Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwNone_GeomW3W3_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Water3-Water3
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     int              vdwjidx1A,vdwjidx1B;
89     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
90     int              vdwjidx2A,vdwjidx2B;
91     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
94     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
95     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
97     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
98     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
100     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
101     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
102     real             *charge;
103     __m128i          ewitab;
104     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     real             *ewtab;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123
124     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
127     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134
135     jq0              = _mm_set1_pd(charge[inr+0]);
136     jq1              = _mm_set1_pd(charge[inr+1]);
137     jq2              = _mm_set1_pd(charge[inr+2]);
138     qq00             = _mm_mul_pd(iq0,jq0);
139     qq01             = _mm_mul_pd(iq0,jq1);
140     qq02             = _mm_mul_pd(iq0,jq2);
141     qq10             = _mm_mul_pd(iq1,jq0);
142     qq11             = _mm_mul_pd(iq1,jq1);
143     qq12             = _mm_mul_pd(iq1,jq2);
144     qq20             = _mm_mul_pd(iq2,jq0);
145     qq21             = _mm_mul_pd(iq2,jq1);
146     qq22             = _mm_mul_pd(iq2,jq2);
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
173
174         fix0             = _mm_setzero_pd();
175         fiy0             = _mm_setzero_pd();
176         fiz0             = _mm_setzero_pd();
177         fix1             = _mm_setzero_pd();
178         fiy1             = _mm_setzero_pd();
179         fiz1             = _mm_setzero_pd();
180         fix2             = _mm_setzero_pd();
181         fiy2             = _mm_setzero_pd();
182         fiz2             = _mm_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_pd();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196
197             /* load j atom coordinates */
198             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
200
201             /* Calculate displacement vector */
202             dx00             = _mm_sub_pd(ix0,jx0);
203             dy00             = _mm_sub_pd(iy0,jy0);
204             dz00             = _mm_sub_pd(iz0,jz0);
205             dx01             = _mm_sub_pd(ix0,jx1);
206             dy01             = _mm_sub_pd(iy0,jy1);
207             dz01             = _mm_sub_pd(iz0,jz1);
208             dx02             = _mm_sub_pd(ix0,jx2);
209             dy02             = _mm_sub_pd(iy0,jy2);
210             dz02             = _mm_sub_pd(iz0,jz2);
211             dx10             = _mm_sub_pd(ix1,jx0);
212             dy10             = _mm_sub_pd(iy1,jy0);
213             dz10             = _mm_sub_pd(iz1,jz0);
214             dx11             = _mm_sub_pd(ix1,jx1);
215             dy11             = _mm_sub_pd(iy1,jy1);
216             dz11             = _mm_sub_pd(iz1,jz1);
217             dx12             = _mm_sub_pd(ix1,jx2);
218             dy12             = _mm_sub_pd(iy1,jy2);
219             dz12             = _mm_sub_pd(iz1,jz2);
220             dx20             = _mm_sub_pd(ix2,jx0);
221             dy20             = _mm_sub_pd(iy2,jy0);
222             dz20             = _mm_sub_pd(iz2,jz0);
223             dx21             = _mm_sub_pd(ix2,jx1);
224             dy21             = _mm_sub_pd(iy2,jy1);
225             dz21             = _mm_sub_pd(iz2,jz1);
226             dx22             = _mm_sub_pd(ix2,jx2);
227             dy22             = _mm_sub_pd(iy2,jy2);
228             dz22             = _mm_sub_pd(iz2,jz2);
229
230             /* Calculate squared distance and things based on it */
231             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
232             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
233             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
234             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
235             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
236             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
237             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
238             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
239             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
240
241             rinv00           = gmx_mm_invsqrt_pd(rsq00);
242             rinv01           = gmx_mm_invsqrt_pd(rsq01);
243             rinv02           = gmx_mm_invsqrt_pd(rsq02);
244             rinv10           = gmx_mm_invsqrt_pd(rsq10);
245             rinv11           = gmx_mm_invsqrt_pd(rsq11);
246             rinv12           = gmx_mm_invsqrt_pd(rsq12);
247             rinv20           = gmx_mm_invsqrt_pd(rsq20);
248             rinv21           = gmx_mm_invsqrt_pd(rsq21);
249             rinv22           = gmx_mm_invsqrt_pd(rsq22);
250
251             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
252             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
253             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
254             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
255             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
256             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
257             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
258             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
259             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
260
261             fjx0             = _mm_setzero_pd();
262             fjy0             = _mm_setzero_pd();
263             fjz0             = _mm_setzero_pd();
264             fjx1             = _mm_setzero_pd();
265             fjy1             = _mm_setzero_pd();
266             fjz1             = _mm_setzero_pd();
267             fjx2             = _mm_setzero_pd();
268             fjy2             = _mm_setzero_pd();
269             fjz2             = _mm_setzero_pd();
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             r00              = _mm_mul_pd(rsq00,rinv00);
276
277             /* EWALD ELECTROSTATICS */
278
279             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
280             ewrt             = _mm_mul_pd(r00,ewtabscale);
281             ewitab           = _mm_cvttpd_epi32(ewrt);
282             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
283             ewitab           = _mm_slli_epi32(ewitab,2);
284             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
285             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
286             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
287             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
288             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
289             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
290             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
291             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
292             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
293             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _mm_add_pd(velecsum,velec);
297
298             fscal            = felec;
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm_mul_pd(fscal,dx00);
302             ty               = _mm_mul_pd(fscal,dy00);
303             tz               = _mm_mul_pd(fscal,dz00);
304
305             /* Update vectorial force */
306             fix0             = _mm_add_pd(fix0,tx);
307             fiy0             = _mm_add_pd(fiy0,ty);
308             fiz0             = _mm_add_pd(fiz0,tz);
309
310             fjx0             = _mm_add_pd(fjx0,tx);
311             fjy0             = _mm_add_pd(fjy0,ty);
312             fjz0             = _mm_add_pd(fjz0,tz);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r01              = _mm_mul_pd(rsq01,rinv01);
319
320             /* EWALD ELECTROSTATICS */
321
322             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
323             ewrt             = _mm_mul_pd(r01,ewtabscale);
324             ewitab           = _mm_cvttpd_epi32(ewrt);
325             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
326             ewitab           = _mm_slli_epi32(ewitab,2);
327             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
328             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
329             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
330             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
331             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
332             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
333             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
334             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
335             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
336             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velecsum         = _mm_add_pd(velecsum,velec);
340
341             fscal            = felec;
342
343             /* Calculate temporary vectorial force */
344             tx               = _mm_mul_pd(fscal,dx01);
345             ty               = _mm_mul_pd(fscal,dy01);
346             tz               = _mm_mul_pd(fscal,dz01);
347
348             /* Update vectorial force */
349             fix0             = _mm_add_pd(fix0,tx);
350             fiy0             = _mm_add_pd(fiy0,ty);
351             fiz0             = _mm_add_pd(fiz0,tz);
352
353             fjx1             = _mm_add_pd(fjx1,tx);
354             fjy1             = _mm_add_pd(fjy1,ty);
355             fjz1             = _mm_add_pd(fjz1,tz);
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             r02              = _mm_mul_pd(rsq02,rinv02);
362
363             /* EWALD ELECTROSTATICS */
364
365             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
366             ewrt             = _mm_mul_pd(r02,ewtabscale);
367             ewitab           = _mm_cvttpd_epi32(ewrt);
368             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
369             ewitab           = _mm_slli_epi32(ewitab,2);
370             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
371             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
372             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
373             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
374             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
375             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
376             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
377             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
378             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
379             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
380
381             /* Update potential sum for this i atom from the interaction with this j atom. */
382             velecsum         = _mm_add_pd(velecsum,velec);
383
384             fscal            = felec;
385
386             /* Calculate temporary vectorial force */
387             tx               = _mm_mul_pd(fscal,dx02);
388             ty               = _mm_mul_pd(fscal,dy02);
389             tz               = _mm_mul_pd(fscal,dz02);
390
391             /* Update vectorial force */
392             fix0             = _mm_add_pd(fix0,tx);
393             fiy0             = _mm_add_pd(fiy0,ty);
394             fiz0             = _mm_add_pd(fiz0,tz);
395
396             fjx2             = _mm_add_pd(fjx2,tx);
397             fjy2             = _mm_add_pd(fjy2,ty);
398             fjz2             = _mm_add_pd(fjz2,tz);
399
400             /**************************
401              * CALCULATE INTERACTIONS *
402              **************************/
403
404             r10              = _mm_mul_pd(rsq10,rinv10);
405
406             /* EWALD ELECTROSTATICS */
407
408             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
409             ewrt             = _mm_mul_pd(r10,ewtabscale);
410             ewitab           = _mm_cvttpd_epi32(ewrt);
411             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
412             ewitab           = _mm_slli_epi32(ewitab,2);
413             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
414             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
415             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
416             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
417             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
418             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
419             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
420             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
421             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
422             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
423
424             /* Update potential sum for this i atom from the interaction with this j atom. */
425             velecsum         = _mm_add_pd(velecsum,velec);
426
427             fscal            = felec;
428
429             /* Calculate temporary vectorial force */
430             tx               = _mm_mul_pd(fscal,dx10);
431             ty               = _mm_mul_pd(fscal,dy10);
432             tz               = _mm_mul_pd(fscal,dz10);
433
434             /* Update vectorial force */
435             fix1             = _mm_add_pd(fix1,tx);
436             fiy1             = _mm_add_pd(fiy1,ty);
437             fiz1             = _mm_add_pd(fiz1,tz);
438
439             fjx0             = _mm_add_pd(fjx0,tx);
440             fjy0             = _mm_add_pd(fjy0,ty);
441             fjz0             = _mm_add_pd(fjz0,tz);
442
443             /**************************
444              * CALCULATE INTERACTIONS *
445              **************************/
446
447             r11              = _mm_mul_pd(rsq11,rinv11);
448
449             /* EWALD ELECTROSTATICS */
450
451             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
452             ewrt             = _mm_mul_pd(r11,ewtabscale);
453             ewitab           = _mm_cvttpd_epi32(ewrt);
454             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
455             ewitab           = _mm_slli_epi32(ewitab,2);
456             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
457             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
458             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
459             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
460             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
461             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
462             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
463             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
464             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
465             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
466
467             /* Update potential sum for this i atom from the interaction with this j atom. */
468             velecsum         = _mm_add_pd(velecsum,velec);
469
470             fscal            = felec;
471
472             /* Calculate temporary vectorial force */
473             tx               = _mm_mul_pd(fscal,dx11);
474             ty               = _mm_mul_pd(fscal,dy11);
475             tz               = _mm_mul_pd(fscal,dz11);
476
477             /* Update vectorial force */
478             fix1             = _mm_add_pd(fix1,tx);
479             fiy1             = _mm_add_pd(fiy1,ty);
480             fiz1             = _mm_add_pd(fiz1,tz);
481
482             fjx1             = _mm_add_pd(fjx1,tx);
483             fjy1             = _mm_add_pd(fjy1,ty);
484             fjz1             = _mm_add_pd(fjz1,tz);
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             r12              = _mm_mul_pd(rsq12,rinv12);
491
492             /* EWALD ELECTROSTATICS */
493
494             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
495             ewrt             = _mm_mul_pd(r12,ewtabscale);
496             ewitab           = _mm_cvttpd_epi32(ewrt);
497             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
498             ewitab           = _mm_slli_epi32(ewitab,2);
499             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
500             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
501             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
502             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
503             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
504             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
505             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
506             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
507             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
508             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
509
510             /* Update potential sum for this i atom from the interaction with this j atom. */
511             velecsum         = _mm_add_pd(velecsum,velec);
512
513             fscal            = felec;
514
515             /* Calculate temporary vectorial force */
516             tx               = _mm_mul_pd(fscal,dx12);
517             ty               = _mm_mul_pd(fscal,dy12);
518             tz               = _mm_mul_pd(fscal,dz12);
519
520             /* Update vectorial force */
521             fix1             = _mm_add_pd(fix1,tx);
522             fiy1             = _mm_add_pd(fiy1,ty);
523             fiz1             = _mm_add_pd(fiz1,tz);
524
525             fjx2             = _mm_add_pd(fjx2,tx);
526             fjy2             = _mm_add_pd(fjy2,ty);
527             fjz2             = _mm_add_pd(fjz2,tz);
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             r20              = _mm_mul_pd(rsq20,rinv20);
534
535             /* EWALD ELECTROSTATICS */
536
537             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
538             ewrt             = _mm_mul_pd(r20,ewtabscale);
539             ewitab           = _mm_cvttpd_epi32(ewrt);
540             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
541             ewitab           = _mm_slli_epi32(ewitab,2);
542             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
543             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
544             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
545             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
546             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
547             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
548             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
549             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
550             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
551             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
552
553             /* Update potential sum for this i atom from the interaction with this j atom. */
554             velecsum         = _mm_add_pd(velecsum,velec);
555
556             fscal            = felec;
557
558             /* Calculate temporary vectorial force */
559             tx               = _mm_mul_pd(fscal,dx20);
560             ty               = _mm_mul_pd(fscal,dy20);
561             tz               = _mm_mul_pd(fscal,dz20);
562
563             /* Update vectorial force */
564             fix2             = _mm_add_pd(fix2,tx);
565             fiy2             = _mm_add_pd(fiy2,ty);
566             fiz2             = _mm_add_pd(fiz2,tz);
567
568             fjx0             = _mm_add_pd(fjx0,tx);
569             fjy0             = _mm_add_pd(fjy0,ty);
570             fjz0             = _mm_add_pd(fjz0,tz);
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             r21              = _mm_mul_pd(rsq21,rinv21);
577
578             /* EWALD ELECTROSTATICS */
579
580             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
581             ewrt             = _mm_mul_pd(r21,ewtabscale);
582             ewitab           = _mm_cvttpd_epi32(ewrt);
583             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
584             ewitab           = _mm_slli_epi32(ewitab,2);
585             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
586             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
587             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
588             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
589             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
590             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
591             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
592             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
593             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
594             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
595
596             /* Update potential sum for this i atom from the interaction with this j atom. */
597             velecsum         = _mm_add_pd(velecsum,velec);
598
599             fscal            = felec;
600
601             /* Calculate temporary vectorial force */
602             tx               = _mm_mul_pd(fscal,dx21);
603             ty               = _mm_mul_pd(fscal,dy21);
604             tz               = _mm_mul_pd(fscal,dz21);
605
606             /* Update vectorial force */
607             fix2             = _mm_add_pd(fix2,tx);
608             fiy2             = _mm_add_pd(fiy2,ty);
609             fiz2             = _mm_add_pd(fiz2,tz);
610
611             fjx1             = _mm_add_pd(fjx1,tx);
612             fjy1             = _mm_add_pd(fjy1,ty);
613             fjz1             = _mm_add_pd(fjz1,tz);
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             r22              = _mm_mul_pd(rsq22,rinv22);
620
621             /* EWALD ELECTROSTATICS */
622
623             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
624             ewrt             = _mm_mul_pd(r22,ewtabscale);
625             ewitab           = _mm_cvttpd_epi32(ewrt);
626             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
627             ewitab           = _mm_slli_epi32(ewitab,2);
628             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
629             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
630             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
631             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
632             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
633             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
634             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
635             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
636             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
637             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
638
639             /* Update potential sum for this i atom from the interaction with this j atom. */
640             velecsum         = _mm_add_pd(velecsum,velec);
641
642             fscal            = felec;
643
644             /* Calculate temporary vectorial force */
645             tx               = _mm_mul_pd(fscal,dx22);
646             ty               = _mm_mul_pd(fscal,dy22);
647             tz               = _mm_mul_pd(fscal,dz22);
648
649             /* Update vectorial force */
650             fix2             = _mm_add_pd(fix2,tx);
651             fiy2             = _mm_add_pd(fiy2,ty);
652             fiz2             = _mm_add_pd(fiz2,tz);
653
654             fjx2             = _mm_add_pd(fjx2,tx);
655             fjy2             = _mm_add_pd(fjy2,ty);
656             fjz2             = _mm_add_pd(fjz2,tz);
657
658             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
659
660             /* Inner loop uses 369 flops */
661         }
662
663         if(jidx<j_index_end)
664         {
665
666             jnrA             = jjnr[jidx];
667             j_coord_offsetA  = DIM*jnrA;
668
669             /* load j atom coordinates */
670             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
671                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
672
673             /* Calculate displacement vector */
674             dx00             = _mm_sub_pd(ix0,jx0);
675             dy00             = _mm_sub_pd(iy0,jy0);
676             dz00             = _mm_sub_pd(iz0,jz0);
677             dx01             = _mm_sub_pd(ix0,jx1);
678             dy01             = _mm_sub_pd(iy0,jy1);
679             dz01             = _mm_sub_pd(iz0,jz1);
680             dx02             = _mm_sub_pd(ix0,jx2);
681             dy02             = _mm_sub_pd(iy0,jy2);
682             dz02             = _mm_sub_pd(iz0,jz2);
683             dx10             = _mm_sub_pd(ix1,jx0);
684             dy10             = _mm_sub_pd(iy1,jy0);
685             dz10             = _mm_sub_pd(iz1,jz0);
686             dx11             = _mm_sub_pd(ix1,jx1);
687             dy11             = _mm_sub_pd(iy1,jy1);
688             dz11             = _mm_sub_pd(iz1,jz1);
689             dx12             = _mm_sub_pd(ix1,jx2);
690             dy12             = _mm_sub_pd(iy1,jy2);
691             dz12             = _mm_sub_pd(iz1,jz2);
692             dx20             = _mm_sub_pd(ix2,jx0);
693             dy20             = _mm_sub_pd(iy2,jy0);
694             dz20             = _mm_sub_pd(iz2,jz0);
695             dx21             = _mm_sub_pd(ix2,jx1);
696             dy21             = _mm_sub_pd(iy2,jy1);
697             dz21             = _mm_sub_pd(iz2,jz1);
698             dx22             = _mm_sub_pd(ix2,jx2);
699             dy22             = _mm_sub_pd(iy2,jy2);
700             dz22             = _mm_sub_pd(iz2,jz2);
701
702             /* Calculate squared distance and things based on it */
703             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
704             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
705             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
706             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
707             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
708             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
709             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
710             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
711             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
712
713             rinv00           = gmx_mm_invsqrt_pd(rsq00);
714             rinv01           = gmx_mm_invsqrt_pd(rsq01);
715             rinv02           = gmx_mm_invsqrt_pd(rsq02);
716             rinv10           = gmx_mm_invsqrt_pd(rsq10);
717             rinv11           = gmx_mm_invsqrt_pd(rsq11);
718             rinv12           = gmx_mm_invsqrt_pd(rsq12);
719             rinv20           = gmx_mm_invsqrt_pd(rsq20);
720             rinv21           = gmx_mm_invsqrt_pd(rsq21);
721             rinv22           = gmx_mm_invsqrt_pd(rsq22);
722
723             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
724             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
725             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
726             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
727             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
728             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
729             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
730             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
731             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
732
733             fjx0             = _mm_setzero_pd();
734             fjy0             = _mm_setzero_pd();
735             fjz0             = _mm_setzero_pd();
736             fjx1             = _mm_setzero_pd();
737             fjy1             = _mm_setzero_pd();
738             fjz1             = _mm_setzero_pd();
739             fjx2             = _mm_setzero_pd();
740             fjy2             = _mm_setzero_pd();
741             fjz2             = _mm_setzero_pd();
742
743             /**************************
744              * CALCULATE INTERACTIONS *
745              **************************/
746
747             r00              = _mm_mul_pd(rsq00,rinv00);
748
749             /* EWALD ELECTROSTATICS */
750
751             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
752             ewrt             = _mm_mul_pd(r00,ewtabscale);
753             ewitab           = _mm_cvttpd_epi32(ewrt);
754             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
755             ewitab           = _mm_slli_epi32(ewitab,2);
756             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
757             ewtabD           = _mm_setzero_pd();
758             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
759             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
760             ewtabFn          = _mm_setzero_pd();
761             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
762             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
763             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
764             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
765             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
766
767             /* Update potential sum for this i atom from the interaction with this j atom. */
768             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
769             velecsum         = _mm_add_pd(velecsum,velec);
770
771             fscal            = felec;
772
773             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
774
775             /* Calculate temporary vectorial force */
776             tx               = _mm_mul_pd(fscal,dx00);
777             ty               = _mm_mul_pd(fscal,dy00);
778             tz               = _mm_mul_pd(fscal,dz00);
779
780             /* Update vectorial force */
781             fix0             = _mm_add_pd(fix0,tx);
782             fiy0             = _mm_add_pd(fiy0,ty);
783             fiz0             = _mm_add_pd(fiz0,tz);
784
785             fjx0             = _mm_add_pd(fjx0,tx);
786             fjy0             = _mm_add_pd(fjy0,ty);
787             fjz0             = _mm_add_pd(fjz0,tz);
788
789             /**************************
790              * CALCULATE INTERACTIONS *
791              **************************/
792
793             r01              = _mm_mul_pd(rsq01,rinv01);
794
795             /* EWALD ELECTROSTATICS */
796
797             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
798             ewrt             = _mm_mul_pd(r01,ewtabscale);
799             ewitab           = _mm_cvttpd_epi32(ewrt);
800             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
801             ewitab           = _mm_slli_epi32(ewitab,2);
802             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
803             ewtabD           = _mm_setzero_pd();
804             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
805             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
806             ewtabFn          = _mm_setzero_pd();
807             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
808             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
809             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
810             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
811             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
812
813             /* Update potential sum for this i atom from the interaction with this j atom. */
814             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
815             velecsum         = _mm_add_pd(velecsum,velec);
816
817             fscal            = felec;
818
819             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
820
821             /* Calculate temporary vectorial force */
822             tx               = _mm_mul_pd(fscal,dx01);
823             ty               = _mm_mul_pd(fscal,dy01);
824             tz               = _mm_mul_pd(fscal,dz01);
825
826             /* Update vectorial force */
827             fix0             = _mm_add_pd(fix0,tx);
828             fiy0             = _mm_add_pd(fiy0,ty);
829             fiz0             = _mm_add_pd(fiz0,tz);
830
831             fjx1             = _mm_add_pd(fjx1,tx);
832             fjy1             = _mm_add_pd(fjy1,ty);
833             fjz1             = _mm_add_pd(fjz1,tz);
834
835             /**************************
836              * CALCULATE INTERACTIONS *
837              **************************/
838
839             r02              = _mm_mul_pd(rsq02,rinv02);
840
841             /* EWALD ELECTROSTATICS */
842
843             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
844             ewrt             = _mm_mul_pd(r02,ewtabscale);
845             ewitab           = _mm_cvttpd_epi32(ewrt);
846             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
847             ewitab           = _mm_slli_epi32(ewitab,2);
848             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
849             ewtabD           = _mm_setzero_pd();
850             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
851             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
852             ewtabFn          = _mm_setzero_pd();
853             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
854             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
855             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
856             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
857             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
858
859             /* Update potential sum for this i atom from the interaction with this j atom. */
860             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
861             velecsum         = _mm_add_pd(velecsum,velec);
862
863             fscal            = felec;
864
865             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
866
867             /* Calculate temporary vectorial force */
868             tx               = _mm_mul_pd(fscal,dx02);
869             ty               = _mm_mul_pd(fscal,dy02);
870             tz               = _mm_mul_pd(fscal,dz02);
871
872             /* Update vectorial force */
873             fix0             = _mm_add_pd(fix0,tx);
874             fiy0             = _mm_add_pd(fiy0,ty);
875             fiz0             = _mm_add_pd(fiz0,tz);
876
877             fjx2             = _mm_add_pd(fjx2,tx);
878             fjy2             = _mm_add_pd(fjy2,ty);
879             fjz2             = _mm_add_pd(fjz2,tz);
880
881             /**************************
882              * CALCULATE INTERACTIONS *
883              **************************/
884
885             r10              = _mm_mul_pd(rsq10,rinv10);
886
887             /* EWALD ELECTROSTATICS */
888
889             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
890             ewrt             = _mm_mul_pd(r10,ewtabscale);
891             ewitab           = _mm_cvttpd_epi32(ewrt);
892             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
893             ewitab           = _mm_slli_epi32(ewitab,2);
894             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
895             ewtabD           = _mm_setzero_pd();
896             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
897             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
898             ewtabFn          = _mm_setzero_pd();
899             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
900             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
901             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
902             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
903             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
904
905             /* Update potential sum for this i atom from the interaction with this j atom. */
906             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
907             velecsum         = _mm_add_pd(velecsum,velec);
908
909             fscal            = felec;
910
911             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
912
913             /* Calculate temporary vectorial force */
914             tx               = _mm_mul_pd(fscal,dx10);
915             ty               = _mm_mul_pd(fscal,dy10);
916             tz               = _mm_mul_pd(fscal,dz10);
917
918             /* Update vectorial force */
919             fix1             = _mm_add_pd(fix1,tx);
920             fiy1             = _mm_add_pd(fiy1,ty);
921             fiz1             = _mm_add_pd(fiz1,tz);
922
923             fjx0             = _mm_add_pd(fjx0,tx);
924             fjy0             = _mm_add_pd(fjy0,ty);
925             fjz0             = _mm_add_pd(fjz0,tz);
926
927             /**************************
928              * CALCULATE INTERACTIONS *
929              **************************/
930
931             r11              = _mm_mul_pd(rsq11,rinv11);
932
933             /* EWALD ELECTROSTATICS */
934
935             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
936             ewrt             = _mm_mul_pd(r11,ewtabscale);
937             ewitab           = _mm_cvttpd_epi32(ewrt);
938             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
939             ewitab           = _mm_slli_epi32(ewitab,2);
940             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
941             ewtabD           = _mm_setzero_pd();
942             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
943             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
944             ewtabFn          = _mm_setzero_pd();
945             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
946             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
947             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
948             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
949             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
950
951             /* Update potential sum for this i atom from the interaction with this j atom. */
952             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
953             velecsum         = _mm_add_pd(velecsum,velec);
954
955             fscal            = felec;
956
957             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
958
959             /* Calculate temporary vectorial force */
960             tx               = _mm_mul_pd(fscal,dx11);
961             ty               = _mm_mul_pd(fscal,dy11);
962             tz               = _mm_mul_pd(fscal,dz11);
963
964             /* Update vectorial force */
965             fix1             = _mm_add_pd(fix1,tx);
966             fiy1             = _mm_add_pd(fiy1,ty);
967             fiz1             = _mm_add_pd(fiz1,tz);
968
969             fjx1             = _mm_add_pd(fjx1,tx);
970             fjy1             = _mm_add_pd(fjy1,ty);
971             fjz1             = _mm_add_pd(fjz1,tz);
972
973             /**************************
974              * CALCULATE INTERACTIONS *
975              **************************/
976
977             r12              = _mm_mul_pd(rsq12,rinv12);
978
979             /* EWALD ELECTROSTATICS */
980
981             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
982             ewrt             = _mm_mul_pd(r12,ewtabscale);
983             ewitab           = _mm_cvttpd_epi32(ewrt);
984             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
985             ewitab           = _mm_slli_epi32(ewitab,2);
986             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
987             ewtabD           = _mm_setzero_pd();
988             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
989             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
990             ewtabFn          = _mm_setzero_pd();
991             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
992             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
993             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
994             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
995             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
996
997             /* Update potential sum for this i atom from the interaction with this j atom. */
998             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
999             velecsum         = _mm_add_pd(velecsum,velec);
1000
1001             fscal            = felec;
1002
1003             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1004
1005             /* Calculate temporary vectorial force */
1006             tx               = _mm_mul_pd(fscal,dx12);
1007             ty               = _mm_mul_pd(fscal,dy12);
1008             tz               = _mm_mul_pd(fscal,dz12);
1009
1010             /* Update vectorial force */
1011             fix1             = _mm_add_pd(fix1,tx);
1012             fiy1             = _mm_add_pd(fiy1,ty);
1013             fiz1             = _mm_add_pd(fiz1,tz);
1014
1015             fjx2             = _mm_add_pd(fjx2,tx);
1016             fjy2             = _mm_add_pd(fjy2,ty);
1017             fjz2             = _mm_add_pd(fjz2,tz);
1018
1019             /**************************
1020              * CALCULATE INTERACTIONS *
1021              **************************/
1022
1023             r20              = _mm_mul_pd(rsq20,rinv20);
1024
1025             /* EWALD ELECTROSTATICS */
1026
1027             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1028             ewrt             = _mm_mul_pd(r20,ewtabscale);
1029             ewitab           = _mm_cvttpd_epi32(ewrt);
1030             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1031             ewitab           = _mm_slli_epi32(ewitab,2);
1032             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1033             ewtabD           = _mm_setzero_pd();
1034             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1035             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1036             ewtabFn          = _mm_setzero_pd();
1037             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1038             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1039             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1040             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1041             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1042
1043             /* Update potential sum for this i atom from the interaction with this j atom. */
1044             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1045             velecsum         = _mm_add_pd(velecsum,velec);
1046
1047             fscal            = felec;
1048
1049             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1050
1051             /* Calculate temporary vectorial force */
1052             tx               = _mm_mul_pd(fscal,dx20);
1053             ty               = _mm_mul_pd(fscal,dy20);
1054             tz               = _mm_mul_pd(fscal,dz20);
1055
1056             /* Update vectorial force */
1057             fix2             = _mm_add_pd(fix2,tx);
1058             fiy2             = _mm_add_pd(fiy2,ty);
1059             fiz2             = _mm_add_pd(fiz2,tz);
1060
1061             fjx0             = _mm_add_pd(fjx0,tx);
1062             fjy0             = _mm_add_pd(fjy0,ty);
1063             fjz0             = _mm_add_pd(fjz0,tz);
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             r21              = _mm_mul_pd(rsq21,rinv21);
1070
1071             /* EWALD ELECTROSTATICS */
1072
1073             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1074             ewrt             = _mm_mul_pd(r21,ewtabscale);
1075             ewitab           = _mm_cvttpd_epi32(ewrt);
1076             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1077             ewitab           = _mm_slli_epi32(ewitab,2);
1078             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1079             ewtabD           = _mm_setzero_pd();
1080             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1081             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1082             ewtabFn          = _mm_setzero_pd();
1083             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1084             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1085             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1086             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1087             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1088
1089             /* Update potential sum for this i atom from the interaction with this j atom. */
1090             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1091             velecsum         = _mm_add_pd(velecsum,velec);
1092
1093             fscal            = felec;
1094
1095             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1096
1097             /* Calculate temporary vectorial force */
1098             tx               = _mm_mul_pd(fscal,dx21);
1099             ty               = _mm_mul_pd(fscal,dy21);
1100             tz               = _mm_mul_pd(fscal,dz21);
1101
1102             /* Update vectorial force */
1103             fix2             = _mm_add_pd(fix2,tx);
1104             fiy2             = _mm_add_pd(fiy2,ty);
1105             fiz2             = _mm_add_pd(fiz2,tz);
1106
1107             fjx1             = _mm_add_pd(fjx1,tx);
1108             fjy1             = _mm_add_pd(fjy1,ty);
1109             fjz1             = _mm_add_pd(fjz1,tz);
1110
1111             /**************************
1112              * CALCULATE INTERACTIONS *
1113              **************************/
1114
1115             r22              = _mm_mul_pd(rsq22,rinv22);
1116
1117             /* EWALD ELECTROSTATICS */
1118
1119             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1120             ewrt             = _mm_mul_pd(r22,ewtabscale);
1121             ewitab           = _mm_cvttpd_epi32(ewrt);
1122             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1123             ewitab           = _mm_slli_epi32(ewitab,2);
1124             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1125             ewtabD           = _mm_setzero_pd();
1126             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1127             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1128             ewtabFn          = _mm_setzero_pd();
1129             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1130             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1131             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1132             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1133             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1134
1135             /* Update potential sum for this i atom from the interaction with this j atom. */
1136             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1137             velecsum         = _mm_add_pd(velecsum,velec);
1138
1139             fscal            = felec;
1140
1141             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1142
1143             /* Calculate temporary vectorial force */
1144             tx               = _mm_mul_pd(fscal,dx22);
1145             ty               = _mm_mul_pd(fscal,dy22);
1146             tz               = _mm_mul_pd(fscal,dz22);
1147
1148             /* Update vectorial force */
1149             fix2             = _mm_add_pd(fix2,tx);
1150             fiy2             = _mm_add_pd(fiy2,ty);
1151             fiz2             = _mm_add_pd(fiz2,tz);
1152
1153             fjx2             = _mm_add_pd(fjx2,tx);
1154             fjy2             = _mm_add_pd(fjy2,ty);
1155             fjz2             = _mm_add_pd(fjz2,tz);
1156
1157             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1158
1159             /* Inner loop uses 369 flops */
1160         }
1161
1162         /* End of innermost loop */
1163
1164         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1165                                               f+i_coord_offset,fshift+i_shift_offset);
1166
1167         ggid                        = gid[iidx];
1168         /* Update potential energies */
1169         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1170
1171         /* Increment number of inner iterations */
1172         inneriter                  += j_index_end - j_index_start;
1173
1174         /* Outer loop uses 19 flops */
1175     }
1176
1177     /* Increment number of outer iterations */
1178     outeriter        += nri;
1179
1180     /* Update outer/inner flops */
1181
1182     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*19 + inneriter*369);
1183 }
1184 /*
1185  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3W3_F_sse2_double
1186  * Electrostatics interaction: Ewald
1187  * VdW interaction:            None
1188  * Geometry:                   Water3-Water3
1189  * Calculate force/pot:        Force
1190  */
1191 void
1192 nb_kernel_ElecEw_VdwNone_GeomW3W3_F_sse2_double
1193                     (t_nblist                    * gmx_restrict       nlist,
1194                      rvec                        * gmx_restrict          xx,
1195                      rvec                        * gmx_restrict          ff,
1196                      t_forcerec                  * gmx_restrict          fr,
1197                      t_mdatoms                   * gmx_restrict     mdatoms,
1198                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1199                      t_nrnb                      * gmx_restrict        nrnb)
1200 {
1201     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1202      * just 0 for non-waters.
1203      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1204      * jnr indices corresponding to data put in the four positions in the SIMD register.
1205      */
1206     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1207     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1208     int              jnrA,jnrB;
1209     int              j_coord_offsetA,j_coord_offsetB;
1210     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1211     real             rcutoff_scalar;
1212     real             *shiftvec,*fshift,*x,*f;
1213     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1214     int              vdwioffset0;
1215     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1216     int              vdwioffset1;
1217     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1218     int              vdwioffset2;
1219     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1220     int              vdwjidx0A,vdwjidx0B;
1221     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1222     int              vdwjidx1A,vdwjidx1B;
1223     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1224     int              vdwjidx2A,vdwjidx2B;
1225     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1226     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1227     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1228     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1229     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1230     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1231     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1232     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1233     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1234     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1235     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1236     real             *charge;
1237     __m128i          ewitab;
1238     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1239     real             *ewtab;
1240     __m128d          dummy_mask,cutoff_mask;
1241     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1242     __m128d          one     = _mm_set1_pd(1.0);
1243     __m128d          two     = _mm_set1_pd(2.0);
1244     x                = xx[0];
1245     f                = ff[0];
1246
1247     nri              = nlist->nri;
1248     iinr             = nlist->iinr;
1249     jindex           = nlist->jindex;
1250     jjnr             = nlist->jjnr;
1251     shiftidx         = nlist->shift;
1252     gid              = nlist->gid;
1253     shiftvec         = fr->shift_vec[0];
1254     fshift           = fr->fshift[0];
1255     facel            = _mm_set1_pd(fr->epsfac);
1256     charge           = mdatoms->chargeA;
1257
1258     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1259     ewtab            = fr->ic->tabq_coul_F;
1260     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1261     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1262
1263     /* Setup water-specific parameters */
1264     inr              = nlist->iinr[0];
1265     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1266     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1267     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1268
1269     jq0              = _mm_set1_pd(charge[inr+0]);
1270     jq1              = _mm_set1_pd(charge[inr+1]);
1271     jq2              = _mm_set1_pd(charge[inr+2]);
1272     qq00             = _mm_mul_pd(iq0,jq0);
1273     qq01             = _mm_mul_pd(iq0,jq1);
1274     qq02             = _mm_mul_pd(iq0,jq2);
1275     qq10             = _mm_mul_pd(iq1,jq0);
1276     qq11             = _mm_mul_pd(iq1,jq1);
1277     qq12             = _mm_mul_pd(iq1,jq2);
1278     qq20             = _mm_mul_pd(iq2,jq0);
1279     qq21             = _mm_mul_pd(iq2,jq1);
1280     qq22             = _mm_mul_pd(iq2,jq2);
1281
1282     /* Avoid stupid compiler warnings */
1283     jnrA = jnrB = 0;
1284     j_coord_offsetA = 0;
1285     j_coord_offsetB = 0;
1286
1287     outeriter        = 0;
1288     inneriter        = 0;
1289
1290     /* Start outer loop over neighborlists */
1291     for(iidx=0; iidx<nri; iidx++)
1292     {
1293         /* Load shift vector for this list */
1294         i_shift_offset   = DIM*shiftidx[iidx];
1295
1296         /* Load limits for loop over neighbors */
1297         j_index_start    = jindex[iidx];
1298         j_index_end      = jindex[iidx+1];
1299
1300         /* Get outer coordinate index */
1301         inr              = iinr[iidx];
1302         i_coord_offset   = DIM*inr;
1303
1304         /* Load i particle coords and add shift vector */
1305         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1306                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1307
1308         fix0             = _mm_setzero_pd();
1309         fiy0             = _mm_setzero_pd();
1310         fiz0             = _mm_setzero_pd();
1311         fix1             = _mm_setzero_pd();
1312         fiy1             = _mm_setzero_pd();
1313         fiz1             = _mm_setzero_pd();
1314         fix2             = _mm_setzero_pd();
1315         fiy2             = _mm_setzero_pd();
1316         fiz2             = _mm_setzero_pd();
1317
1318         /* Start inner kernel loop */
1319         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1320         {
1321
1322             /* Get j neighbor index, and coordinate index */
1323             jnrA             = jjnr[jidx];
1324             jnrB             = jjnr[jidx+1];
1325             j_coord_offsetA  = DIM*jnrA;
1326             j_coord_offsetB  = DIM*jnrB;
1327
1328             /* load j atom coordinates */
1329             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1330                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1331
1332             /* Calculate displacement vector */
1333             dx00             = _mm_sub_pd(ix0,jx0);
1334             dy00             = _mm_sub_pd(iy0,jy0);
1335             dz00             = _mm_sub_pd(iz0,jz0);
1336             dx01             = _mm_sub_pd(ix0,jx1);
1337             dy01             = _mm_sub_pd(iy0,jy1);
1338             dz01             = _mm_sub_pd(iz0,jz1);
1339             dx02             = _mm_sub_pd(ix0,jx2);
1340             dy02             = _mm_sub_pd(iy0,jy2);
1341             dz02             = _mm_sub_pd(iz0,jz2);
1342             dx10             = _mm_sub_pd(ix1,jx0);
1343             dy10             = _mm_sub_pd(iy1,jy0);
1344             dz10             = _mm_sub_pd(iz1,jz0);
1345             dx11             = _mm_sub_pd(ix1,jx1);
1346             dy11             = _mm_sub_pd(iy1,jy1);
1347             dz11             = _mm_sub_pd(iz1,jz1);
1348             dx12             = _mm_sub_pd(ix1,jx2);
1349             dy12             = _mm_sub_pd(iy1,jy2);
1350             dz12             = _mm_sub_pd(iz1,jz2);
1351             dx20             = _mm_sub_pd(ix2,jx0);
1352             dy20             = _mm_sub_pd(iy2,jy0);
1353             dz20             = _mm_sub_pd(iz2,jz0);
1354             dx21             = _mm_sub_pd(ix2,jx1);
1355             dy21             = _mm_sub_pd(iy2,jy1);
1356             dz21             = _mm_sub_pd(iz2,jz1);
1357             dx22             = _mm_sub_pd(ix2,jx2);
1358             dy22             = _mm_sub_pd(iy2,jy2);
1359             dz22             = _mm_sub_pd(iz2,jz2);
1360
1361             /* Calculate squared distance and things based on it */
1362             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1363             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1364             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1365             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1366             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1367             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1368             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1369             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1370             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1371
1372             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1373             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1374             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1375             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1376             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1377             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1378             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1379             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1380             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1381
1382             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1383             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1384             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1385             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1386             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1387             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1388             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1389             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1390             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1391
1392             fjx0             = _mm_setzero_pd();
1393             fjy0             = _mm_setzero_pd();
1394             fjz0             = _mm_setzero_pd();
1395             fjx1             = _mm_setzero_pd();
1396             fjy1             = _mm_setzero_pd();
1397             fjz1             = _mm_setzero_pd();
1398             fjx2             = _mm_setzero_pd();
1399             fjy2             = _mm_setzero_pd();
1400             fjz2             = _mm_setzero_pd();
1401
1402             /**************************
1403              * CALCULATE INTERACTIONS *
1404              **************************/
1405
1406             r00              = _mm_mul_pd(rsq00,rinv00);
1407
1408             /* EWALD ELECTROSTATICS */
1409
1410             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1411             ewrt             = _mm_mul_pd(r00,ewtabscale);
1412             ewitab           = _mm_cvttpd_epi32(ewrt);
1413             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1414             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1415                                          &ewtabF,&ewtabFn);
1416             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1417             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1418
1419             fscal            = felec;
1420
1421             /* Calculate temporary vectorial force */
1422             tx               = _mm_mul_pd(fscal,dx00);
1423             ty               = _mm_mul_pd(fscal,dy00);
1424             tz               = _mm_mul_pd(fscal,dz00);
1425
1426             /* Update vectorial force */
1427             fix0             = _mm_add_pd(fix0,tx);
1428             fiy0             = _mm_add_pd(fiy0,ty);
1429             fiz0             = _mm_add_pd(fiz0,tz);
1430
1431             fjx0             = _mm_add_pd(fjx0,tx);
1432             fjy0             = _mm_add_pd(fjy0,ty);
1433             fjz0             = _mm_add_pd(fjz0,tz);
1434
1435             /**************************
1436              * CALCULATE INTERACTIONS *
1437              **************************/
1438
1439             r01              = _mm_mul_pd(rsq01,rinv01);
1440
1441             /* EWALD ELECTROSTATICS */
1442
1443             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1444             ewrt             = _mm_mul_pd(r01,ewtabscale);
1445             ewitab           = _mm_cvttpd_epi32(ewrt);
1446             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1447             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1448                                          &ewtabF,&ewtabFn);
1449             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1450             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1451
1452             fscal            = felec;
1453
1454             /* Calculate temporary vectorial force */
1455             tx               = _mm_mul_pd(fscal,dx01);
1456             ty               = _mm_mul_pd(fscal,dy01);
1457             tz               = _mm_mul_pd(fscal,dz01);
1458
1459             /* Update vectorial force */
1460             fix0             = _mm_add_pd(fix0,tx);
1461             fiy0             = _mm_add_pd(fiy0,ty);
1462             fiz0             = _mm_add_pd(fiz0,tz);
1463
1464             fjx1             = _mm_add_pd(fjx1,tx);
1465             fjy1             = _mm_add_pd(fjy1,ty);
1466             fjz1             = _mm_add_pd(fjz1,tz);
1467
1468             /**************************
1469              * CALCULATE INTERACTIONS *
1470              **************************/
1471
1472             r02              = _mm_mul_pd(rsq02,rinv02);
1473
1474             /* EWALD ELECTROSTATICS */
1475
1476             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1477             ewrt             = _mm_mul_pd(r02,ewtabscale);
1478             ewitab           = _mm_cvttpd_epi32(ewrt);
1479             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1480             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1481                                          &ewtabF,&ewtabFn);
1482             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1483             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1484
1485             fscal            = felec;
1486
1487             /* Calculate temporary vectorial force */
1488             tx               = _mm_mul_pd(fscal,dx02);
1489             ty               = _mm_mul_pd(fscal,dy02);
1490             tz               = _mm_mul_pd(fscal,dz02);
1491
1492             /* Update vectorial force */
1493             fix0             = _mm_add_pd(fix0,tx);
1494             fiy0             = _mm_add_pd(fiy0,ty);
1495             fiz0             = _mm_add_pd(fiz0,tz);
1496
1497             fjx2             = _mm_add_pd(fjx2,tx);
1498             fjy2             = _mm_add_pd(fjy2,ty);
1499             fjz2             = _mm_add_pd(fjz2,tz);
1500
1501             /**************************
1502              * CALCULATE INTERACTIONS *
1503              **************************/
1504
1505             r10              = _mm_mul_pd(rsq10,rinv10);
1506
1507             /* EWALD ELECTROSTATICS */
1508
1509             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1510             ewrt             = _mm_mul_pd(r10,ewtabscale);
1511             ewitab           = _mm_cvttpd_epi32(ewrt);
1512             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1513             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1514                                          &ewtabF,&ewtabFn);
1515             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1516             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1517
1518             fscal            = felec;
1519
1520             /* Calculate temporary vectorial force */
1521             tx               = _mm_mul_pd(fscal,dx10);
1522             ty               = _mm_mul_pd(fscal,dy10);
1523             tz               = _mm_mul_pd(fscal,dz10);
1524
1525             /* Update vectorial force */
1526             fix1             = _mm_add_pd(fix1,tx);
1527             fiy1             = _mm_add_pd(fiy1,ty);
1528             fiz1             = _mm_add_pd(fiz1,tz);
1529
1530             fjx0             = _mm_add_pd(fjx0,tx);
1531             fjy0             = _mm_add_pd(fjy0,ty);
1532             fjz0             = _mm_add_pd(fjz0,tz);
1533
1534             /**************************
1535              * CALCULATE INTERACTIONS *
1536              **************************/
1537
1538             r11              = _mm_mul_pd(rsq11,rinv11);
1539
1540             /* EWALD ELECTROSTATICS */
1541
1542             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1543             ewrt             = _mm_mul_pd(r11,ewtabscale);
1544             ewitab           = _mm_cvttpd_epi32(ewrt);
1545             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1546             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1547                                          &ewtabF,&ewtabFn);
1548             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1549             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1550
1551             fscal            = felec;
1552
1553             /* Calculate temporary vectorial force */
1554             tx               = _mm_mul_pd(fscal,dx11);
1555             ty               = _mm_mul_pd(fscal,dy11);
1556             tz               = _mm_mul_pd(fscal,dz11);
1557
1558             /* Update vectorial force */
1559             fix1             = _mm_add_pd(fix1,tx);
1560             fiy1             = _mm_add_pd(fiy1,ty);
1561             fiz1             = _mm_add_pd(fiz1,tz);
1562
1563             fjx1             = _mm_add_pd(fjx1,tx);
1564             fjy1             = _mm_add_pd(fjy1,ty);
1565             fjz1             = _mm_add_pd(fjz1,tz);
1566
1567             /**************************
1568              * CALCULATE INTERACTIONS *
1569              **************************/
1570
1571             r12              = _mm_mul_pd(rsq12,rinv12);
1572
1573             /* EWALD ELECTROSTATICS */
1574
1575             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1576             ewrt             = _mm_mul_pd(r12,ewtabscale);
1577             ewitab           = _mm_cvttpd_epi32(ewrt);
1578             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1579             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1580                                          &ewtabF,&ewtabFn);
1581             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1582             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1583
1584             fscal            = felec;
1585
1586             /* Calculate temporary vectorial force */
1587             tx               = _mm_mul_pd(fscal,dx12);
1588             ty               = _mm_mul_pd(fscal,dy12);
1589             tz               = _mm_mul_pd(fscal,dz12);
1590
1591             /* Update vectorial force */
1592             fix1             = _mm_add_pd(fix1,tx);
1593             fiy1             = _mm_add_pd(fiy1,ty);
1594             fiz1             = _mm_add_pd(fiz1,tz);
1595
1596             fjx2             = _mm_add_pd(fjx2,tx);
1597             fjy2             = _mm_add_pd(fjy2,ty);
1598             fjz2             = _mm_add_pd(fjz2,tz);
1599
1600             /**************************
1601              * CALCULATE INTERACTIONS *
1602              **************************/
1603
1604             r20              = _mm_mul_pd(rsq20,rinv20);
1605
1606             /* EWALD ELECTROSTATICS */
1607
1608             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1609             ewrt             = _mm_mul_pd(r20,ewtabscale);
1610             ewitab           = _mm_cvttpd_epi32(ewrt);
1611             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1612             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1613                                          &ewtabF,&ewtabFn);
1614             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1615             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1616
1617             fscal            = felec;
1618
1619             /* Calculate temporary vectorial force */
1620             tx               = _mm_mul_pd(fscal,dx20);
1621             ty               = _mm_mul_pd(fscal,dy20);
1622             tz               = _mm_mul_pd(fscal,dz20);
1623
1624             /* Update vectorial force */
1625             fix2             = _mm_add_pd(fix2,tx);
1626             fiy2             = _mm_add_pd(fiy2,ty);
1627             fiz2             = _mm_add_pd(fiz2,tz);
1628
1629             fjx0             = _mm_add_pd(fjx0,tx);
1630             fjy0             = _mm_add_pd(fjy0,ty);
1631             fjz0             = _mm_add_pd(fjz0,tz);
1632
1633             /**************************
1634              * CALCULATE INTERACTIONS *
1635              **************************/
1636
1637             r21              = _mm_mul_pd(rsq21,rinv21);
1638
1639             /* EWALD ELECTROSTATICS */
1640
1641             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1642             ewrt             = _mm_mul_pd(r21,ewtabscale);
1643             ewitab           = _mm_cvttpd_epi32(ewrt);
1644             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1645             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1646                                          &ewtabF,&ewtabFn);
1647             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1648             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1649
1650             fscal            = felec;
1651
1652             /* Calculate temporary vectorial force */
1653             tx               = _mm_mul_pd(fscal,dx21);
1654             ty               = _mm_mul_pd(fscal,dy21);
1655             tz               = _mm_mul_pd(fscal,dz21);
1656
1657             /* Update vectorial force */
1658             fix2             = _mm_add_pd(fix2,tx);
1659             fiy2             = _mm_add_pd(fiy2,ty);
1660             fiz2             = _mm_add_pd(fiz2,tz);
1661
1662             fjx1             = _mm_add_pd(fjx1,tx);
1663             fjy1             = _mm_add_pd(fjy1,ty);
1664             fjz1             = _mm_add_pd(fjz1,tz);
1665
1666             /**************************
1667              * CALCULATE INTERACTIONS *
1668              **************************/
1669
1670             r22              = _mm_mul_pd(rsq22,rinv22);
1671
1672             /* EWALD ELECTROSTATICS */
1673
1674             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1675             ewrt             = _mm_mul_pd(r22,ewtabscale);
1676             ewitab           = _mm_cvttpd_epi32(ewrt);
1677             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1678             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1679                                          &ewtabF,&ewtabFn);
1680             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1681             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1682
1683             fscal            = felec;
1684
1685             /* Calculate temporary vectorial force */
1686             tx               = _mm_mul_pd(fscal,dx22);
1687             ty               = _mm_mul_pd(fscal,dy22);
1688             tz               = _mm_mul_pd(fscal,dz22);
1689
1690             /* Update vectorial force */
1691             fix2             = _mm_add_pd(fix2,tx);
1692             fiy2             = _mm_add_pd(fiy2,ty);
1693             fiz2             = _mm_add_pd(fiz2,tz);
1694
1695             fjx2             = _mm_add_pd(fjx2,tx);
1696             fjy2             = _mm_add_pd(fjy2,ty);
1697             fjz2             = _mm_add_pd(fjz2,tz);
1698
1699             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1700
1701             /* Inner loop uses 324 flops */
1702         }
1703
1704         if(jidx<j_index_end)
1705         {
1706
1707             jnrA             = jjnr[jidx];
1708             j_coord_offsetA  = DIM*jnrA;
1709
1710             /* load j atom coordinates */
1711             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1712                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1713
1714             /* Calculate displacement vector */
1715             dx00             = _mm_sub_pd(ix0,jx0);
1716             dy00             = _mm_sub_pd(iy0,jy0);
1717             dz00             = _mm_sub_pd(iz0,jz0);
1718             dx01             = _mm_sub_pd(ix0,jx1);
1719             dy01             = _mm_sub_pd(iy0,jy1);
1720             dz01             = _mm_sub_pd(iz0,jz1);
1721             dx02             = _mm_sub_pd(ix0,jx2);
1722             dy02             = _mm_sub_pd(iy0,jy2);
1723             dz02             = _mm_sub_pd(iz0,jz2);
1724             dx10             = _mm_sub_pd(ix1,jx0);
1725             dy10             = _mm_sub_pd(iy1,jy0);
1726             dz10             = _mm_sub_pd(iz1,jz0);
1727             dx11             = _mm_sub_pd(ix1,jx1);
1728             dy11             = _mm_sub_pd(iy1,jy1);
1729             dz11             = _mm_sub_pd(iz1,jz1);
1730             dx12             = _mm_sub_pd(ix1,jx2);
1731             dy12             = _mm_sub_pd(iy1,jy2);
1732             dz12             = _mm_sub_pd(iz1,jz2);
1733             dx20             = _mm_sub_pd(ix2,jx0);
1734             dy20             = _mm_sub_pd(iy2,jy0);
1735             dz20             = _mm_sub_pd(iz2,jz0);
1736             dx21             = _mm_sub_pd(ix2,jx1);
1737             dy21             = _mm_sub_pd(iy2,jy1);
1738             dz21             = _mm_sub_pd(iz2,jz1);
1739             dx22             = _mm_sub_pd(ix2,jx2);
1740             dy22             = _mm_sub_pd(iy2,jy2);
1741             dz22             = _mm_sub_pd(iz2,jz2);
1742
1743             /* Calculate squared distance and things based on it */
1744             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1745             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1746             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1747             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1748             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1749             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1750             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1751             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1752             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1753
1754             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1755             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1756             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1757             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1758             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1759             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1760             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1761             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1762             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1763
1764             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1765             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1766             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1767             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1768             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1769             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1770             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1771             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1772             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1773
1774             fjx0             = _mm_setzero_pd();
1775             fjy0             = _mm_setzero_pd();
1776             fjz0             = _mm_setzero_pd();
1777             fjx1             = _mm_setzero_pd();
1778             fjy1             = _mm_setzero_pd();
1779             fjz1             = _mm_setzero_pd();
1780             fjx2             = _mm_setzero_pd();
1781             fjy2             = _mm_setzero_pd();
1782             fjz2             = _mm_setzero_pd();
1783
1784             /**************************
1785              * CALCULATE INTERACTIONS *
1786              **************************/
1787
1788             r00              = _mm_mul_pd(rsq00,rinv00);
1789
1790             /* EWALD ELECTROSTATICS */
1791
1792             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1793             ewrt             = _mm_mul_pd(r00,ewtabscale);
1794             ewitab           = _mm_cvttpd_epi32(ewrt);
1795             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1796             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1797             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1798             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1799
1800             fscal            = felec;
1801
1802             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1803
1804             /* Calculate temporary vectorial force */
1805             tx               = _mm_mul_pd(fscal,dx00);
1806             ty               = _mm_mul_pd(fscal,dy00);
1807             tz               = _mm_mul_pd(fscal,dz00);
1808
1809             /* Update vectorial force */
1810             fix0             = _mm_add_pd(fix0,tx);
1811             fiy0             = _mm_add_pd(fiy0,ty);
1812             fiz0             = _mm_add_pd(fiz0,tz);
1813
1814             fjx0             = _mm_add_pd(fjx0,tx);
1815             fjy0             = _mm_add_pd(fjy0,ty);
1816             fjz0             = _mm_add_pd(fjz0,tz);
1817
1818             /**************************
1819              * CALCULATE INTERACTIONS *
1820              **************************/
1821
1822             r01              = _mm_mul_pd(rsq01,rinv01);
1823
1824             /* EWALD ELECTROSTATICS */
1825
1826             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1827             ewrt             = _mm_mul_pd(r01,ewtabscale);
1828             ewitab           = _mm_cvttpd_epi32(ewrt);
1829             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1830             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1831             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1832             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1833
1834             fscal            = felec;
1835
1836             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1837
1838             /* Calculate temporary vectorial force */
1839             tx               = _mm_mul_pd(fscal,dx01);
1840             ty               = _mm_mul_pd(fscal,dy01);
1841             tz               = _mm_mul_pd(fscal,dz01);
1842
1843             /* Update vectorial force */
1844             fix0             = _mm_add_pd(fix0,tx);
1845             fiy0             = _mm_add_pd(fiy0,ty);
1846             fiz0             = _mm_add_pd(fiz0,tz);
1847
1848             fjx1             = _mm_add_pd(fjx1,tx);
1849             fjy1             = _mm_add_pd(fjy1,ty);
1850             fjz1             = _mm_add_pd(fjz1,tz);
1851
1852             /**************************
1853              * CALCULATE INTERACTIONS *
1854              **************************/
1855
1856             r02              = _mm_mul_pd(rsq02,rinv02);
1857
1858             /* EWALD ELECTROSTATICS */
1859
1860             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1861             ewrt             = _mm_mul_pd(r02,ewtabscale);
1862             ewitab           = _mm_cvttpd_epi32(ewrt);
1863             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1864             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1865             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1866             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1867
1868             fscal            = felec;
1869
1870             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1871
1872             /* Calculate temporary vectorial force */
1873             tx               = _mm_mul_pd(fscal,dx02);
1874             ty               = _mm_mul_pd(fscal,dy02);
1875             tz               = _mm_mul_pd(fscal,dz02);
1876
1877             /* Update vectorial force */
1878             fix0             = _mm_add_pd(fix0,tx);
1879             fiy0             = _mm_add_pd(fiy0,ty);
1880             fiz0             = _mm_add_pd(fiz0,tz);
1881
1882             fjx2             = _mm_add_pd(fjx2,tx);
1883             fjy2             = _mm_add_pd(fjy2,ty);
1884             fjz2             = _mm_add_pd(fjz2,tz);
1885
1886             /**************************
1887              * CALCULATE INTERACTIONS *
1888              **************************/
1889
1890             r10              = _mm_mul_pd(rsq10,rinv10);
1891
1892             /* EWALD ELECTROSTATICS */
1893
1894             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1895             ewrt             = _mm_mul_pd(r10,ewtabscale);
1896             ewitab           = _mm_cvttpd_epi32(ewrt);
1897             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1898             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1899             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1900             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1901
1902             fscal            = felec;
1903
1904             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1905
1906             /* Calculate temporary vectorial force */
1907             tx               = _mm_mul_pd(fscal,dx10);
1908             ty               = _mm_mul_pd(fscal,dy10);
1909             tz               = _mm_mul_pd(fscal,dz10);
1910
1911             /* Update vectorial force */
1912             fix1             = _mm_add_pd(fix1,tx);
1913             fiy1             = _mm_add_pd(fiy1,ty);
1914             fiz1             = _mm_add_pd(fiz1,tz);
1915
1916             fjx0             = _mm_add_pd(fjx0,tx);
1917             fjy0             = _mm_add_pd(fjy0,ty);
1918             fjz0             = _mm_add_pd(fjz0,tz);
1919
1920             /**************************
1921              * CALCULATE INTERACTIONS *
1922              **************************/
1923
1924             r11              = _mm_mul_pd(rsq11,rinv11);
1925
1926             /* EWALD ELECTROSTATICS */
1927
1928             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1929             ewrt             = _mm_mul_pd(r11,ewtabscale);
1930             ewitab           = _mm_cvttpd_epi32(ewrt);
1931             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1932             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1933             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1934             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1935
1936             fscal            = felec;
1937
1938             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1939
1940             /* Calculate temporary vectorial force */
1941             tx               = _mm_mul_pd(fscal,dx11);
1942             ty               = _mm_mul_pd(fscal,dy11);
1943             tz               = _mm_mul_pd(fscal,dz11);
1944
1945             /* Update vectorial force */
1946             fix1             = _mm_add_pd(fix1,tx);
1947             fiy1             = _mm_add_pd(fiy1,ty);
1948             fiz1             = _mm_add_pd(fiz1,tz);
1949
1950             fjx1             = _mm_add_pd(fjx1,tx);
1951             fjy1             = _mm_add_pd(fjy1,ty);
1952             fjz1             = _mm_add_pd(fjz1,tz);
1953
1954             /**************************
1955              * CALCULATE INTERACTIONS *
1956              **************************/
1957
1958             r12              = _mm_mul_pd(rsq12,rinv12);
1959
1960             /* EWALD ELECTROSTATICS */
1961
1962             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1963             ewrt             = _mm_mul_pd(r12,ewtabscale);
1964             ewitab           = _mm_cvttpd_epi32(ewrt);
1965             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1966             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1967             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1968             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1969
1970             fscal            = felec;
1971
1972             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1973
1974             /* Calculate temporary vectorial force */
1975             tx               = _mm_mul_pd(fscal,dx12);
1976             ty               = _mm_mul_pd(fscal,dy12);
1977             tz               = _mm_mul_pd(fscal,dz12);
1978
1979             /* Update vectorial force */
1980             fix1             = _mm_add_pd(fix1,tx);
1981             fiy1             = _mm_add_pd(fiy1,ty);
1982             fiz1             = _mm_add_pd(fiz1,tz);
1983
1984             fjx2             = _mm_add_pd(fjx2,tx);
1985             fjy2             = _mm_add_pd(fjy2,ty);
1986             fjz2             = _mm_add_pd(fjz2,tz);
1987
1988             /**************************
1989              * CALCULATE INTERACTIONS *
1990              **************************/
1991
1992             r20              = _mm_mul_pd(rsq20,rinv20);
1993
1994             /* EWALD ELECTROSTATICS */
1995
1996             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1997             ewrt             = _mm_mul_pd(r20,ewtabscale);
1998             ewitab           = _mm_cvttpd_epi32(ewrt);
1999             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2000             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2001             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2002             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2003
2004             fscal            = felec;
2005
2006             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2007
2008             /* Calculate temporary vectorial force */
2009             tx               = _mm_mul_pd(fscal,dx20);
2010             ty               = _mm_mul_pd(fscal,dy20);
2011             tz               = _mm_mul_pd(fscal,dz20);
2012
2013             /* Update vectorial force */
2014             fix2             = _mm_add_pd(fix2,tx);
2015             fiy2             = _mm_add_pd(fiy2,ty);
2016             fiz2             = _mm_add_pd(fiz2,tz);
2017
2018             fjx0             = _mm_add_pd(fjx0,tx);
2019             fjy0             = _mm_add_pd(fjy0,ty);
2020             fjz0             = _mm_add_pd(fjz0,tz);
2021
2022             /**************************
2023              * CALCULATE INTERACTIONS *
2024              **************************/
2025
2026             r21              = _mm_mul_pd(rsq21,rinv21);
2027
2028             /* EWALD ELECTROSTATICS */
2029
2030             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2031             ewrt             = _mm_mul_pd(r21,ewtabscale);
2032             ewitab           = _mm_cvttpd_epi32(ewrt);
2033             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2034             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2035             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2036             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2037
2038             fscal            = felec;
2039
2040             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2041
2042             /* Calculate temporary vectorial force */
2043             tx               = _mm_mul_pd(fscal,dx21);
2044             ty               = _mm_mul_pd(fscal,dy21);
2045             tz               = _mm_mul_pd(fscal,dz21);
2046
2047             /* Update vectorial force */
2048             fix2             = _mm_add_pd(fix2,tx);
2049             fiy2             = _mm_add_pd(fiy2,ty);
2050             fiz2             = _mm_add_pd(fiz2,tz);
2051
2052             fjx1             = _mm_add_pd(fjx1,tx);
2053             fjy1             = _mm_add_pd(fjy1,ty);
2054             fjz1             = _mm_add_pd(fjz1,tz);
2055
2056             /**************************
2057              * CALCULATE INTERACTIONS *
2058              **************************/
2059
2060             r22              = _mm_mul_pd(rsq22,rinv22);
2061
2062             /* EWALD ELECTROSTATICS */
2063
2064             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2065             ewrt             = _mm_mul_pd(r22,ewtabscale);
2066             ewitab           = _mm_cvttpd_epi32(ewrt);
2067             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2068             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2069             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2070             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2071
2072             fscal            = felec;
2073
2074             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2075
2076             /* Calculate temporary vectorial force */
2077             tx               = _mm_mul_pd(fscal,dx22);
2078             ty               = _mm_mul_pd(fscal,dy22);
2079             tz               = _mm_mul_pd(fscal,dz22);
2080
2081             /* Update vectorial force */
2082             fix2             = _mm_add_pd(fix2,tx);
2083             fiy2             = _mm_add_pd(fiy2,ty);
2084             fiz2             = _mm_add_pd(fiz2,tz);
2085
2086             fjx2             = _mm_add_pd(fjx2,tx);
2087             fjy2             = _mm_add_pd(fjy2,ty);
2088             fjz2             = _mm_add_pd(fjz2,tz);
2089
2090             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2091
2092             /* Inner loop uses 324 flops */
2093         }
2094
2095         /* End of innermost loop */
2096
2097         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2098                                               f+i_coord_offset,fshift+i_shift_offset);
2099
2100         /* Increment number of inner iterations */
2101         inneriter                  += j_index_end - j_index_start;
2102
2103         /* Outer loop uses 18 flops */
2104     }
2105
2106     /* Increment number of outer iterations */
2107     outeriter        += nri;
2108
2109     /* Update outer/inner flops */
2110
2111     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*18 + inneriter*324);
2112 }