cf90d3bba3e511b065b49fe1a2d6a12c00501909
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwNone_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     __m128i          ewitab;
88     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
89     real             *ewtab;
90     __m128d          dummy_mask,cutoff_mask;
91     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
92     __m128d          one     = _mm_set1_pd(1.0);
93     __m128d          two     = _mm_set1_pd(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_pd(fr->epsfac);
106     charge           = mdatoms->chargeA;
107
108     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
109     ewtab            = fr->ic->tabq_coul_FDV0;
110     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
111     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
112
113     /* Avoid stupid compiler warnings */
114     jnrA = jnrB = 0;
115     j_coord_offsetA = 0;
116     j_coord_offsetB = 0;
117
118     outeriter        = 0;
119     inneriter        = 0;
120
121     /* Start outer loop over neighborlists */
122     for(iidx=0; iidx<nri; iidx++)
123     {
124         /* Load shift vector for this list */
125         i_shift_offset   = DIM*shiftidx[iidx];
126
127         /* Load limits for loop over neighbors */
128         j_index_start    = jindex[iidx];
129         j_index_end      = jindex[iidx+1];
130
131         /* Get outer coordinate index */
132         inr              = iinr[iidx];
133         i_coord_offset   = DIM*inr;
134
135         /* Load i particle coords and add shift vector */
136         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
137
138         fix0             = _mm_setzero_pd();
139         fiy0             = _mm_setzero_pd();
140         fiz0             = _mm_setzero_pd();
141
142         /* Load parameters for i particles */
143         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
144
145         /* Reset potential sums */
146         velecsum         = _mm_setzero_pd();
147
148         /* Start inner kernel loop */
149         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
150         {
151
152             /* Get j neighbor index, and coordinate index */
153             jnrA             = jjnr[jidx];
154             jnrB             = jjnr[jidx+1];
155             j_coord_offsetA  = DIM*jnrA;
156             j_coord_offsetB  = DIM*jnrB;
157
158             /* load j atom coordinates */
159             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
160                                               &jx0,&jy0,&jz0);
161
162             /* Calculate displacement vector */
163             dx00             = _mm_sub_pd(ix0,jx0);
164             dy00             = _mm_sub_pd(iy0,jy0);
165             dz00             = _mm_sub_pd(iz0,jz0);
166
167             /* Calculate squared distance and things based on it */
168             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
169
170             rinv00           = gmx_mm_invsqrt_pd(rsq00);
171
172             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
173
174             /* Load parameters for j particles */
175             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
176
177             /**************************
178              * CALCULATE INTERACTIONS *
179              **************************/
180
181             r00              = _mm_mul_pd(rsq00,rinv00);
182
183             /* Compute parameters for interactions between i and j atoms */
184             qq00             = _mm_mul_pd(iq0,jq0);
185
186             /* EWALD ELECTROSTATICS */
187
188             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
189             ewrt             = _mm_mul_pd(r00,ewtabscale);
190             ewitab           = _mm_cvttpd_epi32(ewrt);
191             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
192             ewitab           = _mm_slli_epi32(ewitab,2);
193             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
194             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
195             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
196             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
197             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
198             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
199             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
200             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
201             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
202             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
203
204             /* Update potential sum for this i atom from the interaction with this j atom. */
205             velecsum         = _mm_add_pd(velecsum,velec);
206
207             fscal            = felec;
208
209             /* Calculate temporary vectorial force */
210             tx               = _mm_mul_pd(fscal,dx00);
211             ty               = _mm_mul_pd(fscal,dy00);
212             tz               = _mm_mul_pd(fscal,dz00);
213
214             /* Update vectorial force */
215             fix0             = _mm_add_pd(fix0,tx);
216             fiy0             = _mm_add_pd(fiy0,ty);
217             fiz0             = _mm_add_pd(fiz0,tz);
218
219             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
220
221             /* Inner loop uses 41 flops */
222         }
223
224         if(jidx<j_index_end)
225         {
226
227             jnrA             = jjnr[jidx];
228             j_coord_offsetA  = DIM*jnrA;
229
230             /* load j atom coordinates */
231             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
232                                               &jx0,&jy0,&jz0);
233
234             /* Calculate displacement vector */
235             dx00             = _mm_sub_pd(ix0,jx0);
236             dy00             = _mm_sub_pd(iy0,jy0);
237             dz00             = _mm_sub_pd(iz0,jz0);
238
239             /* Calculate squared distance and things based on it */
240             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
241
242             rinv00           = gmx_mm_invsqrt_pd(rsq00);
243
244             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
245
246             /* Load parameters for j particles */
247             jq0              = _mm_load_sd(charge+jnrA+0);
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             r00              = _mm_mul_pd(rsq00,rinv00);
254
255             /* Compute parameters for interactions between i and j atoms */
256             qq00             = _mm_mul_pd(iq0,jq0);
257
258             /* EWALD ELECTROSTATICS */
259
260             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
261             ewrt             = _mm_mul_pd(r00,ewtabscale);
262             ewitab           = _mm_cvttpd_epi32(ewrt);
263             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
264             ewitab           = _mm_slli_epi32(ewitab,2);
265             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
266             ewtabD           = _mm_setzero_pd();
267             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
268             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
269             ewtabFn          = _mm_setzero_pd();
270             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
271             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
272             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
273             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
274             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
278             velecsum         = _mm_add_pd(velecsum,velec);
279
280             fscal            = felec;
281
282             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm_mul_pd(fscal,dx00);
286             ty               = _mm_mul_pd(fscal,dy00);
287             tz               = _mm_mul_pd(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm_add_pd(fix0,tx);
291             fiy0             = _mm_add_pd(fiy0,ty);
292             fiz0             = _mm_add_pd(fiz0,tz);
293
294             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
295
296             /* Inner loop uses 41 flops */
297         }
298
299         /* End of innermost loop */
300
301         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
302                                               f+i_coord_offset,fshift+i_shift_offset);
303
304         ggid                        = gid[iidx];
305         /* Update potential energies */
306         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
307
308         /* Increment number of inner iterations */
309         inneriter                  += j_index_end - j_index_start;
310
311         /* Outer loop uses 8 flops */
312     }
313
314     /* Increment number of outer iterations */
315     outeriter        += nri;
316
317     /* Update outer/inner flops */
318
319     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*41);
320 }
321 /*
322  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse2_double
323  * Electrostatics interaction: Ewald
324  * VdW interaction:            None
325  * Geometry:                   Particle-Particle
326  * Calculate force/pot:        Force
327  */
328 void
329 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_sse2_double
330                     (t_nblist                    * gmx_restrict       nlist,
331                      rvec                        * gmx_restrict          xx,
332                      rvec                        * gmx_restrict          ff,
333                      t_forcerec                  * gmx_restrict          fr,
334                      t_mdatoms                   * gmx_restrict     mdatoms,
335                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
336                      t_nrnb                      * gmx_restrict        nrnb)
337 {
338     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
339      * just 0 for non-waters.
340      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
341      * jnr indices corresponding to data put in the four positions in the SIMD register.
342      */
343     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
344     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
345     int              jnrA,jnrB;
346     int              j_coord_offsetA,j_coord_offsetB;
347     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
348     real             rcutoff_scalar;
349     real             *shiftvec,*fshift,*x,*f;
350     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
351     int              vdwioffset0;
352     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
353     int              vdwjidx0A,vdwjidx0B;
354     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
355     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
356     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
357     real             *charge;
358     __m128i          ewitab;
359     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
360     real             *ewtab;
361     __m128d          dummy_mask,cutoff_mask;
362     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
363     __m128d          one     = _mm_set1_pd(1.0);
364     __m128d          two     = _mm_set1_pd(2.0);
365     x                = xx[0];
366     f                = ff[0];
367
368     nri              = nlist->nri;
369     iinr             = nlist->iinr;
370     jindex           = nlist->jindex;
371     jjnr             = nlist->jjnr;
372     shiftidx         = nlist->shift;
373     gid              = nlist->gid;
374     shiftvec         = fr->shift_vec[0];
375     fshift           = fr->fshift[0];
376     facel            = _mm_set1_pd(fr->epsfac);
377     charge           = mdatoms->chargeA;
378
379     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
380     ewtab            = fr->ic->tabq_coul_F;
381     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
382     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
383
384     /* Avoid stupid compiler warnings */
385     jnrA = jnrB = 0;
386     j_coord_offsetA = 0;
387     j_coord_offsetB = 0;
388
389     outeriter        = 0;
390     inneriter        = 0;
391
392     /* Start outer loop over neighborlists */
393     for(iidx=0; iidx<nri; iidx++)
394     {
395         /* Load shift vector for this list */
396         i_shift_offset   = DIM*shiftidx[iidx];
397
398         /* Load limits for loop over neighbors */
399         j_index_start    = jindex[iidx];
400         j_index_end      = jindex[iidx+1];
401
402         /* Get outer coordinate index */
403         inr              = iinr[iidx];
404         i_coord_offset   = DIM*inr;
405
406         /* Load i particle coords and add shift vector */
407         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
408
409         fix0             = _mm_setzero_pd();
410         fiy0             = _mm_setzero_pd();
411         fiz0             = _mm_setzero_pd();
412
413         /* Load parameters for i particles */
414         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
415
416         /* Start inner kernel loop */
417         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
418         {
419
420             /* Get j neighbor index, and coordinate index */
421             jnrA             = jjnr[jidx];
422             jnrB             = jjnr[jidx+1];
423             j_coord_offsetA  = DIM*jnrA;
424             j_coord_offsetB  = DIM*jnrB;
425
426             /* load j atom coordinates */
427             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
428                                               &jx0,&jy0,&jz0);
429
430             /* Calculate displacement vector */
431             dx00             = _mm_sub_pd(ix0,jx0);
432             dy00             = _mm_sub_pd(iy0,jy0);
433             dz00             = _mm_sub_pd(iz0,jz0);
434
435             /* Calculate squared distance and things based on it */
436             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
437
438             rinv00           = gmx_mm_invsqrt_pd(rsq00);
439
440             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
441
442             /* Load parameters for j particles */
443             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
444
445             /**************************
446              * CALCULATE INTERACTIONS *
447              **************************/
448
449             r00              = _mm_mul_pd(rsq00,rinv00);
450
451             /* Compute parameters for interactions between i and j atoms */
452             qq00             = _mm_mul_pd(iq0,jq0);
453
454             /* EWALD ELECTROSTATICS */
455
456             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
457             ewrt             = _mm_mul_pd(r00,ewtabscale);
458             ewitab           = _mm_cvttpd_epi32(ewrt);
459             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
460             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
461                                          &ewtabF,&ewtabFn);
462             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
463             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
464
465             fscal            = felec;
466
467             /* Calculate temporary vectorial force */
468             tx               = _mm_mul_pd(fscal,dx00);
469             ty               = _mm_mul_pd(fscal,dy00);
470             tz               = _mm_mul_pd(fscal,dz00);
471
472             /* Update vectorial force */
473             fix0             = _mm_add_pd(fix0,tx);
474             fiy0             = _mm_add_pd(fiy0,ty);
475             fiz0             = _mm_add_pd(fiz0,tz);
476
477             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
478
479             /* Inner loop uses 36 flops */
480         }
481
482         if(jidx<j_index_end)
483         {
484
485             jnrA             = jjnr[jidx];
486             j_coord_offsetA  = DIM*jnrA;
487
488             /* load j atom coordinates */
489             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
490                                               &jx0,&jy0,&jz0);
491
492             /* Calculate displacement vector */
493             dx00             = _mm_sub_pd(ix0,jx0);
494             dy00             = _mm_sub_pd(iy0,jy0);
495             dz00             = _mm_sub_pd(iz0,jz0);
496
497             /* Calculate squared distance and things based on it */
498             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
499
500             rinv00           = gmx_mm_invsqrt_pd(rsq00);
501
502             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
503
504             /* Load parameters for j particles */
505             jq0              = _mm_load_sd(charge+jnrA+0);
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             r00              = _mm_mul_pd(rsq00,rinv00);
512
513             /* Compute parameters for interactions between i and j atoms */
514             qq00             = _mm_mul_pd(iq0,jq0);
515
516             /* EWALD ELECTROSTATICS */
517
518             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
519             ewrt             = _mm_mul_pd(r00,ewtabscale);
520             ewitab           = _mm_cvttpd_epi32(ewrt);
521             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
522             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
523             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
524             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
525
526             fscal            = felec;
527
528             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
529
530             /* Calculate temporary vectorial force */
531             tx               = _mm_mul_pd(fscal,dx00);
532             ty               = _mm_mul_pd(fscal,dy00);
533             tz               = _mm_mul_pd(fscal,dz00);
534
535             /* Update vectorial force */
536             fix0             = _mm_add_pd(fix0,tx);
537             fiy0             = _mm_add_pd(fiy0,ty);
538             fiz0             = _mm_add_pd(fiz0,tz);
539
540             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
541
542             /* Inner loop uses 36 flops */
543         }
544
545         /* End of innermost loop */
546
547         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
548                                               f+i_coord_offset,fshift+i_shift_offset);
549
550         /* Increment number of inner iterations */
551         inneriter                  += j_index_end - j_index_start;
552
553         /* Outer loop uses 7 flops */
554     }
555
556     /* Increment number of outer iterations */
557     outeriter        += nri;
558
559     /* Update outer/inner flops */
560
561     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*36);
562 }