
832
833     /* Increment number of outer iterations */
834     outeriter        += nri;
835
836     /* Update outer/inner flops */
837
838     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
839 }