Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwNone_GeomW3W3_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_sse2_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water3-Water3
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     int              vdwjidx1A,vdwjidx1B;
91     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
92     int              vdwjidx2A,vdwjidx2B;
93     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
94     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
96     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
97     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
99     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
100     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
102     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
103     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
104     real             *charge;
105     __m128i          ewitab;
106     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     real             *ewtab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
134     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
135     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
136
137     jq0              = _mm_set1_pd(charge[inr+0]);
138     jq1              = _mm_set1_pd(charge[inr+1]);
139     jq2              = _mm_set1_pd(charge[inr+2]);
140     qq00             = _mm_mul_pd(iq0,jq0);
141     qq01             = _mm_mul_pd(iq0,jq1);
142     qq02             = _mm_mul_pd(iq0,jq2);
143     qq10             = _mm_mul_pd(iq1,jq0);
144     qq11             = _mm_mul_pd(iq1,jq1);
145     qq12             = _mm_mul_pd(iq1,jq2);
146     qq20             = _mm_mul_pd(iq2,jq0);
147     qq21             = _mm_mul_pd(iq2,jq1);
148     qq22             = _mm_mul_pd(iq2,jq2);
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
175
176         fix0             = _mm_setzero_pd();
177         fiy0             = _mm_setzero_pd();
178         fiz0             = _mm_setzero_pd();
179         fix1             = _mm_setzero_pd();
180         fiy1             = _mm_setzero_pd();
181         fiz1             = _mm_setzero_pd();
182         fix2             = _mm_setzero_pd();
183         fiy2             = _mm_setzero_pd();
184         fiz2             = _mm_setzero_pd();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_pd();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198
199             /* load j atom coordinates */
200             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
201                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_pd(ix0,jx0);
205             dy00             = _mm_sub_pd(iy0,jy0);
206             dz00             = _mm_sub_pd(iz0,jz0);
207             dx01             = _mm_sub_pd(ix0,jx1);
208             dy01             = _mm_sub_pd(iy0,jy1);
209             dz01             = _mm_sub_pd(iz0,jz1);
210             dx02             = _mm_sub_pd(ix0,jx2);
211             dy02             = _mm_sub_pd(iy0,jy2);
212             dz02             = _mm_sub_pd(iz0,jz2);
213             dx10             = _mm_sub_pd(ix1,jx0);
214             dy10             = _mm_sub_pd(iy1,jy0);
215             dz10             = _mm_sub_pd(iz1,jz0);
216             dx11             = _mm_sub_pd(ix1,jx1);
217             dy11             = _mm_sub_pd(iy1,jy1);
218             dz11             = _mm_sub_pd(iz1,jz1);
219             dx12             = _mm_sub_pd(ix1,jx2);
220             dy12             = _mm_sub_pd(iy1,jy2);
221             dz12             = _mm_sub_pd(iz1,jz2);
222             dx20             = _mm_sub_pd(ix2,jx0);
223             dy20             = _mm_sub_pd(iy2,jy0);
224             dz20             = _mm_sub_pd(iz2,jz0);
225             dx21             = _mm_sub_pd(ix2,jx1);
226             dy21             = _mm_sub_pd(iy2,jy1);
227             dz21             = _mm_sub_pd(iz2,jz1);
228             dx22             = _mm_sub_pd(ix2,jx2);
229             dy22             = _mm_sub_pd(iy2,jy2);
230             dz22             = _mm_sub_pd(iz2,jz2);
231
232             /* Calculate squared distance and things based on it */
233             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
234             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
235             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
236             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
237             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
238             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
239             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
240             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
241             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
242
243             rinv00           = gmx_mm_invsqrt_pd(rsq00);
244             rinv01           = gmx_mm_invsqrt_pd(rsq01);
245             rinv02           = gmx_mm_invsqrt_pd(rsq02);
246             rinv10           = gmx_mm_invsqrt_pd(rsq10);
247             rinv11           = gmx_mm_invsqrt_pd(rsq11);
248             rinv12           = gmx_mm_invsqrt_pd(rsq12);
249             rinv20           = gmx_mm_invsqrt_pd(rsq20);
250             rinv21           = gmx_mm_invsqrt_pd(rsq21);
251             rinv22           = gmx_mm_invsqrt_pd(rsq22);
252
253             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
254             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
255             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
256             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
257             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
258             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
259             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
260             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
261             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
262
263             fjx0             = _mm_setzero_pd();
264             fjy0             = _mm_setzero_pd();
265             fjz0             = _mm_setzero_pd();
266             fjx1             = _mm_setzero_pd();
267             fjy1             = _mm_setzero_pd();
268             fjz1             = _mm_setzero_pd();
269             fjx2             = _mm_setzero_pd();
270             fjy2             = _mm_setzero_pd();
271             fjz2             = _mm_setzero_pd();
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             r00              = _mm_mul_pd(rsq00,rinv00);
278
279             /* EWALD ELECTROSTATICS */
280
281             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
282             ewrt             = _mm_mul_pd(r00,ewtabscale);
283             ewitab           = _mm_cvttpd_epi32(ewrt);
284             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
285             ewitab           = _mm_slli_epi32(ewitab,2);
286             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
287             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
288             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
289             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
290             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
291             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
292             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
293             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
294             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
295             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velecsum         = _mm_add_pd(velecsum,velec);
299
300             fscal            = felec;
301
302             /* Calculate temporary vectorial force */
303             tx               = _mm_mul_pd(fscal,dx00);
304             ty               = _mm_mul_pd(fscal,dy00);
305             tz               = _mm_mul_pd(fscal,dz00);
306
307             /* Update vectorial force */
308             fix0             = _mm_add_pd(fix0,tx);
309             fiy0             = _mm_add_pd(fiy0,ty);
310             fiz0             = _mm_add_pd(fiz0,tz);
311
312             fjx0             = _mm_add_pd(fjx0,tx);
313             fjy0             = _mm_add_pd(fjy0,ty);
314             fjz0             = _mm_add_pd(fjz0,tz);
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             r01              = _mm_mul_pd(rsq01,rinv01);
321
322             /* EWALD ELECTROSTATICS */
323
324             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
325             ewrt             = _mm_mul_pd(r01,ewtabscale);
326             ewitab           = _mm_cvttpd_epi32(ewrt);
327             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
328             ewitab           = _mm_slli_epi32(ewitab,2);
329             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
330             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
331             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
332             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
333             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
334             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
335             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
336             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
337             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
338             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velecsum         = _mm_add_pd(velecsum,velec);
342
343             fscal            = felec;
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm_mul_pd(fscal,dx01);
347             ty               = _mm_mul_pd(fscal,dy01);
348             tz               = _mm_mul_pd(fscal,dz01);
349
350             /* Update vectorial force */
351             fix0             = _mm_add_pd(fix0,tx);
352             fiy0             = _mm_add_pd(fiy0,ty);
353             fiz0             = _mm_add_pd(fiz0,tz);
354
355             fjx1             = _mm_add_pd(fjx1,tx);
356             fjy1             = _mm_add_pd(fjy1,ty);
357             fjz1             = _mm_add_pd(fjz1,tz);
358
359             /**************************
360              * CALCULATE INTERACTIONS *
361              **************************/
362
363             r02              = _mm_mul_pd(rsq02,rinv02);
364
365             /* EWALD ELECTROSTATICS */
366
367             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
368             ewrt             = _mm_mul_pd(r02,ewtabscale);
369             ewitab           = _mm_cvttpd_epi32(ewrt);
370             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
371             ewitab           = _mm_slli_epi32(ewitab,2);
372             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
373             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
374             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
375             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
376             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
377             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
378             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
379             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
380             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
381             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
382
383             /* Update potential sum for this i atom from the interaction with this j atom. */
384             velecsum         = _mm_add_pd(velecsum,velec);
385
386             fscal            = felec;
387
388             /* Calculate temporary vectorial force */
389             tx               = _mm_mul_pd(fscal,dx02);
390             ty               = _mm_mul_pd(fscal,dy02);
391             tz               = _mm_mul_pd(fscal,dz02);
392
393             /* Update vectorial force */
394             fix0             = _mm_add_pd(fix0,tx);
395             fiy0             = _mm_add_pd(fiy0,ty);
396             fiz0             = _mm_add_pd(fiz0,tz);
397
398             fjx2             = _mm_add_pd(fjx2,tx);
399             fjy2             = _mm_add_pd(fjy2,ty);
400             fjz2             = _mm_add_pd(fjz2,tz);
401
402             /**************************
403              * CALCULATE INTERACTIONS *
404              **************************/
405
406             r10              = _mm_mul_pd(rsq10,rinv10);
407
408             /* EWALD ELECTROSTATICS */
409
410             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
411             ewrt             = _mm_mul_pd(r10,ewtabscale);
412             ewitab           = _mm_cvttpd_epi32(ewrt);
413             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
414             ewitab           = _mm_slli_epi32(ewitab,2);
415             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
416             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
417             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
418             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
419             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
420             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
421             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
422             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
423             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
424             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
425
426             /* Update potential sum for this i atom from the interaction with this j atom. */
427             velecsum         = _mm_add_pd(velecsum,velec);
428
429             fscal            = felec;
430
431             /* Calculate temporary vectorial force */
432             tx               = _mm_mul_pd(fscal,dx10);
433             ty               = _mm_mul_pd(fscal,dy10);
434             tz               = _mm_mul_pd(fscal,dz10);
435
436             /* Update vectorial force */
437             fix1             = _mm_add_pd(fix1,tx);
438             fiy1             = _mm_add_pd(fiy1,ty);
439             fiz1             = _mm_add_pd(fiz1,tz);
440
441             fjx0             = _mm_add_pd(fjx0,tx);
442             fjy0             = _mm_add_pd(fjy0,ty);
443             fjz0             = _mm_add_pd(fjz0,tz);
444
445             /**************************
446              * CALCULATE INTERACTIONS *
447              **************************/
448
449             r11              = _mm_mul_pd(rsq11,rinv11);
450
451             /* EWALD ELECTROSTATICS */
452
453             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
454             ewrt             = _mm_mul_pd(r11,ewtabscale);
455             ewitab           = _mm_cvttpd_epi32(ewrt);
456             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
457             ewitab           = _mm_slli_epi32(ewitab,2);
458             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
459             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
460             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
461             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
462             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
463             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
464             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
465             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
466             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
467             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
468
469             /* Update potential sum for this i atom from the interaction with this j atom. */
470             velecsum         = _mm_add_pd(velecsum,velec);
471
472             fscal            = felec;
473
474             /* Calculate temporary vectorial force */
475             tx               = _mm_mul_pd(fscal,dx11);
476             ty               = _mm_mul_pd(fscal,dy11);
477             tz               = _mm_mul_pd(fscal,dz11);
478
479             /* Update vectorial force */
480             fix1             = _mm_add_pd(fix1,tx);
481             fiy1             = _mm_add_pd(fiy1,ty);
482             fiz1             = _mm_add_pd(fiz1,tz);
483
484             fjx1             = _mm_add_pd(fjx1,tx);
485             fjy1             = _mm_add_pd(fjy1,ty);
486             fjz1             = _mm_add_pd(fjz1,tz);
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             r12              = _mm_mul_pd(rsq12,rinv12);
493
494             /* EWALD ELECTROSTATICS */
495
496             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
497             ewrt             = _mm_mul_pd(r12,ewtabscale);
498             ewitab           = _mm_cvttpd_epi32(ewrt);
499             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
500             ewitab           = _mm_slli_epi32(ewitab,2);
501             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
502             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
503             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
504             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
505             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
506             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
507             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
508             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
509             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
510             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
511
512             /* Update potential sum for this i atom from the interaction with this j atom. */
513             velecsum         = _mm_add_pd(velecsum,velec);
514
515             fscal            = felec;
516
517             /* Calculate temporary vectorial force */
518             tx               = _mm_mul_pd(fscal,dx12);
519             ty               = _mm_mul_pd(fscal,dy12);
520             tz               = _mm_mul_pd(fscal,dz12);
521
522             /* Update vectorial force */
523             fix1             = _mm_add_pd(fix1,tx);
524             fiy1             = _mm_add_pd(fiy1,ty);
525             fiz1             = _mm_add_pd(fiz1,tz);
526
527             fjx2             = _mm_add_pd(fjx2,tx);
528             fjy2             = _mm_add_pd(fjy2,ty);
529             fjz2             = _mm_add_pd(fjz2,tz);
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             r20              = _mm_mul_pd(rsq20,rinv20);
536
537             /* EWALD ELECTROSTATICS */
538
539             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
540             ewrt             = _mm_mul_pd(r20,ewtabscale);
541             ewitab           = _mm_cvttpd_epi32(ewrt);
542             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
543             ewitab           = _mm_slli_epi32(ewitab,2);
544             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
545             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
546             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
547             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
548             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
549             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
550             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
551             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
552             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
553             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
554
555             /* Update potential sum for this i atom from the interaction with this j atom. */
556             velecsum         = _mm_add_pd(velecsum,velec);
557
558             fscal            = felec;
559
560             /* Calculate temporary vectorial force */
561             tx               = _mm_mul_pd(fscal,dx20);
562             ty               = _mm_mul_pd(fscal,dy20);
563             tz               = _mm_mul_pd(fscal,dz20);
564
565             /* Update vectorial force */
566             fix2             = _mm_add_pd(fix2,tx);
567             fiy2             = _mm_add_pd(fiy2,ty);
568             fiz2             = _mm_add_pd(fiz2,tz);
569
570             fjx0             = _mm_add_pd(fjx0,tx);
571             fjy0             = _mm_add_pd(fjy0,ty);
572             fjz0             = _mm_add_pd(fjz0,tz);
573
574             /**************************
575              * CALCULATE INTERACTIONS *
576              **************************/
577
578             r21              = _mm_mul_pd(rsq21,rinv21);
579
580             /* EWALD ELECTROSTATICS */
581
582             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
583             ewrt             = _mm_mul_pd(r21,ewtabscale);
584             ewitab           = _mm_cvttpd_epi32(ewrt);
585             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
586             ewitab           = _mm_slli_epi32(ewitab,2);
587             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
588             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
589             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
590             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
591             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
592             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
593             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
594             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
595             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
596             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
597
598             /* Update potential sum for this i atom from the interaction with this j atom. */
599             velecsum         = _mm_add_pd(velecsum,velec);
600
601             fscal            = felec;
602
603             /* Calculate temporary vectorial force */
604             tx               = _mm_mul_pd(fscal,dx21);
605             ty               = _mm_mul_pd(fscal,dy21);
606             tz               = _mm_mul_pd(fscal,dz21);
607
608             /* Update vectorial force */
609             fix2             = _mm_add_pd(fix2,tx);
610             fiy2             = _mm_add_pd(fiy2,ty);
611             fiz2             = _mm_add_pd(fiz2,tz);
612
613             fjx1             = _mm_add_pd(fjx1,tx);
614             fjy1             = _mm_add_pd(fjy1,ty);
615             fjz1             = _mm_add_pd(fjz1,tz);
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             r22              = _mm_mul_pd(rsq22,rinv22);
622
623             /* EWALD ELECTROSTATICS */
624
625             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
626             ewrt             = _mm_mul_pd(r22,ewtabscale);
627             ewitab           = _mm_cvttpd_epi32(ewrt);
628             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
629             ewitab           = _mm_slli_epi32(ewitab,2);
630             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
631             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
632             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
633             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
634             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
635             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
636             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
637             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
638             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
639             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
640
641             /* Update potential sum for this i atom from the interaction with this j atom. */
642             velecsum         = _mm_add_pd(velecsum,velec);
643
644             fscal            = felec;
645
646             /* Calculate temporary vectorial force */
647             tx               = _mm_mul_pd(fscal,dx22);
648             ty               = _mm_mul_pd(fscal,dy22);
649             tz               = _mm_mul_pd(fscal,dz22);
650
651             /* Update vectorial force */
652             fix2             = _mm_add_pd(fix2,tx);
653             fiy2             = _mm_add_pd(fiy2,ty);
654             fiz2             = _mm_add_pd(fiz2,tz);
655
656             fjx2             = _mm_add_pd(fjx2,tx);
657             fjy2             = _mm_add_pd(fjy2,ty);
658             fjz2             = _mm_add_pd(fjz2,tz);
659
660             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
661
662             /* Inner loop uses 369 flops */
663         }
664
665         if(jidx<j_index_end)
666         {
667
668             jnrA             = jjnr[jidx];
669             j_coord_offsetA  = DIM*jnrA;
670
671             /* load j atom coordinates */
672             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
673                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
674
675             /* Calculate displacement vector */
676             dx00             = _mm_sub_pd(ix0,jx0);
677             dy00             = _mm_sub_pd(iy0,jy0);
678             dz00             = _mm_sub_pd(iz0,jz0);
679             dx01             = _mm_sub_pd(ix0,jx1);
680             dy01             = _mm_sub_pd(iy0,jy1);
681             dz01             = _mm_sub_pd(iz0,jz1);
682             dx02             = _mm_sub_pd(ix0,jx2);
683             dy02             = _mm_sub_pd(iy0,jy2);
684             dz02             = _mm_sub_pd(iz0,jz2);
685             dx10             = _mm_sub_pd(ix1,jx0);
686             dy10             = _mm_sub_pd(iy1,jy0);
687             dz10             = _mm_sub_pd(iz1,jz0);
688             dx11             = _mm_sub_pd(ix1,jx1);
689             dy11             = _mm_sub_pd(iy1,jy1);
690             dz11             = _mm_sub_pd(iz1,jz1);
691             dx12             = _mm_sub_pd(ix1,jx2);
692             dy12             = _mm_sub_pd(iy1,jy2);
693             dz12             = _mm_sub_pd(iz1,jz2);
694             dx20             = _mm_sub_pd(ix2,jx0);
695             dy20             = _mm_sub_pd(iy2,jy0);
696             dz20             = _mm_sub_pd(iz2,jz0);
697             dx21             = _mm_sub_pd(ix2,jx1);
698             dy21             = _mm_sub_pd(iy2,jy1);
699             dz21             = _mm_sub_pd(iz2,jz1);
700             dx22             = _mm_sub_pd(ix2,jx2);
701             dy22             = _mm_sub_pd(iy2,jy2);
702             dz22             = _mm_sub_pd(iz2,jz2);
703
704             /* Calculate squared distance and things based on it */
705             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
706             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
707             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
708             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
709             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
710             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
711             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
712             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
713             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
714
715             rinv00           = gmx_mm_invsqrt_pd(rsq00);
716             rinv01           = gmx_mm_invsqrt_pd(rsq01);
717             rinv02           = gmx_mm_invsqrt_pd(rsq02);
718             rinv10           = gmx_mm_invsqrt_pd(rsq10);
719             rinv11           = gmx_mm_invsqrt_pd(rsq11);
720             rinv12           = gmx_mm_invsqrt_pd(rsq12);
721             rinv20           = gmx_mm_invsqrt_pd(rsq20);
722             rinv21           = gmx_mm_invsqrt_pd(rsq21);
723             rinv22           = gmx_mm_invsqrt_pd(rsq22);
724
725             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
726             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
727             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
728             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
729             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
730             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
731             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
732             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
733             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
734
735             fjx0             = _mm_setzero_pd();
736             fjy0             = _mm_setzero_pd();
737             fjz0             = _mm_setzero_pd();
738             fjx1             = _mm_setzero_pd();
739             fjy1             = _mm_setzero_pd();
740             fjz1             = _mm_setzero_pd();
741             fjx2             = _mm_setzero_pd();
742             fjy2             = _mm_setzero_pd();
743             fjz2             = _mm_setzero_pd();
744
745             /**************************
746              * CALCULATE INTERACTIONS *
747              **************************/
748
749             r00              = _mm_mul_pd(rsq00,rinv00);
750
751             /* EWALD ELECTROSTATICS */
752
753             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
754             ewrt             = _mm_mul_pd(r00,ewtabscale);
755             ewitab           = _mm_cvttpd_epi32(ewrt);
756             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
757             ewitab           = _mm_slli_epi32(ewitab,2);
758             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
759             ewtabD           = _mm_setzero_pd();
760             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
761             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
762             ewtabFn          = _mm_setzero_pd();
763             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
764             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
765             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
766             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
767             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
768
769             /* Update potential sum for this i atom from the interaction with this j atom. */
770             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
771             velecsum         = _mm_add_pd(velecsum,velec);
772
773             fscal            = felec;
774
775             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
776
777             /* Calculate temporary vectorial force */
778             tx               = _mm_mul_pd(fscal,dx00);
779             ty               = _mm_mul_pd(fscal,dy00);
780             tz               = _mm_mul_pd(fscal,dz00);
781
782             /* Update vectorial force */
783             fix0             = _mm_add_pd(fix0,tx);
784             fiy0             = _mm_add_pd(fiy0,ty);
785             fiz0             = _mm_add_pd(fiz0,tz);
786
787             fjx0             = _mm_add_pd(fjx0,tx);
788             fjy0             = _mm_add_pd(fjy0,ty);
789             fjz0             = _mm_add_pd(fjz0,tz);
790
791             /**************************
792              * CALCULATE INTERACTIONS *
793              **************************/
794
795             r01              = _mm_mul_pd(rsq01,rinv01);
796
797             /* EWALD ELECTROSTATICS */
798
799             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
800             ewrt             = _mm_mul_pd(r01,ewtabscale);
801             ewitab           = _mm_cvttpd_epi32(ewrt);
802             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
803             ewitab           = _mm_slli_epi32(ewitab,2);
804             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
805             ewtabD           = _mm_setzero_pd();
806             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
807             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
808             ewtabFn          = _mm_setzero_pd();
809             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
810             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
811             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
812             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
813             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
814
815             /* Update potential sum for this i atom from the interaction with this j atom. */
816             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
817             velecsum         = _mm_add_pd(velecsum,velec);
818
819             fscal            = felec;
820
821             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
822
823             /* Calculate temporary vectorial force */
824             tx               = _mm_mul_pd(fscal,dx01);
825             ty               = _mm_mul_pd(fscal,dy01);
826             tz               = _mm_mul_pd(fscal,dz01);
827
828             /* Update vectorial force */
829             fix0             = _mm_add_pd(fix0,tx);
830             fiy0             = _mm_add_pd(fiy0,ty);
831             fiz0             = _mm_add_pd(fiz0,tz);
832
833             fjx1             = _mm_add_pd(fjx1,tx);
834             fjy1             = _mm_add_pd(fjy1,ty);
835             fjz1             = _mm_add_pd(fjz1,tz);
836
837             /**************************
838              * CALCULATE INTERACTIONS *
839              **************************/
840
841             r02              = _mm_mul_pd(rsq02,rinv02);
842
843             /* EWALD ELECTROSTATICS */
844
845             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
846             ewrt             = _mm_mul_pd(r02,ewtabscale);
847             ewitab           = _mm_cvttpd_epi32(ewrt);
848             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
849             ewitab           = _mm_slli_epi32(ewitab,2);
850             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
851             ewtabD           = _mm_setzero_pd();
852             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
853             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
854             ewtabFn          = _mm_setzero_pd();
855             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
856             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
857             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
858             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
859             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
860
861             /* Update potential sum for this i atom from the interaction with this j atom. */
862             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
863             velecsum         = _mm_add_pd(velecsum,velec);
864
865             fscal            = felec;
866
867             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
868
869             /* Calculate temporary vectorial force */
870             tx               = _mm_mul_pd(fscal,dx02);
871             ty               = _mm_mul_pd(fscal,dy02);
872             tz               = _mm_mul_pd(fscal,dz02);
873
874             /* Update vectorial force */
875             fix0             = _mm_add_pd(fix0,tx);
876             fiy0             = _mm_add_pd(fiy0,ty);
877             fiz0             = _mm_add_pd(fiz0,tz);
878
879             fjx2             = _mm_add_pd(fjx2,tx);
880             fjy2             = _mm_add_pd(fjy2,ty);
881             fjz2             = _mm_add_pd(fjz2,tz);
882
883             /**************************
884              * CALCULATE INTERACTIONS *
885              **************************/
886
887             r10              = _mm_mul_pd(rsq10,rinv10);
888
889             /* EWALD ELECTROSTATICS */
890
891             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
892             ewrt             = _mm_mul_pd(r10,ewtabscale);
893             ewitab           = _mm_cvttpd_epi32(ewrt);
894             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
895             ewitab           = _mm_slli_epi32(ewitab,2);
896             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
897             ewtabD           = _mm_setzero_pd();
898             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
899             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
900             ewtabFn          = _mm_setzero_pd();
901             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
902             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
903             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
904             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
905             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
906
907             /* Update potential sum for this i atom from the interaction with this j atom. */
908             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
909             velecsum         = _mm_add_pd(velecsum,velec);
910
911             fscal            = felec;
912
913             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
914
915             /* Calculate temporary vectorial force */
916             tx               = _mm_mul_pd(fscal,dx10);
917             ty               = _mm_mul_pd(fscal,dy10);
918             tz               = _mm_mul_pd(fscal,dz10);
919
920             /* Update vectorial force */
921             fix1             = _mm_add_pd(fix1,tx);
922             fiy1             = _mm_add_pd(fiy1,ty);
923             fiz1             = _mm_add_pd(fiz1,tz);
924
925             fjx0             = _mm_add_pd(fjx0,tx);
926             fjy0             = _mm_add_pd(fjy0,ty);
927             fjz0             = _mm_add_pd(fjz0,tz);
928
929             /**************************
930              * CALCULATE INTERACTIONS *
931              **************************/
932
933             r11              = _mm_mul_pd(rsq11,rinv11);
934
935             /* EWALD ELECTROSTATICS */
936
937             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
938             ewrt             = _mm_mul_pd(r11,ewtabscale);
939             ewitab           = _mm_cvttpd_epi32(ewrt);
940             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
941             ewitab           = _mm_slli_epi32(ewitab,2);
942             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
943             ewtabD           = _mm_setzero_pd();
944             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
945             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
946             ewtabFn          = _mm_setzero_pd();
947             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
948             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
949             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
950             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
951             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
952
953             /* Update potential sum for this i atom from the interaction with this j atom. */
954             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
955             velecsum         = _mm_add_pd(velecsum,velec);
956
957             fscal            = felec;
958
959             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
960
961             /* Calculate temporary vectorial force */
962             tx               = _mm_mul_pd(fscal,dx11);
963             ty               = _mm_mul_pd(fscal,dy11);
964             tz               = _mm_mul_pd(fscal,dz11);
965
966             /* Update vectorial force */
967             fix1             = _mm_add_pd(fix1,tx);
968             fiy1             = _mm_add_pd(fiy1,ty);
969             fiz1             = _mm_add_pd(fiz1,tz);
970
971             fjx1             = _mm_add_pd(fjx1,tx);
972             fjy1             = _mm_add_pd(fjy1,ty);
973             fjz1             = _mm_add_pd(fjz1,tz);
974
975             /**************************
976              * CALCULATE INTERACTIONS *
977              **************************/
978
979             r12              = _mm_mul_pd(rsq12,rinv12);
980
981             /* EWALD ELECTROSTATICS */
982
983             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
984             ewrt             = _mm_mul_pd(r12,ewtabscale);
985             ewitab           = _mm_cvttpd_epi32(ewrt);
986             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
987             ewitab           = _mm_slli_epi32(ewitab,2);
988             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
989             ewtabD           = _mm_setzero_pd();
990             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
991             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
992             ewtabFn          = _mm_setzero_pd();
993             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
994             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
995             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
996             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
997             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
998
999             /* Update potential sum for this i atom from the interaction with this j atom. */
1000             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1001             velecsum         = _mm_add_pd(velecsum,velec);
1002
1003             fscal            = felec;
1004
1005             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1006
1007             /* Calculate temporary vectorial force */
1008             tx               = _mm_mul_pd(fscal,dx12);
1009             ty               = _mm_mul_pd(fscal,dy12);
1010             tz               = _mm_mul_pd(fscal,dz12);
1011
1012             /* Update vectorial force */
1013             fix1             = _mm_add_pd(fix1,tx);
1014             fiy1             = _mm_add_pd(fiy1,ty);
1015             fiz1             = _mm_add_pd(fiz1,tz);
1016
1017             fjx2             = _mm_add_pd(fjx2,tx);
1018             fjy2             = _mm_add_pd(fjy2,ty);
1019             fjz2             = _mm_add_pd(fjz2,tz);
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             r20              = _mm_mul_pd(rsq20,rinv20);
1026
1027             /* EWALD ELECTROSTATICS */
1028
1029             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1030             ewrt             = _mm_mul_pd(r20,ewtabscale);
1031             ewitab           = _mm_cvttpd_epi32(ewrt);
1032             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1033             ewitab           = _mm_slli_epi32(ewitab,2);
1034             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1035             ewtabD           = _mm_setzero_pd();
1036             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1037             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1038             ewtabFn          = _mm_setzero_pd();
1039             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1040             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1041             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1042             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1043             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1044
1045             /* Update potential sum for this i atom from the interaction with this j atom. */
1046             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1047             velecsum         = _mm_add_pd(velecsum,velec);
1048
1049             fscal            = felec;
1050
1051             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1052
1053             /* Calculate temporary vectorial force */
1054             tx               = _mm_mul_pd(fscal,dx20);
1055             ty               = _mm_mul_pd(fscal,dy20);
1056             tz               = _mm_mul_pd(fscal,dz20);
1057
1058             /* Update vectorial force */
1059             fix2             = _mm_add_pd(fix2,tx);
1060             fiy2             = _mm_add_pd(fiy2,ty);
1061             fiz2             = _mm_add_pd(fiz2,tz);
1062
1063             fjx0             = _mm_add_pd(fjx0,tx);
1064             fjy0             = _mm_add_pd(fjy0,ty);
1065             fjz0             = _mm_add_pd(fjz0,tz);
1066
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             r21              = _mm_mul_pd(rsq21,rinv21);
1072
1073             /* EWALD ELECTROSTATICS */
1074
1075             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1076             ewrt             = _mm_mul_pd(r21,ewtabscale);
1077             ewitab           = _mm_cvttpd_epi32(ewrt);
1078             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1079             ewitab           = _mm_slli_epi32(ewitab,2);
1080             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1081             ewtabD           = _mm_setzero_pd();
1082             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1083             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1084             ewtabFn          = _mm_setzero_pd();
1085             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1086             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1087             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1088             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1089             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1090
1091             /* Update potential sum for this i atom from the interaction with this j atom. */
1092             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1093             velecsum         = _mm_add_pd(velecsum,velec);
1094
1095             fscal            = felec;
1096
1097             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1098
1099             /* Calculate temporary vectorial force */
1100             tx               = _mm_mul_pd(fscal,dx21);
1101             ty               = _mm_mul_pd(fscal,dy21);
1102             tz               = _mm_mul_pd(fscal,dz21);
1103
1104             /* Update vectorial force */
1105             fix2             = _mm_add_pd(fix2,tx);
1106             fiy2             = _mm_add_pd(fiy2,ty);
1107             fiz2             = _mm_add_pd(fiz2,tz);
1108
1109             fjx1             = _mm_add_pd(fjx1,tx);
1110             fjy1             = _mm_add_pd(fjy1,ty);
1111             fjz1             = _mm_add_pd(fjz1,tz);
1112
1113             /**************************
1114              * CALCULATE INTERACTIONS *
1115              **************************/
1116
1117             r22              = _mm_mul_pd(rsq22,rinv22);
1118
1119             /* EWALD ELECTROSTATICS */
1120
1121             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1122             ewrt             = _mm_mul_pd(r22,ewtabscale);
1123             ewitab           = _mm_cvttpd_epi32(ewrt);
1124             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1125             ewitab           = _mm_slli_epi32(ewitab,2);
1126             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1127             ewtabD           = _mm_setzero_pd();
1128             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1129             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1130             ewtabFn          = _mm_setzero_pd();
1131             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1132             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1133             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1134             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1135             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1136
1137             /* Update potential sum for this i atom from the interaction with this j atom. */
1138             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1139             velecsum         = _mm_add_pd(velecsum,velec);
1140
1141             fscal            = felec;
1142
1143             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1144
1145             /* Calculate temporary vectorial force */
1146             tx               = _mm_mul_pd(fscal,dx22);
1147             ty               = _mm_mul_pd(fscal,dy22);
1148             tz               = _mm_mul_pd(fscal,dz22);
1149
1150             /* Update vectorial force */
1151             fix2             = _mm_add_pd(fix2,tx);
1152             fiy2             = _mm_add_pd(fiy2,ty);
1153             fiz2             = _mm_add_pd(fiz2,tz);
1154
1155             fjx2             = _mm_add_pd(fjx2,tx);
1156             fjy2             = _mm_add_pd(fjy2,ty);
1157             fjz2             = _mm_add_pd(fjz2,tz);
1158
1159             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1160
1161             /* Inner loop uses 369 flops */
1162         }
1163
1164         /* End of innermost loop */
1165
1166         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1167                                               f+i_coord_offset,fshift+i_shift_offset);
1168
1169         ggid                        = gid[iidx];
1170         /* Update potential energies */
1171         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1172
1173         /* Increment number of inner iterations */
1174         inneriter                  += j_index_end - j_index_start;
1175
1176         /* Outer loop uses 19 flops */
1177     }
1178
1179     /* Increment number of outer iterations */
1180     outeriter        += nri;
1181
1182     /* Update outer/inner flops */
1183
1184     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*19 + inneriter*369);
1185 }
1186 /*
1187  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3W3_F_sse2_double
1188  * Electrostatics interaction: Ewald
1189  * VdW interaction:            None
1190  * Geometry:                   Water3-Water3
1191  * Calculate force/pot:        Force
1192  */
1193 void
1194 nb_kernel_ElecEw_VdwNone_GeomW3W3_F_sse2_double
1195                     (t_nblist                    * gmx_restrict       nlist,
1196                      rvec                        * gmx_restrict          xx,
1197                      rvec                        * gmx_restrict          ff,
1198                      t_forcerec                  * gmx_restrict          fr,
1199                      t_mdatoms                   * gmx_restrict     mdatoms,
1200                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1201                      t_nrnb                      * gmx_restrict        nrnb)
1202 {
1203     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1204      * just 0 for non-waters.
1205      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1206      * jnr indices corresponding to data put in the four positions in the SIMD register.
1207      */
1208     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1209     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1210     int              jnrA,jnrB;
1211     int              j_coord_offsetA,j_coord_offsetB;
1212     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1213     real             rcutoff_scalar;
1214     real             *shiftvec,*fshift,*x,*f;
1215     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1216     int              vdwioffset0;
1217     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1218     int              vdwioffset1;
1219     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1220     int              vdwioffset2;
1221     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1222     int              vdwjidx0A,vdwjidx0B;
1223     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1224     int              vdwjidx1A,vdwjidx1B;
1225     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1226     int              vdwjidx2A,vdwjidx2B;
1227     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1228     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1229     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1230     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1231     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1232     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1233     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1234     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1235     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1236     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1237     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1238     real             *charge;
1239     __m128i          ewitab;
1240     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1241     real             *ewtab;
1242     __m128d          dummy_mask,cutoff_mask;
1243     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1244     __m128d          one     = _mm_set1_pd(1.0);
1245     __m128d          two     = _mm_set1_pd(2.0);
1246     x                = xx[0];
1247     f                = ff[0];
1248
1249     nri              = nlist->nri;
1250     iinr             = nlist->iinr;
1251     jindex           = nlist->jindex;
1252     jjnr             = nlist->jjnr;
1253     shiftidx         = nlist->shift;
1254     gid              = nlist->gid;
1255     shiftvec         = fr->shift_vec[0];
1256     fshift           = fr->fshift[0];
1257     facel            = _mm_set1_pd(fr->epsfac);
1258     charge           = mdatoms->chargeA;
1259
1260     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1261     ewtab            = fr->ic->tabq_coul_F;
1262     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1263     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1264
1265     /* Setup water-specific parameters */
1266     inr              = nlist->iinr[0];
1267     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1268     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1269     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1270
1271     jq0              = _mm_set1_pd(charge[inr+0]);
1272     jq1              = _mm_set1_pd(charge[inr+1]);
1273     jq2              = _mm_set1_pd(charge[inr+2]);
1274     qq00             = _mm_mul_pd(iq0,jq0);
1275     qq01             = _mm_mul_pd(iq0,jq1);
1276     qq02             = _mm_mul_pd(iq0,jq2);
1277     qq10             = _mm_mul_pd(iq1,jq0);
1278     qq11             = _mm_mul_pd(iq1,jq1);
1279     qq12             = _mm_mul_pd(iq1,jq2);
1280     qq20             = _mm_mul_pd(iq2,jq0);
1281     qq21             = _mm_mul_pd(iq2,jq1);
1282     qq22             = _mm_mul_pd(iq2,jq2);
1283
1284     /* Avoid stupid compiler warnings */
1285     jnrA = jnrB = 0;
1286     j_coord_offsetA = 0;
1287     j_coord_offsetB = 0;
1288
1289     outeriter        = 0;
1290     inneriter        = 0;
1291
1292     /* Start outer loop over neighborlists */
1293     for(iidx=0; iidx<nri; iidx++)
1294     {
1295         /* Load shift vector for this list */
1296         i_shift_offset   = DIM*shiftidx[iidx];
1297
1298         /* Load limits for loop over neighbors */
1299         j_index_start    = jindex[iidx];
1300         j_index_end      = jindex[iidx+1];
1301
1302         /* Get outer coordinate index */
1303         inr              = iinr[iidx];
1304         i_coord_offset   = DIM*inr;
1305
1306         /* Load i particle coords and add shift vector */
1307         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1308                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1309
1310         fix0             = _mm_setzero_pd();
1311         fiy0             = _mm_setzero_pd();
1312         fiz0             = _mm_setzero_pd();
1313         fix1             = _mm_setzero_pd();
1314         fiy1             = _mm_setzero_pd();
1315         fiz1             = _mm_setzero_pd();
1316         fix2             = _mm_setzero_pd();
1317         fiy2             = _mm_setzero_pd();
1318         fiz2             = _mm_setzero_pd();
1319
1320         /* Start inner kernel loop */
1321         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1322         {
1323
1324             /* Get j neighbor index, and coordinate index */
1325             jnrA             = jjnr[jidx];
1326             jnrB             = jjnr[jidx+1];
1327             j_coord_offsetA  = DIM*jnrA;
1328             j_coord_offsetB  = DIM*jnrB;
1329
1330             /* load j atom coordinates */
1331             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1332                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1333
1334             /* Calculate displacement vector */
1335             dx00             = _mm_sub_pd(ix0,jx0);
1336             dy00             = _mm_sub_pd(iy0,jy0);
1337             dz00             = _mm_sub_pd(iz0,jz0);
1338             dx01             = _mm_sub_pd(ix0,jx1);
1339             dy01             = _mm_sub_pd(iy0,jy1);
1340             dz01             = _mm_sub_pd(iz0,jz1);
1341             dx02             = _mm_sub_pd(ix0,jx2);
1342             dy02             = _mm_sub_pd(iy0,jy2);
1343             dz02             = _mm_sub_pd(iz0,jz2);
1344             dx10             = _mm_sub_pd(ix1,jx0);
1345             dy10             = _mm_sub_pd(iy1,jy0);
1346             dz10             = _mm_sub_pd(iz1,jz0);
1347             dx11             = _mm_sub_pd(ix1,jx1);
1348             dy11             = _mm_sub_pd(iy1,jy1);
1349             dz11             = _mm_sub_pd(iz1,jz1);
1350             dx12             = _mm_sub_pd(ix1,jx2);
1351             dy12             = _mm_sub_pd(iy1,jy2);
1352             dz12             = _mm_sub_pd(iz1,jz2);
1353             dx20             = _mm_sub_pd(ix2,jx0);
1354             dy20             = _mm_sub_pd(iy2,jy0);
1355             dz20             = _mm_sub_pd(iz2,jz0);
1356             dx21             = _mm_sub_pd(ix2,jx1);
1357             dy21             = _mm_sub_pd(iy2,jy1);
1358             dz21             = _mm_sub_pd(iz2,jz1);
1359             dx22             = _mm_sub_pd(ix2,jx2);
1360             dy22             = _mm_sub_pd(iy2,jy2);
1361             dz22             = _mm_sub_pd(iz2,jz2);
1362
1363             /* Calculate squared distance and things based on it */
1364             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1365             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1366             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1367             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1368             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1369             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1370             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1371             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1372             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1373
1374             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1375             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1376             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1377             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1378             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1379             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1380             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1381             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1382             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1383
1384             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1385             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1386             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1387             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1388             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1389             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1390             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1391             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1392             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1393
1394             fjx0             = _mm_setzero_pd();
1395             fjy0             = _mm_setzero_pd();
1396             fjz0             = _mm_setzero_pd();
1397             fjx1             = _mm_setzero_pd();
1398             fjy1             = _mm_setzero_pd();
1399             fjz1             = _mm_setzero_pd();
1400             fjx2             = _mm_setzero_pd();
1401             fjy2             = _mm_setzero_pd();
1402             fjz2             = _mm_setzero_pd();
1403
1404             /**************************
1405              * CALCULATE INTERACTIONS *
1406              **************************/
1407
1408             r00              = _mm_mul_pd(rsq00,rinv00);
1409
1410             /* EWALD ELECTROSTATICS */
1411
1412             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1413             ewrt             = _mm_mul_pd(r00,ewtabscale);
1414             ewitab           = _mm_cvttpd_epi32(ewrt);
1415             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1416             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1417                                          &ewtabF,&ewtabFn);
1418             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1419             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1420
1421             fscal            = felec;
1422
1423             /* Calculate temporary vectorial force */
1424             tx               = _mm_mul_pd(fscal,dx00);
1425             ty               = _mm_mul_pd(fscal,dy00);
1426             tz               = _mm_mul_pd(fscal,dz00);
1427
1428             /* Update vectorial force */
1429             fix0             = _mm_add_pd(fix0,tx);
1430             fiy0             = _mm_add_pd(fiy0,ty);
1431             fiz0             = _mm_add_pd(fiz0,tz);
1432
1433             fjx0             = _mm_add_pd(fjx0,tx);
1434             fjy0             = _mm_add_pd(fjy0,ty);
1435             fjz0             = _mm_add_pd(fjz0,tz);
1436
1437             /**************************
1438              * CALCULATE INTERACTIONS *
1439              **************************/
1440
1441             r01              = _mm_mul_pd(rsq01,rinv01);
1442
1443             /* EWALD ELECTROSTATICS */
1444
1445             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1446             ewrt             = _mm_mul_pd(r01,ewtabscale);
1447             ewitab           = _mm_cvttpd_epi32(ewrt);
1448             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1449             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1450                                          &ewtabF,&ewtabFn);
1451             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1452             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1453
1454             fscal            = felec;
1455
1456             /* Calculate temporary vectorial force */
1457             tx               = _mm_mul_pd(fscal,dx01);
1458             ty               = _mm_mul_pd(fscal,dy01);
1459             tz               = _mm_mul_pd(fscal,dz01);
1460
1461             /* Update vectorial force */
1462             fix0             = _mm_add_pd(fix0,tx);
1463             fiy0             = _mm_add_pd(fiy0,ty);
1464             fiz0             = _mm_add_pd(fiz0,tz);
1465
1466             fjx1             = _mm_add_pd(fjx1,tx);
1467             fjy1             = _mm_add_pd(fjy1,ty);
1468             fjz1             = _mm_add_pd(fjz1,tz);
1469
1470             /**************************
1471              * CALCULATE INTERACTIONS *
1472              **************************/
1473
1474             r02              = _mm_mul_pd(rsq02,rinv02);
1475
1476             /* EWALD ELECTROSTATICS */
1477
1478             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1479             ewrt             = _mm_mul_pd(r02,ewtabscale);
1480             ewitab           = _mm_cvttpd_epi32(ewrt);
1481             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1482             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1483                                          &ewtabF,&ewtabFn);
1484             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1485             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1486
1487             fscal            = felec;
1488
1489             /* Calculate temporary vectorial force */
1490             tx               = _mm_mul_pd(fscal,dx02);
1491             ty               = _mm_mul_pd(fscal,dy02);
1492             tz               = _mm_mul_pd(fscal,dz02);
1493
1494             /* Update vectorial force */
1495             fix0             = _mm_add_pd(fix0,tx);
1496             fiy0             = _mm_add_pd(fiy0,ty);
1497             fiz0             = _mm_add_pd(fiz0,tz);
1498
1499             fjx2             = _mm_add_pd(fjx2,tx);
1500             fjy2             = _mm_add_pd(fjy2,ty);
1501             fjz2             = _mm_add_pd(fjz2,tz);
1502
1503             /**************************
1504              * CALCULATE INTERACTIONS *
1505              **************************/
1506
1507             r10              = _mm_mul_pd(rsq10,rinv10);
1508
1509             /* EWALD ELECTROSTATICS */
1510
1511             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1512             ewrt             = _mm_mul_pd(r10,ewtabscale);
1513             ewitab           = _mm_cvttpd_epi32(ewrt);
1514             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1515             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1516                                          &ewtabF,&ewtabFn);
1517             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1518             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1519
1520             fscal            = felec;
1521
1522             /* Calculate temporary vectorial force */
1523             tx               = _mm_mul_pd(fscal,dx10);
1524             ty               = _mm_mul_pd(fscal,dy10);
1525             tz               = _mm_mul_pd(fscal,dz10);
1526
1527             /* Update vectorial force */
1528             fix1             = _mm_add_pd(fix1,tx);
1529             fiy1             = _mm_add_pd(fiy1,ty);
1530             fiz1             = _mm_add_pd(fiz1,tz);
1531
1532             fjx0             = _mm_add_pd(fjx0,tx);
1533             fjy0             = _mm_add_pd(fjy0,ty);
1534             fjz0             = _mm_add_pd(fjz0,tz);
1535
1536             /**************************
1537              * CALCULATE INTERACTIONS *
1538              **************************/
1539
1540             r11              = _mm_mul_pd(rsq11,rinv11);
1541
1542             /* EWALD ELECTROSTATICS */
1543
1544             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1545             ewrt             = _mm_mul_pd(r11,ewtabscale);
1546             ewitab           = _mm_cvttpd_epi32(ewrt);
1547             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1548             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1549                                          &ewtabF,&ewtabFn);
1550             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1551             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1552
1553             fscal            = felec;
1554
1555             /* Calculate temporary vectorial force */
1556             tx               = _mm_mul_pd(fscal,dx11);
1557             ty               = _mm_mul_pd(fscal,dy11);
1558             tz               = _mm_mul_pd(fscal,dz11);
1559
1560             /* Update vectorial force */
1561             fix1             = _mm_add_pd(fix1,tx);
1562             fiy1             = _mm_add_pd(fiy1,ty);
1563             fiz1             = _mm_add_pd(fiz1,tz);
1564
1565             fjx1             = _mm_add_pd(fjx1,tx);
1566             fjy1             = _mm_add_pd(fjy1,ty);
1567             fjz1             = _mm_add_pd(fjz1,tz);
1568
1569             /**************************
1570              * CALCULATE INTERACTIONS *
1571              **************************/
1572
1573             r12              = _mm_mul_pd(rsq12,rinv12);
1574
1575             /* EWALD ELECTROSTATICS */
1576
1577             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1578             ewrt             = _mm_mul_pd(r12,ewtabscale);
1579             ewitab           = _mm_cvttpd_epi32(ewrt);
1580             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1581             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1582                                          &ewtabF,&ewtabFn);
1583             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1584             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1585
1586             fscal            = felec;
1587
1588             /* Calculate temporary vectorial force */
1589             tx               = _mm_mul_pd(fscal,dx12);
1590             ty               = _mm_mul_pd(fscal,dy12);
1591             tz               = _mm_mul_pd(fscal,dz12);
1592
1593             /* Update vectorial force */
1594             fix1             = _mm_add_pd(fix1,tx);
1595             fiy1             = _mm_add_pd(fiy1,ty);
1596             fiz1             = _mm_add_pd(fiz1,tz);
1597
1598             fjx2             = _mm_add_pd(fjx2,tx);
1599             fjy2             = _mm_add_pd(fjy2,ty);
1600             fjz2             = _mm_add_pd(fjz2,tz);
1601
1602             /**************************
1603              * CALCULATE INTERACTIONS *
1604              **************************/
1605
1606             r20              = _mm_mul_pd(rsq20,rinv20);
1607
1608             /* EWALD ELECTROSTATICS */
1609
1610             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1611             ewrt             = _mm_mul_pd(r20,ewtabscale);
1612             ewitab           = _mm_cvttpd_epi32(ewrt);
1613             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1614             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1615                                          &ewtabF,&ewtabFn);
1616             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1617             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1618
1619             fscal            = felec;
1620
1621             /* Calculate temporary vectorial force */
1622             tx               = _mm_mul_pd(fscal,dx20);
1623             ty               = _mm_mul_pd(fscal,dy20);
1624             tz               = _mm_mul_pd(fscal,dz20);
1625
1626             /* Update vectorial force */
1627             fix2             = _mm_add_pd(fix2,tx);
1628             fiy2             = _mm_add_pd(fiy2,ty);
1629             fiz2             = _mm_add_pd(fiz2,tz);
1630
1631             fjx0             = _mm_add_pd(fjx0,tx);
1632             fjy0             = _mm_add_pd(fjy0,ty);
1633             fjz0             = _mm_add_pd(fjz0,tz);
1634
1635             /**************************
1636              * CALCULATE INTERACTIONS *
1637              **************************/
1638
1639             r21              = _mm_mul_pd(rsq21,rinv21);
1640
1641             /* EWALD ELECTROSTATICS */
1642
1643             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1644             ewrt             = _mm_mul_pd(r21,ewtabscale);
1645             ewitab           = _mm_cvttpd_epi32(ewrt);
1646             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1647             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1648                                          &ewtabF,&ewtabFn);
1649             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1650             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1651
1652             fscal            = felec;
1653
1654             /* Calculate temporary vectorial force */
1655             tx               = _mm_mul_pd(fscal,dx21);
1656             ty               = _mm_mul_pd(fscal,dy21);
1657             tz               = _mm_mul_pd(fscal,dz21);
1658
1659             /* Update vectorial force */
1660             fix2             = _mm_add_pd(fix2,tx);
1661             fiy2             = _mm_add_pd(fiy2,ty);
1662             fiz2             = _mm_add_pd(fiz2,tz);
1663
1664             fjx1             = _mm_add_pd(fjx1,tx);
1665             fjy1             = _mm_add_pd(fjy1,ty);
1666             fjz1             = _mm_add_pd(fjz1,tz);
1667
1668             /**************************
1669              * CALCULATE INTERACTIONS *
1670              **************************/
1671
1672             r22              = _mm_mul_pd(rsq22,rinv22);
1673
1674             /* EWALD ELECTROSTATICS */
1675
1676             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1677             ewrt             = _mm_mul_pd(r22,ewtabscale);
1678             ewitab           = _mm_cvttpd_epi32(ewrt);
1679             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1680             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1681                                          &ewtabF,&ewtabFn);
1682             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1683             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1684
1685             fscal            = felec;
1686
1687             /* Calculate temporary vectorial force */
1688             tx               = _mm_mul_pd(fscal,dx22);
1689             ty               = _mm_mul_pd(fscal,dy22);
1690             tz               = _mm_mul_pd(fscal,dz22);
1691
1692             /* Update vectorial force */
1693             fix2             = _mm_add_pd(fix2,tx);
1694             fiy2             = _mm_add_pd(fiy2,ty);
1695             fiz2             = _mm_add_pd(fiz2,tz);
1696
1697             fjx2             = _mm_add_pd(fjx2,tx);
1698             fjy2             = _mm_add_pd(fjy2,ty);
1699             fjz2             = _mm_add_pd(fjz2,tz);
1700
1701             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1702
1703             /* Inner loop uses 324 flops */
1704         }
1705
1706         if(jidx<j_index_end)
1707         {
1708
1709             jnrA             = jjnr[jidx];
1710             j_coord_offsetA  = DIM*jnrA;
1711
1712             /* load j atom coordinates */
1713             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1714                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1715
1716             /* Calculate displacement vector */
1717             dx00             = _mm_sub_pd(ix0,jx0);
1718             dy00             = _mm_sub_pd(iy0,jy0);
1719             dz00             = _mm_sub_pd(iz0,jz0);
1720             dx01             = _mm_sub_pd(ix0,jx1);
1721             dy01             = _mm_sub_pd(iy0,jy1);
1722             dz01             = _mm_sub_pd(iz0,jz1);
1723             dx02             = _mm_sub_pd(ix0,jx2);
1724             dy02             = _mm_sub_pd(iy0,jy2);
1725             dz02             = _mm_sub_pd(iz0,jz2);
1726             dx10             = _mm_sub_pd(ix1,jx0);
1727             dy10             = _mm_sub_pd(iy1,jy0);
1728             dz10             = _mm_sub_pd(iz1,jz0);
1729             dx11             = _mm_sub_pd(ix1,jx1);
1730             dy11             = _mm_sub_pd(iy1,jy1);
1731             dz11             = _mm_sub_pd(iz1,jz1);
1732             dx12             = _mm_sub_pd(ix1,jx2);
1733             dy12             = _mm_sub_pd(iy1,jy2);
1734             dz12             = _mm_sub_pd(iz1,jz2);
1735             dx20             = _mm_sub_pd(ix2,jx0);
1736             dy20             = _mm_sub_pd(iy2,jy0);
1737             dz20             = _mm_sub_pd(iz2,jz0);
1738             dx21             = _mm_sub_pd(ix2,jx1);
1739             dy21             = _mm_sub_pd(iy2,jy1);
1740             dz21             = _mm_sub_pd(iz2,jz1);
1741             dx22             = _mm_sub_pd(ix2,jx2);
1742             dy22             = _mm_sub_pd(iy2,jy2);
1743             dz22             = _mm_sub_pd(iz2,jz2);
1744
1745             /* Calculate squared distance and things based on it */
1746             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1747             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1748             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1749             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1750             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1751             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1752             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1753             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1754             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1755
1756             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1757             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1758             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1759             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1760             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1761             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1762             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1763             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1764             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1765
1766             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1767             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1768             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1769             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1770             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1771             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1772             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1773             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1774             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1775
1776             fjx0             = _mm_setzero_pd();
1777             fjy0             = _mm_setzero_pd();
1778             fjz0             = _mm_setzero_pd();
1779             fjx1             = _mm_setzero_pd();
1780             fjy1             = _mm_setzero_pd();
1781             fjz1             = _mm_setzero_pd();
1782             fjx2             = _mm_setzero_pd();
1783             fjy2             = _mm_setzero_pd();
1784             fjz2             = _mm_setzero_pd();
1785
1786             /**************************
1787              * CALCULATE INTERACTIONS *
1788              **************************/
1789
1790             r00              = _mm_mul_pd(rsq00,rinv00);
1791
1792             /* EWALD ELECTROSTATICS */
1793
1794             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1795             ewrt             = _mm_mul_pd(r00,ewtabscale);
1796             ewitab           = _mm_cvttpd_epi32(ewrt);
1797             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1798             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1799             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1800             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1801
1802             fscal            = felec;
1803
1804             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1805
1806             /* Calculate temporary vectorial force */
1807             tx               = _mm_mul_pd(fscal,dx00);
1808             ty               = _mm_mul_pd(fscal,dy00);
1809             tz               = _mm_mul_pd(fscal,dz00);
1810
1811             /* Update vectorial force */
1812             fix0             = _mm_add_pd(fix0,tx);
1813             fiy0             = _mm_add_pd(fiy0,ty);
1814             fiz0             = _mm_add_pd(fiz0,tz);
1815
1816             fjx0             = _mm_add_pd(fjx0,tx);
1817             fjy0             = _mm_add_pd(fjy0,ty);
1818             fjz0             = _mm_add_pd(fjz0,tz);
1819
1820             /**************************
1821              * CALCULATE INTERACTIONS *
1822              **************************/
1823
1824             r01              = _mm_mul_pd(rsq01,rinv01);
1825
1826             /* EWALD ELECTROSTATICS */
1827
1828             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1829             ewrt             = _mm_mul_pd(r01,ewtabscale);
1830             ewitab           = _mm_cvttpd_epi32(ewrt);
1831             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1832             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1833             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1834             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1835
1836             fscal            = felec;
1837
1838             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1839
1840             /* Calculate temporary vectorial force */
1841             tx               = _mm_mul_pd(fscal,dx01);
1842             ty               = _mm_mul_pd(fscal,dy01);
1843             tz               = _mm_mul_pd(fscal,dz01);
1844
1845             /* Update vectorial force */
1846             fix0             = _mm_add_pd(fix0,tx);
1847             fiy0             = _mm_add_pd(fiy0,ty);
1848             fiz0             = _mm_add_pd(fiz0,tz);
1849
1850             fjx1             = _mm_add_pd(fjx1,tx);
1851             fjy1             = _mm_add_pd(fjy1,ty);
1852             fjz1             = _mm_add_pd(fjz1,tz);
1853
1854             /**************************
1855              * CALCULATE INTERACTIONS *
1856              **************************/
1857
1858             r02              = _mm_mul_pd(rsq02,rinv02);
1859
1860             /* EWALD ELECTROSTATICS */
1861
1862             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1863             ewrt             = _mm_mul_pd(r02,ewtabscale);
1864             ewitab           = _mm_cvttpd_epi32(ewrt);
1865             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1866             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1867             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1868             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1869
1870             fscal            = felec;
1871
1872             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1873
1874             /* Calculate temporary vectorial force */
1875             tx               = _mm_mul_pd(fscal,dx02);
1876             ty               = _mm_mul_pd(fscal,dy02);
1877             tz               = _mm_mul_pd(fscal,dz02);
1878
1879             /* Update vectorial force */
1880             fix0             = _mm_add_pd(fix0,tx);
1881             fiy0             = _mm_add_pd(fiy0,ty);
1882             fiz0             = _mm_add_pd(fiz0,tz);
1883
1884             fjx2             = _mm_add_pd(fjx2,tx);
1885             fjy2             = _mm_add_pd(fjy2,ty);
1886             fjz2             = _mm_add_pd(fjz2,tz);
1887
1888             /**************************
1889              * CALCULATE INTERACTIONS *
1890              **************************/
1891
1892             r10              = _mm_mul_pd(rsq10,rinv10);
1893
1894             /* EWALD ELECTROSTATICS */
1895
1896             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1897             ewrt             = _mm_mul_pd(r10,ewtabscale);
1898             ewitab           = _mm_cvttpd_epi32(ewrt);
1899             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1900             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1901             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1902             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1903
1904             fscal            = felec;
1905
1906             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1907
1908             /* Calculate temporary vectorial force */
1909             tx               = _mm_mul_pd(fscal,dx10);
1910             ty               = _mm_mul_pd(fscal,dy10);
1911             tz               = _mm_mul_pd(fscal,dz10);
1912
1913             /* Update vectorial force */
1914             fix1             = _mm_add_pd(fix1,tx);
1915             fiy1             = _mm_add_pd(fiy1,ty);
1916             fiz1             = _mm_add_pd(fiz1,tz);
1917
1918             fjx0             = _mm_add_pd(fjx0,tx);
1919             fjy0             = _mm_add_pd(fjy0,ty);
1920             fjz0             = _mm_add_pd(fjz0,tz);
1921
1922             /**************************
1923              * CALCULATE INTERACTIONS *
1924              **************************/
1925
1926             r11              = _mm_mul_pd(rsq11,rinv11);
1927
1928             /* EWALD ELECTROSTATICS */
1929
1930             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1931             ewrt             = _mm_mul_pd(r11,ewtabscale);
1932             ewitab           = _mm_cvttpd_epi32(ewrt);
1933             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1934             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1935             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1936             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1937
1938             fscal            = felec;
1939
1940             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1941
1942             /* Calculate temporary vectorial force */
1943             tx               = _mm_mul_pd(fscal,dx11);
1944             ty               = _mm_mul_pd(fscal,dy11);
1945             tz               = _mm_mul_pd(fscal,dz11);
1946
1947             /* Update vectorial force */
1948             fix1             = _mm_add_pd(fix1,tx);
1949             fiy1             = _mm_add_pd(fiy1,ty);
1950             fiz1             = _mm_add_pd(fiz1,tz);
1951
1952             fjx1             = _mm_add_pd(fjx1,tx);
1953             fjy1             = _mm_add_pd(fjy1,ty);
1954             fjz1             = _mm_add_pd(fjz1,tz);
1955
1956             /**************************
1957              * CALCULATE INTERACTIONS *
1958              **************************/
1959
1960             r12              = _mm_mul_pd(rsq12,rinv12);
1961
1962             /* EWALD ELECTROSTATICS */
1963
1964             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1965             ewrt             = _mm_mul_pd(r12,ewtabscale);
1966             ewitab           = _mm_cvttpd_epi32(ewrt);
1967             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1968             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1969             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1970             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1971
1972             fscal            = felec;
1973
1974             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1975
1976             /* Calculate temporary vectorial force */
1977             tx               = _mm_mul_pd(fscal,dx12);
1978             ty               = _mm_mul_pd(fscal,dy12);
1979             tz               = _mm_mul_pd(fscal,dz12);
1980
1981             /* Update vectorial force */
1982             fix1             = _mm_add_pd(fix1,tx);
1983             fiy1             = _mm_add_pd(fiy1,ty);
1984             fiz1             = _mm_add_pd(fiz1,tz);
1985
1986             fjx2             = _mm_add_pd(fjx2,tx);
1987             fjy2             = _mm_add_pd(fjy2,ty);
1988             fjz2             = _mm_add_pd(fjz2,tz);
1989
1990             /**************************
1991              * CALCULATE INTERACTIONS *
1992              **************************/
1993
1994             r20              = _mm_mul_pd(rsq20,rinv20);
1995
1996             /* EWALD ELECTROSTATICS */
1997
1998             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1999             ewrt             = _mm_mul_pd(r20,ewtabscale);
2000             ewitab           = _mm_cvttpd_epi32(ewrt);
2001             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2002             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2003             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2004             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2005
2006             fscal            = felec;
2007
2008             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2009
2010             /* Calculate temporary vectorial force */
2011             tx               = _mm_mul_pd(fscal,dx20);
2012             ty               = _mm_mul_pd(fscal,dy20);
2013             tz               = _mm_mul_pd(fscal,dz20);
2014
2015             /* Update vectorial force */
2016             fix2             = _mm_add_pd(fix2,tx);
2017             fiy2             = _mm_add_pd(fiy2,ty);
2018             fiz2             = _mm_add_pd(fiz2,tz);
2019
2020             fjx0             = _mm_add_pd(fjx0,tx);
2021             fjy0             = _mm_add_pd(fjy0,ty);
2022             fjz0             = _mm_add_pd(fjz0,tz);
2023
2024             /**************************
2025              * CALCULATE INTERACTIONS *
2026              **************************/
2027
2028             r21              = _mm_mul_pd(rsq21,rinv21);
2029
2030             /* EWALD ELECTROSTATICS */
2031
2032             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2033             ewrt             = _mm_mul_pd(r21,ewtabscale);
2034             ewitab           = _mm_cvttpd_epi32(ewrt);
2035             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2036             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2037             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2038             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2039
2040             fscal            = felec;
2041
2042             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2043
2044             /* Calculate temporary vectorial force */
2045             tx               = _mm_mul_pd(fscal,dx21);
2046             ty               = _mm_mul_pd(fscal,dy21);
2047             tz               = _mm_mul_pd(fscal,dz21);
2048
2049             /* Update vectorial force */
2050             fix2             = _mm_add_pd(fix2,tx);
2051             fiy2             = _mm_add_pd(fiy2,ty);
2052             fiz2             = _mm_add_pd(fiz2,tz);
2053
2054             fjx1             = _mm_add_pd(fjx1,tx);
2055             fjy1             = _mm_add_pd(fjy1,ty);
2056             fjz1             = _mm_add_pd(fjz1,tz);
2057
2058             /**************************
2059              * CALCULATE INTERACTIONS *
2060              **************************/
2061
2062             r22              = _mm_mul_pd(rsq22,rinv22);
2063
2064             /* EWALD ELECTROSTATICS */
2065
2066             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2067             ewrt             = _mm_mul_pd(r22,ewtabscale);
2068             ewitab           = _mm_cvttpd_epi32(ewrt);
2069             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2070             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2071             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2072             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2073
2074             fscal            = felec;
2075
2076             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2077
2078             /* Calculate temporary vectorial force */
2079             tx               = _mm_mul_pd(fscal,dx22);
2080             ty               = _mm_mul_pd(fscal,dy22);
2081             tz               = _mm_mul_pd(fscal,dz22);
2082
2083             /* Update vectorial force */
2084             fix2             = _mm_add_pd(fix2,tx);
2085             fiy2             = _mm_add_pd(fiy2,ty);
2086             fiz2             = _mm_add_pd(fiz2,tz);
2087
2088             fjx2             = _mm_add_pd(fjx2,tx);
2089             fjy2             = _mm_add_pd(fjy2,ty);
2090             fjz2             = _mm_add_pd(fjz2,tz);
2091
2092             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2093
2094             /* Inner loop uses 324 flops */
2095         }
2096
2097         /* End of innermost loop */
2098
2099         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2100                                               f+i_coord_offset,fshift+i_shift_offset);
2101
2102         /* Increment number of inner iterations */
2103         inneriter                  += j_index_end - j_index_start;
2104
2105         /* Outer loop uses 18 flops */
2106     }
2107
2108     /* Increment number of outer iterations */
2109     outeriter        += nri;
2110
2111     /* Update outer/inner flops */
2112
2113     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*18 + inneriter*324);
2114 }