ba119af7817626999e3057d93ebafd270d0bfb7b
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJ_GeomW4W4_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4W4_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Water4
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomW4W4_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     int              vdwjidx1A,vdwjidx1B;
91     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
92     int              vdwjidx2A,vdwjidx2B;
93     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
94     int              vdwjidx3A,vdwjidx3B;
95     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
96     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
98     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
99     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
100     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
101     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
102     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
103     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
104     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
105     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
106     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
107     real             *charge;
108     int              nvdwtype;
109     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
110     int              *vdwtype;
111     real             *vdwparam;
112     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
113     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
114     __m128i          ewitab;
115     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
116     real             *ewtab;
117     __m128d          dummy_mask,cutoff_mask;
118     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
119     __m128d          one     = _mm_set1_pd(1.0);
120     __m128d          two     = _mm_set1_pd(2.0);
121     x                = xx[0];
122     f                = ff[0];
123
124     nri              = nlist->nri;
125     iinr             = nlist->iinr;
126     jindex           = nlist->jindex;
127     jjnr             = nlist->jjnr;
128     shiftidx         = nlist->shift;
129     gid              = nlist->gid;
130     shiftvec         = fr->shift_vec[0];
131     fshift           = fr->fshift[0];
132     facel            = _mm_set1_pd(fr->epsfac);
133     charge           = mdatoms->chargeA;
134     nvdwtype         = fr->ntype;
135     vdwparam         = fr->nbfp;
136     vdwtype          = mdatoms->typeA;
137
138     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
146     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
147     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
148     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150     jq1              = _mm_set1_pd(charge[inr+1]);
151     jq2              = _mm_set1_pd(charge[inr+2]);
152     jq3              = _mm_set1_pd(charge[inr+3]);
153     vdwjidx0A        = 2*vdwtype[inr+0];
154     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
155     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
156     qq11             = _mm_mul_pd(iq1,jq1);
157     qq12             = _mm_mul_pd(iq1,jq2);
158     qq13             = _mm_mul_pd(iq1,jq3);
159     qq21             = _mm_mul_pd(iq2,jq1);
160     qq22             = _mm_mul_pd(iq2,jq2);
161     qq23             = _mm_mul_pd(iq2,jq3);
162     qq31             = _mm_mul_pd(iq3,jq1);
163     qq32             = _mm_mul_pd(iq3,jq2);
164     qq33             = _mm_mul_pd(iq3,jq3);
165
166     /* Avoid stupid compiler warnings */
167     jnrA = jnrB = 0;
168     j_coord_offsetA = 0;
169     j_coord_offsetB = 0;
170
171     outeriter        = 0;
172     inneriter        = 0;
173
174     /* Start outer loop over neighborlists */
175     for(iidx=0; iidx<nri; iidx++)
176     {
177         /* Load shift vector for this list */
178         i_shift_offset   = DIM*shiftidx[iidx];
179
180         /* Load limits for loop over neighbors */
181         j_index_start    = jindex[iidx];
182         j_index_end      = jindex[iidx+1];
183
184         /* Get outer coordinate index */
185         inr              = iinr[iidx];
186         i_coord_offset   = DIM*inr;
187
188         /* Load i particle coords and add shift vector */
189         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
190                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
191
192         fix0             = _mm_setzero_pd();
193         fiy0             = _mm_setzero_pd();
194         fiz0             = _mm_setzero_pd();
195         fix1             = _mm_setzero_pd();
196         fiy1             = _mm_setzero_pd();
197         fiz1             = _mm_setzero_pd();
198         fix2             = _mm_setzero_pd();
199         fiy2             = _mm_setzero_pd();
200         fiz2             = _mm_setzero_pd();
201         fix3             = _mm_setzero_pd();
202         fiy3             = _mm_setzero_pd();
203         fiz3             = _mm_setzero_pd();
204
205         /* Reset potential sums */
206         velecsum         = _mm_setzero_pd();
207         vvdwsum          = _mm_setzero_pd();
208
209         /* Start inner kernel loop */
210         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
211         {
212
213             /* Get j neighbor index, and coordinate index */
214             jnrA             = jjnr[jidx];
215             jnrB             = jjnr[jidx+1];
216             j_coord_offsetA  = DIM*jnrA;
217             j_coord_offsetB  = DIM*jnrB;
218
219             /* load j atom coordinates */
220             gmx_mm_load_4rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
221                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
222                                               &jy2,&jz2,&jx3,&jy3,&jz3);
223
224             /* Calculate displacement vector */
225             dx00             = _mm_sub_pd(ix0,jx0);
226             dy00             = _mm_sub_pd(iy0,jy0);
227             dz00             = _mm_sub_pd(iz0,jz0);
228             dx11             = _mm_sub_pd(ix1,jx1);
229             dy11             = _mm_sub_pd(iy1,jy1);
230             dz11             = _mm_sub_pd(iz1,jz1);
231             dx12             = _mm_sub_pd(ix1,jx2);
232             dy12             = _mm_sub_pd(iy1,jy2);
233             dz12             = _mm_sub_pd(iz1,jz2);
234             dx13             = _mm_sub_pd(ix1,jx3);
235             dy13             = _mm_sub_pd(iy1,jy3);
236             dz13             = _mm_sub_pd(iz1,jz3);
237             dx21             = _mm_sub_pd(ix2,jx1);
238             dy21             = _mm_sub_pd(iy2,jy1);
239             dz21             = _mm_sub_pd(iz2,jz1);
240             dx22             = _mm_sub_pd(ix2,jx2);
241             dy22             = _mm_sub_pd(iy2,jy2);
242             dz22             = _mm_sub_pd(iz2,jz2);
243             dx23             = _mm_sub_pd(ix2,jx3);
244             dy23             = _mm_sub_pd(iy2,jy3);
245             dz23             = _mm_sub_pd(iz2,jz3);
246             dx31             = _mm_sub_pd(ix3,jx1);
247             dy31             = _mm_sub_pd(iy3,jy1);
248             dz31             = _mm_sub_pd(iz3,jz1);
249             dx32             = _mm_sub_pd(ix3,jx2);
250             dy32             = _mm_sub_pd(iy3,jy2);
251             dz32             = _mm_sub_pd(iz3,jz2);
252             dx33             = _mm_sub_pd(ix3,jx3);
253             dy33             = _mm_sub_pd(iy3,jy3);
254             dz33             = _mm_sub_pd(iz3,jz3);
255
256             /* Calculate squared distance and things based on it */
257             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
258             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
259             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
260             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
261             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
262             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
263             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
264             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
265             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
266             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
267
268             rinv11           = gmx_mm_invsqrt_pd(rsq11);
269             rinv12           = gmx_mm_invsqrt_pd(rsq12);
270             rinv13           = gmx_mm_invsqrt_pd(rsq13);
271             rinv21           = gmx_mm_invsqrt_pd(rsq21);
272             rinv22           = gmx_mm_invsqrt_pd(rsq22);
273             rinv23           = gmx_mm_invsqrt_pd(rsq23);
274             rinv31           = gmx_mm_invsqrt_pd(rsq31);
275             rinv32           = gmx_mm_invsqrt_pd(rsq32);
276             rinv33           = gmx_mm_invsqrt_pd(rsq33);
277
278             rinvsq00         = gmx_mm_inv_pd(rsq00);
279             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
280             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
281             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
282             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
283             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
284             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
285             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
286             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
287             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
288
289             fjx0             = _mm_setzero_pd();
290             fjy0             = _mm_setzero_pd();
291             fjz0             = _mm_setzero_pd();
292             fjx1             = _mm_setzero_pd();
293             fjy1             = _mm_setzero_pd();
294             fjz1             = _mm_setzero_pd();
295             fjx2             = _mm_setzero_pd();
296             fjy2             = _mm_setzero_pd();
297             fjz2             = _mm_setzero_pd();
298             fjx3             = _mm_setzero_pd();
299             fjy3             = _mm_setzero_pd();
300             fjz3             = _mm_setzero_pd();
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             /* LENNARD-JONES DISPERSION/REPULSION */
307
308             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
309             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
310             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
311             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
312             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
316
317             fscal            = fvdw;
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm_mul_pd(fscal,dx00);
321             ty               = _mm_mul_pd(fscal,dy00);
322             tz               = _mm_mul_pd(fscal,dz00);
323
324             /* Update vectorial force */
325             fix0             = _mm_add_pd(fix0,tx);
326             fiy0             = _mm_add_pd(fiy0,ty);
327             fiz0             = _mm_add_pd(fiz0,tz);
328
329             fjx0             = _mm_add_pd(fjx0,tx);
330             fjy0             = _mm_add_pd(fjy0,ty);
331             fjz0             = _mm_add_pd(fjz0,tz);
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             r11              = _mm_mul_pd(rsq11,rinv11);
338
339             /* EWALD ELECTROSTATICS */
340
341             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
342             ewrt             = _mm_mul_pd(r11,ewtabscale);
343             ewitab           = _mm_cvttpd_epi32(ewrt);
344             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
345             ewitab           = _mm_slli_epi32(ewitab,2);
346             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
347             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
348             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
349             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
350             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
351             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
352             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
353             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
354             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
355             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velecsum         = _mm_add_pd(velecsum,velec);
359
360             fscal            = felec;
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm_mul_pd(fscal,dx11);
364             ty               = _mm_mul_pd(fscal,dy11);
365             tz               = _mm_mul_pd(fscal,dz11);
366
367             /* Update vectorial force */
368             fix1             = _mm_add_pd(fix1,tx);
369             fiy1             = _mm_add_pd(fiy1,ty);
370             fiz1             = _mm_add_pd(fiz1,tz);
371
372             fjx1             = _mm_add_pd(fjx1,tx);
373             fjy1             = _mm_add_pd(fjy1,ty);
374             fjz1             = _mm_add_pd(fjz1,tz);
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             r12              = _mm_mul_pd(rsq12,rinv12);
381
382             /* EWALD ELECTROSTATICS */
383
384             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
385             ewrt             = _mm_mul_pd(r12,ewtabscale);
386             ewitab           = _mm_cvttpd_epi32(ewrt);
387             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
388             ewitab           = _mm_slli_epi32(ewitab,2);
389             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
390             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
391             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
392             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
393             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
394             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
395             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
396             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
397             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
398             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
399
400             /* Update potential sum for this i atom from the interaction with this j atom. */
401             velecsum         = _mm_add_pd(velecsum,velec);
402
403             fscal            = felec;
404
405             /* Calculate temporary vectorial force */
406             tx               = _mm_mul_pd(fscal,dx12);
407             ty               = _mm_mul_pd(fscal,dy12);
408             tz               = _mm_mul_pd(fscal,dz12);
409
410             /* Update vectorial force */
411             fix1             = _mm_add_pd(fix1,tx);
412             fiy1             = _mm_add_pd(fiy1,ty);
413             fiz1             = _mm_add_pd(fiz1,tz);
414
415             fjx2             = _mm_add_pd(fjx2,tx);
416             fjy2             = _mm_add_pd(fjy2,ty);
417             fjz2             = _mm_add_pd(fjz2,tz);
418
419             /**************************
420              * CALCULATE INTERACTIONS *
421              **************************/
422
423             r13              = _mm_mul_pd(rsq13,rinv13);
424
425             /* EWALD ELECTROSTATICS */
426
427             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
428             ewrt             = _mm_mul_pd(r13,ewtabscale);
429             ewitab           = _mm_cvttpd_epi32(ewrt);
430             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
431             ewitab           = _mm_slli_epi32(ewitab,2);
432             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
433             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
434             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
435             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
436             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
437             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
438             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
439             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
440             velec            = _mm_mul_pd(qq13,_mm_sub_pd(rinv13,velec));
441             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
442
443             /* Update potential sum for this i atom from the interaction with this j atom. */
444             velecsum         = _mm_add_pd(velecsum,velec);
445
446             fscal            = felec;
447
448             /* Calculate temporary vectorial force */
449             tx               = _mm_mul_pd(fscal,dx13);
450             ty               = _mm_mul_pd(fscal,dy13);
451             tz               = _mm_mul_pd(fscal,dz13);
452
453             /* Update vectorial force */
454             fix1             = _mm_add_pd(fix1,tx);
455             fiy1             = _mm_add_pd(fiy1,ty);
456             fiz1             = _mm_add_pd(fiz1,tz);
457
458             fjx3             = _mm_add_pd(fjx3,tx);
459             fjy3             = _mm_add_pd(fjy3,ty);
460             fjz3             = _mm_add_pd(fjz3,tz);
461
462             /**************************
463              * CALCULATE INTERACTIONS *
464              **************************/
465
466             r21              = _mm_mul_pd(rsq21,rinv21);
467
468             /* EWALD ELECTROSTATICS */
469
470             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
471             ewrt             = _mm_mul_pd(r21,ewtabscale);
472             ewitab           = _mm_cvttpd_epi32(ewrt);
473             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
474             ewitab           = _mm_slli_epi32(ewitab,2);
475             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
476             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
477             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
478             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
479             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
480             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
481             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
482             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
483             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
484             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
485
486             /* Update potential sum for this i atom from the interaction with this j atom. */
487             velecsum         = _mm_add_pd(velecsum,velec);
488
489             fscal            = felec;
490
491             /* Calculate temporary vectorial force */
492             tx               = _mm_mul_pd(fscal,dx21);
493             ty               = _mm_mul_pd(fscal,dy21);
494             tz               = _mm_mul_pd(fscal,dz21);
495
496             /* Update vectorial force */
497             fix2             = _mm_add_pd(fix2,tx);
498             fiy2             = _mm_add_pd(fiy2,ty);
499             fiz2             = _mm_add_pd(fiz2,tz);
500
501             fjx1             = _mm_add_pd(fjx1,tx);
502             fjy1             = _mm_add_pd(fjy1,ty);
503             fjz1             = _mm_add_pd(fjz1,tz);
504
505             /**************************
506              * CALCULATE INTERACTIONS *
507              **************************/
508
509             r22              = _mm_mul_pd(rsq22,rinv22);
510
511             /* EWALD ELECTROSTATICS */
512
513             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
514             ewrt             = _mm_mul_pd(r22,ewtabscale);
515             ewitab           = _mm_cvttpd_epi32(ewrt);
516             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
517             ewitab           = _mm_slli_epi32(ewitab,2);
518             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
519             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
520             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
521             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
522             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
523             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
524             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
525             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
526             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
527             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
528
529             /* Update potential sum for this i atom from the interaction with this j atom. */
530             velecsum         = _mm_add_pd(velecsum,velec);
531
532             fscal            = felec;
533
534             /* Calculate temporary vectorial force */
535             tx               = _mm_mul_pd(fscal,dx22);
536             ty               = _mm_mul_pd(fscal,dy22);
537             tz               = _mm_mul_pd(fscal,dz22);
538
539             /* Update vectorial force */
540             fix2             = _mm_add_pd(fix2,tx);
541             fiy2             = _mm_add_pd(fiy2,ty);
542             fiz2             = _mm_add_pd(fiz2,tz);
543
544             fjx2             = _mm_add_pd(fjx2,tx);
545             fjy2             = _mm_add_pd(fjy2,ty);
546             fjz2             = _mm_add_pd(fjz2,tz);
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             r23              = _mm_mul_pd(rsq23,rinv23);
553
554             /* EWALD ELECTROSTATICS */
555
556             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
557             ewrt             = _mm_mul_pd(r23,ewtabscale);
558             ewitab           = _mm_cvttpd_epi32(ewrt);
559             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
560             ewitab           = _mm_slli_epi32(ewitab,2);
561             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
562             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
563             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
564             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
565             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
566             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
567             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
568             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
569             velec            = _mm_mul_pd(qq23,_mm_sub_pd(rinv23,velec));
570             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
571
572             /* Update potential sum for this i atom from the interaction with this j atom. */
573             velecsum         = _mm_add_pd(velecsum,velec);
574
575             fscal            = felec;
576
577             /* Calculate temporary vectorial force */
578             tx               = _mm_mul_pd(fscal,dx23);
579             ty               = _mm_mul_pd(fscal,dy23);
580             tz               = _mm_mul_pd(fscal,dz23);
581
582             /* Update vectorial force */
583             fix2             = _mm_add_pd(fix2,tx);
584             fiy2             = _mm_add_pd(fiy2,ty);
585             fiz2             = _mm_add_pd(fiz2,tz);
586
587             fjx3             = _mm_add_pd(fjx3,tx);
588             fjy3             = _mm_add_pd(fjy3,ty);
589             fjz3             = _mm_add_pd(fjz3,tz);
590
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             r31              = _mm_mul_pd(rsq31,rinv31);
596
597             /* EWALD ELECTROSTATICS */
598
599             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
600             ewrt             = _mm_mul_pd(r31,ewtabscale);
601             ewitab           = _mm_cvttpd_epi32(ewrt);
602             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
603             ewitab           = _mm_slli_epi32(ewitab,2);
604             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
605             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
606             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
607             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
608             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
609             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
610             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
611             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
612             velec            = _mm_mul_pd(qq31,_mm_sub_pd(rinv31,velec));
613             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
614
615             /* Update potential sum for this i atom from the interaction with this j atom. */
616             velecsum         = _mm_add_pd(velecsum,velec);
617
618             fscal            = felec;
619
620             /* Calculate temporary vectorial force */
621             tx               = _mm_mul_pd(fscal,dx31);
622             ty               = _mm_mul_pd(fscal,dy31);
623             tz               = _mm_mul_pd(fscal,dz31);
624
625             /* Update vectorial force */
626             fix3             = _mm_add_pd(fix3,tx);
627             fiy3             = _mm_add_pd(fiy3,ty);
628             fiz3             = _mm_add_pd(fiz3,tz);
629
630             fjx1             = _mm_add_pd(fjx1,tx);
631             fjy1             = _mm_add_pd(fjy1,ty);
632             fjz1             = _mm_add_pd(fjz1,tz);
633
634             /**************************
635              * CALCULATE INTERACTIONS *
636              **************************/
637
638             r32              = _mm_mul_pd(rsq32,rinv32);
639
640             /* EWALD ELECTROSTATICS */
641
642             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
643             ewrt             = _mm_mul_pd(r32,ewtabscale);
644             ewitab           = _mm_cvttpd_epi32(ewrt);
645             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
646             ewitab           = _mm_slli_epi32(ewitab,2);
647             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
648             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
649             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
650             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
651             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
652             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
653             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
654             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
655             velec            = _mm_mul_pd(qq32,_mm_sub_pd(rinv32,velec));
656             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
657
658             /* Update potential sum for this i atom from the interaction with this j atom. */
659             velecsum         = _mm_add_pd(velecsum,velec);
660
661             fscal            = felec;
662
663             /* Calculate temporary vectorial force */
664             tx               = _mm_mul_pd(fscal,dx32);
665             ty               = _mm_mul_pd(fscal,dy32);
666             tz               = _mm_mul_pd(fscal,dz32);
667
668             /* Update vectorial force */
669             fix3             = _mm_add_pd(fix3,tx);
670             fiy3             = _mm_add_pd(fiy3,ty);
671             fiz3             = _mm_add_pd(fiz3,tz);
672
673             fjx2             = _mm_add_pd(fjx2,tx);
674             fjy2             = _mm_add_pd(fjy2,ty);
675             fjz2             = _mm_add_pd(fjz2,tz);
676
677             /**************************
678              * CALCULATE INTERACTIONS *
679              **************************/
680
681             r33              = _mm_mul_pd(rsq33,rinv33);
682
683             /* EWALD ELECTROSTATICS */
684
685             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
686             ewrt             = _mm_mul_pd(r33,ewtabscale);
687             ewitab           = _mm_cvttpd_epi32(ewrt);
688             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
689             ewitab           = _mm_slli_epi32(ewitab,2);
690             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
691             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
692             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
693             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
694             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
695             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
696             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
697             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
698             velec            = _mm_mul_pd(qq33,_mm_sub_pd(rinv33,velec));
699             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
700
701             /* Update potential sum for this i atom from the interaction with this j atom. */
702             velecsum         = _mm_add_pd(velecsum,velec);
703
704             fscal            = felec;
705
706             /* Calculate temporary vectorial force */
707             tx               = _mm_mul_pd(fscal,dx33);
708             ty               = _mm_mul_pd(fscal,dy33);
709             tz               = _mm_mul_pd(fscal,dz33);
710
711             /* Update vectorial force */
712             fix3             = _mm_add_pd(fix3,tx);
713             fiy3             = _mm_add_pd(fiy3,ty);
714             fiz3             = _mm_add_pd(fiz3,tz);
715
716             fjx3             = _mm_add_pd(fjx3,tx);
717             fjy3             = _mm_add_pd(fjy3,ty);
718             fjz3             = _mm_add_pd(fjz3,tz);
719
720             gmx_mm_decrement_4rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
721
722             /* Inner loop uses 404 flops */
723         }
724
725         if(jidx<j_index_end)
726         {
727
728             jnrA             = jjnr[jidx];
729             j_coord_offsetA  = DIM*jnrA;
730
731             /* load j atom coordinates */
732             gmx_mm_load_4rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
733                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
734                                               &jy2,&jz2,&jx3,&jy3,&jz3);
735
736             /* Calculate displacement vector */
737             dx00             = _mm_sub_pd(ix0,jx0);
738             dy00             = _mm_sub_pd(iy0,jy0);
739             dz00             = _mm_sub_pd(iz0,jz0);
740             dx11             = _mm_sub_pd(ix1,jx1);
741             dy11             = _mm_sub_pd(iy1,jy1);
742             dz11             = _mm_sub_pd(iz1,jz1);
743             dx12             = _mm_sub_pd(ix1,jx2);
744             dy12             = _mm_sub_pd(iy1,jy2);
745             dz12             = _mm_sub_pd(iz1,jz2);
746             dx13             = _mm_sub_pd(ix1,jx3);
747             dy13             = _mm_sub_pd(iy1,jy3);
748             dz13             = _mm_sub_pd(iz1,jz3);
749             dx21             = _mm_sub_pd(ix2,jx1);
750             dy21             = _mm_sub_pd(iy2,jy1);
751             dz21             = _mm_sub_pd(iz2,jz1);
752             dx22             = _mm_sub_pd(ix2,jx2);
753             dy22             = _mm_sub_pd(iy2,jy2);
754             dz22             = _mm_sub_pd(iz2,jz2);
755             dx23             = _mm_sub_pd(ix2,jx3);
756             dy23             = _mm_sub_pd(iy2,jy3);
757             dz23             = _mm_sub_pd(iz2,jz3);
758             dx31             = _mm_sub_pd(ix3,jx1);
759             dy31             = _mm_sub_pd(iy3,jy1);
760             dz31             = _mm_sub_pd(iz3,jz1);
761             dx32             = _mm_sub_pd(ix3,jx2);
762             dy32             = _mm_sub_pd(iy3,jy2);
763             dz32             = _mm_sub_pd(iz3,jz2);
764             dx33             = _mm_sub_pd(ix3,jx3);
765             dy33             = _mm_sub_pd(iy3,jy3);
766             dz33             = _mm_sub_pd(iz3,jz3);
767
768             /* Calculate squared distance and things based on it */
769             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
770             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
771             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
772             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
773             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
774             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
775             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
776             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
777             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
778             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
779
780             rinv11           = gmx_mm_invsqrt_pd(rsq11);
781             rinv12           = gmx_mm_invsqrt_pd(rsq12);
782             rinv13           = gmx_mm_invsqrt_pd(rsq13);
783             rinv21           = gmx_mm_invsqrt_pd(rsq21);
784             rinv22           = gmx_mm_invsqrt_pd(rsq22);
785             rinv23           = gmx_mm_invsqrt_pd(rsq23);
786             rinv31           = gmx_mm_invsqrt_pd(rsq31);
787             rinv32           = gmx_mm_invsqrt_pd(rsq32);
788             rinv33           = gmx_mm_invsqrt_pd(rsq33);
789
790             rinvsq00         = gmx_mm_inv_pd(rsq00);
791             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
792             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
793             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
794             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
795             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
796             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
797             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
798             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
799             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
800
801             fjx0             = _mm_setzero_pd();
802             fjy0             = _mm_setzero_pd();
803             fjz0             = _mm_setzero_pd();
804             fjx1             = _mm_setzero_pd();
805             fjy1             = _mm_setzero_pd();
806             fjz1             = _mm_setzero_pd();
807             fjx2             = _mm_setzero_pd();
808             fjy2             = _mm_setzero_pd();
809             fjz2             = _mm_setzero_pd();
810             fjx3             = _mm_setzero_pd();
811             fjy3             = _mm_setzero_pd();
812             fjz3             = _mm_setzero_pd();
813
814             /**************************
815              * CALCULATE INTERACTIONS *
816              **************************/
817
818             /* LENNARD-JONES DISPERSION/REPULSION */
819
820             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
821             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
822             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
823             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
824             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
825
826             /* Update potential sum for this i atom from the interaction with this j atom. */
827             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
828             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
829
830             fscal            = fvdw;
831
832             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
833
834             /* Calculate temporary vectorial force */
835             tx               = _mm_mul_pd(fscal,dx00);
836             ty               = _mm_mul_pd(fscal,dy00);
837             tz               = _mm_mul_pd(fscal,dz00);
838
839             /* Update vectorial force */
840             fix0             = _mm_add_pd(fix0,tx);
841             fiy0             = _mm_add_pd(fiy0,ty);
842             fiz0             = _mm_add_pd(fiz0,tz);
843
844             fjx0             = _mm_add_pd(fjx0,tx);
845             fjy0             = _mm_add_pd(fjy0,ty);
846             fjz0             = _mm_add_pd(fjz0,tz);
847
848             /**************************
849              * CALCULATE INTERACTIONS *
850              **************************/
851
852             r11              = _mm_mul_pd(rsq11,rinv11);
853
854             /* EWALD ELECTROSTATICS */
855
856             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
857             ewrt             = _mm_mul_pd(r11,ewtabscale);
858             ewitab           = _mm_cvttpd_epi32(ewrt);
859             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
860             ewitab           = _mm_slli_epi32(ewitab,2);
861             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
862             ewtabD           = _mm_setzero_pd();
863             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
864             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
865             ewtabFn          = _mm_setzero_pd();
866             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
867             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
868             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
869             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
870             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
871
872             /* Update potential sum for this i atom from the interaction with this j atom. */
873             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
874             velecsum         = _mm_add_pd(velecsum,velec);
875
876             fscal            = felec;
877
878             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
879
880             /* Calculate temporary vectorial force */
881             tx               = _mm_mul_pd(fscal,dx11);
882             ty               = _mm_mul_pd(fscal,dy11);
883             tz               = _mm_mul_pd(fscal,dz11);
884
885             /* Update vectorial force */
886             fix1             = _mm_add_pd(fix1,tx);
887             fiy1             = _mm_add_pd(fiy1,ty);
888             fiz1             = _mm_add_pd(fiz1,tz);
889
890             fjx1             = _mm_add_pd(fjx1,tx);
891             fjy1             = _mm_add_pd(fjy1,ty);
892             fjz1             = _mm_add_pd(fjz1,tz);
893
894             /**************************
895              * CALCULATE INTERACTIONS *
896              **************************/
897
898             r12              = _mm_mul_pd(rsq12,rinv12);
899
900             /* EWALD ELECTROSTATICS */
901
902             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
903             ewrt             = _mm_mul_pd(r12,ewtabscale);
904             ewitab           = _mm_cvttpd_epi32(ewrt);
905             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
906             ewitab           = _mm_slli_epi32(ewitab,2);
907             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
908             ewtabD           = _mm_setzero_pd();
909             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
910             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
911             ewtabFn          = _mm_setzero_pd();
912             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
913             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
914             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
915             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
916             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
917
918             /* Update potential sum for this i atom from the interaction with this j atom. */
919             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
920             velecsum         = _mm_add_pd(velecsum,velec);
921
922             fscal            = felec;
923
924             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
925
926             /* Calculate temporary vectorial force */
927             tx               = _mm_mul_pd(fscal,dx12);
928             ty               = _mm_mul_pd(fscal,dy12);
929             tz               = _mm_mul_pd(fscal,dz12);
930
931             /* Update vectorial force */
932             fix1             = _mm_add_pd(fix1,tx);
933             fiy1             = _mm_add_pd(fiy1,ty);
934             fiz1             = _mm_add_pd(fiz1,tz);
935
936             fjx2             = _mm_add_pd(fjx2,tx);
937             fjy2             = _mm_add_pd(fjy2,ty);
938             fjz2             = _mm_add_pd(fjz2,tz);
939
940             /**************************
941              * CALCULATE INTERACTIONS *
942              **************************/
943
944             r13              = _mm_mul_pd(rsq13,rinv13);
945
946             /* EWALD ELECTROSTATICS */
947
948             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
949             ewrt             = _mm_mul_pd(r13,ewtabscale);
950             ewitab           = _mm_cvttpd_epi32(ewrt);
951             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
952             ewitab           = _mm_slli_epi32(ewitab,2);
953             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
954             ewtabD           = _mm_setzero_pd();
955             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
956             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
957             ewtabFn          = _mm_setzero_pd();
958             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
959             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
960             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
961             velec            = _mm_mul_pd(qq13,_mm_sub_pd(rinv13,velec));
962             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
963
964             /* Update potential sum for this i atom from the interaction with this j atom. */
965             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
966             velecsum         = _mm_add_pd(velecsum,velec);
967
968             fscal            = felec;
969
970             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
971
972             /* Calculate temporary vectorial force */
973             tx               = _mm_mul_pd(fscal,dx13);
974             ty               = _mm_mul_pd(fscal,dy13);
975             tz               = _mm_mul_pd(fscal,dz13);
976
977             /* Update vectorial force */
978             fix1             = _mm_add_pd(fix1,tx);
979             fiy1             = _mm_add_pd(fiy1,ty);
980             fiz1             = _mm_add_pd(fiz1,tz);
981
982             fjx3             = _mm_add_pd(fjx3,tx);
983             fjy3             = _mm_add_pd(fjy3,ty);
984             fjz3             = _mm_add_pd(fjz3,tz);
985
986             /**************************
987              * CALCULATE INTERACTIONS *
988              **************************/
989
990             r21              = _mm_mul_pd(rsq21,rinv21);
991
992             /* EWALD ELECTROSTATICS */
993
994             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
995             ewrt             = _mm_mul_pd(r21,ewtabscale);
996             ewitab           = _mm_cvttpd_epi32(ewrt);
997             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
998             ewitab           = _mm_slli_epi32(ewitab,2);
999             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1000             ewtabD           = _mm_setzero_pd();
1001             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1002             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1003             ewtabFn          = _mm_setzero_pd();
1004             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1005             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1006             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1007             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1008             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1009
1010             /* Update potential sum for this i atom from the interaction with this j atom. */
1011             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1012             velecsum         = _mm_add_pd(velecsum,velec);
1013
1014             fscal            = felec;
1015
1016             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1017
1018             /* Calculate temporary vectorial force */
1019             tx               = _mm_mul_pd(fscal,dx21);
1020             ty               = _mm_mul_pd(fscal,dy21);
1021             tz               = _mm_mul_pd(fscal,dz21);
1022
1023             /* Update vectorial force */
1024             fix2             = _mm_add_pd(fix2,tx);
1025             fiy2             = _mm_add_pd(fiy2,ty);
1026             fiz2             = _mm_add_pd(fiz2,tz);
1027
1028             fjx1             = _mm_add_pd(fjx1,tx);
1029             fjy1             = _mm_add_pd(fjy1,ty);
1030             fjz1             = _mm_add_pd(fjz1,tz);
1031
1032             /**************************
1033              * CALCULATE INTERACTIONS *
1034              **************************/
1035
1036             r22              = _mm_mul_pd(rsq22,rinv22);
1037
1038             /* EWALD ELECTROSTATICS */
1039
1040             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1041             ewrt             = _mm_mul_pd(r22,ewtabscale);
1042             ewitab           = _mm_cvttpd_epi32(ewrt);
1043             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1044             ewitab           = _mm_slli_epi32(ewitab,2);
1045             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1046             ewtabD           = _mm_setzero_pd();
1047             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1048             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1049             ewtabFn          = _mm_setzero_pd();
1050             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1051             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1052             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1053             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1054             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1055
1056             /* Update potential sum for this i atom from the interaction with this j atom. */
1057             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1058             velecsum         = _mm_add_pd(velecsum,velec);
1059
1060             fscal            = felec;
1061
1062             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1063
1064             /* Calculate temporary vectorial force */
1065             tx               = _mm_mul_pd(fscal,dx22);
1066             ty               = _mm_mul_pd(fscal,dy22);
1067             tz               = _mm_mul_pd(fscal,dz22);
1068
1069             /* Update vectorial force */
1070             fix2             = _mm_add_pd(fix2,tx);
1071             fiy2             = _mm_add_pd(fiy2,ty);
1072             fiz2             = _mm_add_pd(fiz2,tz);
1073
1074             fjx2             = _mm_add_pd(fjx2,tx);
1075             fjy2             = _mm_add_pd(fjy2,ty);
1076             fjz2             = _mm_add_pd(fjz2,tz);
1077
1078             /**************************
1079              * CALCULATE INTERACTIONS *
1080              **************************/
1081
1082             r23              = _mm_mul_pd(rsq23,rinv23);
1083
1084             /* EWALD ELECTROSTATICS */
1085
1086             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1087             ewrt             = _mm_mul_pd(r23,ewtabscale);
1088             ewitab           = _mm_cvttpd_epi32(ewrt);
1089             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1090             ewitab           = _mm_slli_epi32(ewitab,2);
1091             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1092             ewtabD           = _mm_setzero_pd();
1093             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1094             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1095             ewtabFn          = _mm_setzero_pd();
1096             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1097             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1098             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1099             velec            = _mm_mul_pd(qq23,_mm_sub_pd(rinv23,velec));
1100             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1101
1102             /* Update potential sum for this i atom from the interaction with this j atom. */
1103             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1104             velecsum         = _mm_add_pd(velecsum,velec);
1105
1106             fscal            = felec;
1107
1108             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1109
1110             /* Calculate temporary vectorial force */
1111             tx               = _mm_mul_pd(fscal,dx23);
1112             ty               = _mm_mul_pd(fscal,dy23);
1113             tz               = _mm_mul_pd(fscal,dz23);
1114
1115             /* Update vectorial force */
1116             fix2             = _mm_add_pd(fix2,tx);
1117             fiy2             = _mm_add_pd(fiy2,ty);
1118             fiz2             = _mm_add_pd(fiz2,tz);
1119
1120             fjx3             = _mm_add_pd(fjx3,tx);
1121             fjy3             = _mm_add_pd(fjy3,ty);
1122             fjz3             = _mm_add_pd(fjz3,tz);
1123
1124             /**************************
1125              * CALCULATE INTERACTIONS *
1126              **************************/
1127
1128             r31              = _mm_mul_pd(rsq31,rinv31);
1129
1130             /* EWALD ELECTROSTATICS */
1131
1132             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1133             ewrt             = _mm_mul_pd(r31,ewtabscale);
1134             ewitab           = _mm_cvttpd_epi32(ewrt);
1135             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1136             ewitab           = _mm_slli_epi32(ewitab,2);
1137             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1138             ewtabD           = _mm_setzero_pd();
1139             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1140             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1141             ewtabFn          = _mm_setzero_pd();
1142             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1143             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1144             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1145             velec            = _mm_mul_pd(qq31,_mm_sub_pd(rinv31,velec));
1146             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1147
1148             /* Update potential sum for this i atom from the interaction with this j atom. */
1149             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1150             velecsum         = _mm_add_pd(velecsum,velec);
1151
1152             fscal            = felec;
1153
1154             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1155
1156             /* Calculate temporary vectorial force */
1157             tx               = _mm_mul_pd(fscal,dx31);
1158             ty               = _mm_mul_pd(fscal,dy31);
1159             tz               = _mm_mul_pd(fscal,dz31);
1160
1161             /* Update vectorial force */
1162             fix3             = _mm_add_pd(fix3,tx);
1163             fiy3             = _mm_add_pd(fiy3,ty);
1164             fiz3             = _mm_add_pd(fiz3,tz);
1165
1166             fjx1             = _mm_add_pd(fjx1,tx);
1167             fjy1             = _mm_add_pd(fjy1,ty);
1168             fjz1             = _mm_add_pd(fjz1,tz);
1169
1170             /**************************
1171              * CALCULATE INTERACTIONS *
1172              **************************/
1173
1174             r32              = _mm_mul_pd(rsq32,rinv32);
1175
1176             /* EWALD ELECTROSTATICS */
1177
1178             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1179             ewrt             = _mm_mul_pd(r32,ewtabscale);
1180             ewitab           = _mm_cvttpd_epi32(ewrt);
1181             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1182             ewitab           = _mm_slli_epi32(ewitab,2);
1183             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1184             ewtabD           = _mm_setzero_pd();
1185             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1186             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1187             ewtabFn          = _mm_setzero_pd();
1188             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1189             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1190             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1191             velec            = _mm_mul_pd(qq32,_mm_sub_pd(rinv32,velec));
1192             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1193
1194             /* Update potential sum for this i atom from the interaction with this j atom. */
1195             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1196             velecsum         = _mm_add_pd(velecsum,velec);
1197
1198             fscal            = felec;
1199
1200             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1201
1202             /* Calculate temporary vectorial force */
1203             tx               = _mm_mul_pd(fscal,dx32);
1204             ty               = _mm_mul_pd(fscal,dy32);
1205             tz               = _mm_mul_pd(fscal,dz32);
1206
1207             /* Update vectorial force */
1208             fix3             = _mm_add_pd(fix3,tx);
1209             fiy3             = _mm_add_pd(fiy3,ty);
1210             fiz3             = _mm_add_pd(fiz3,tz);
1211
1212             fjx2             = _mm_add_pd(fjx2,tx);
1213             fjy2             = _mm_add_pd(fjy2,ty);
1214             fjz2             = _mm_add_pd(fjz2,tz);
1215
1216             /**************************
1217              * CALCULATE INTERACTIONS *
1218              **************************/
1219
1220             r33              = _mm_mul_pd(rsq33,rinv33);
1221
1222             /* EWALD ELECTROSTATICS */
1223
1224             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1225             ewrt             = _mm_mul_pd(r33,ewtabscale);
1226             ewitab           = _mm_cvttpd_epi32(ewrt);
1227             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1228             ewitab           = _mm_slli_epi32(ewitab,2);
1229             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1230             ewtabD           = _mm_setzero_pd();
1231             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1232             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1233             ewtabFn          = _mm_setzero_pd();
1234             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1235             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1236             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1237             velec            = _mm_mul_pd(qq33,_mm_sub_pd(rinv33,velec));
1238             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1239
1240             /* Update potential sum for this i atom from the interaction with this j atom. */
1241             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1242             velecsum         = _mm_add_pd(velecsum,velec);
1243
1244             fscal            = felec;
1245
1246             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1247
1248             /* Calculate temporary vectorial force */
1249             tx               = _mm_mul_pd(fscal,dx33);
1250             ty               = _mm_mul_pd(fscal,dy33);
1251             tz               = _mm_mul_pd(fscal,dz33);
1252
1253             /* Update vectorial force */
1254             fix3             = _mm_add_pd(fix3,tx);
1255             fiy3             = _mm_add_pd(fiy3,ty);
1256             fiz3             = _mm_add_pd(fiz3,tz);
1257
1258             fjx3             = _mm_add_pd(fjx3,tx);
1259             fjy3             = _mm_add_pd(fjy3,ty);
1260             fjz3             = _mm_add_pd(fjz3,tz);
1261
1262             gmx_mm_decrement_4rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1263
1264             /* Inner loop uses 404 flops */
1265         }
1266
1267         /* End of innermost loop */
1268
1269         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1270                                               f+i_coord_offset,fshift+i_shift_offset);
1271
1272         ggid                        = gid[iidx];
1273         /* Update potential energies */
1274         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1275         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1276
1277         /* Increment number of inner iterations */
1278         inneriter                  += j_index_end - j_index_start;
1279
1280         /* Outer loop uses 26 flops */
1281     }
1282
1283     /* Increment number of outer iterations */
1284     outeriter        += nri;
1285
1286     /* Update outer/inner flops */
1287
1288     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*26 + inneriter*404);
1289 }
1290 /*
1291  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4W4_F_sse2_double
1292  * Electrostatics interaction: Ewald
1293  * VdW interaction:            LennardJones
1294  * Geometry:                   Water4-Water4
1295  * Calculate force/pot:        Force
1296  */
1297 void
1298 nb_kernel_ElecEw_VdwLJ_GeomW4W4_F_sse2_double
1299                     (t_nblist                    * gmx_restrict       nlist,
1300                      rvec                        * gmx_restrict          xx,
1301                      rvec                        * gmx_restrict          ff,
1302                      t_forcerec                  * gmx_restrict          fr,
1303                      t_mdatoms                   * gmx_restrict     mdatoms,
1304                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1305                      t_nrnb                      * gmx_restrict        nrnb)
1306 {
1307     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1308      * just 0 for non-waters.
1309      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1310      * jnr indices corresponding to data put in the four positions in the SIMD register.
1311      */
1312     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1313     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1314     int              jnrA,jnrB;
1315     int              j_coord_offsetA,j_coord_offsetB;
1316     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1317     real             rcutoff_scalar;
1318     real             *shiftvec,*fshift,*x,*f;
1319     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1320     int              vdwioffset0;
1321     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1322     int              vdwioffset1;
1323     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1324     int              vdwioffset2;
1325     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1326     int              vdwioffset3;
1327     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1328     int              vdwjidx0A,vdwjidx0B;
1329     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1330     int              vdwjidx1A,vdwjidx1B;
1331     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1332     int              vdwjidx2A,vdwjidx2B;
1333     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1334     int              vdwjidx3A,vdwjidx3B;
1335     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1336     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1337     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1338     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1339     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1340     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1341     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1342     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1343     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1344     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1345     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1346     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1347     real             *charge;
1348     int              nvdwtype;
1349     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1350     int              *vdwtype;
1351     real             *vdwparam;
1352     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1353     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1354     __m128i          ewitab;
1355     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1356     real             *ewtab;
1357     __m128d          dummy_mask,cutoff_mask;
1358     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1359     __m128d          one     = _mm_set1_pd(1.0);
1360     __m128d          two     = _mm_set1_pd(2.0);
1361     x                = xx[0];
1362     f                = ff[0];
1363
1364     nri              = nlist->nri;
1365     iinr             = nlist->iinr;
1366     jindex           = nlist->jindex;
1367     jjnr             = nlist->jjnr;
1368     shiftidx         = nlist->shift;
1369     gid              = nlist->gid;
1370     shiftvec         = fr->shift_vec[0];
1371     fshift           = fr->fshift[0];
1372     facel            = _mm_set1_pd(fr->epsfac);
1373     charge           = mdatoms->chargeA;
1374     nvdwtype         = fr->ntype;
1375     vdwparam         = fr->nbfp;
1376     vdwtype          = mdatoms->typeA;
1377
1378     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1379     ewtab            = fr->ic->tabq_coul_F;
1380     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1381     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1382
1383     /* Setup water-specific parameters */
1384     inr              = nlist->iinr[0];
1385     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1386     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1387     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
1388     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1389
1390     jq1              = _mm_set1_pd(charge[inr+1]);
1391     jq2              = _mm_set1_pd(charge[inr+2]);
1392     jq3              = _mm_set1_pd(charge[inr+3]);
1393     vdwjidx0A        = 2*vdwtype[inr+0];
1394     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1395     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1396     qq11             = _mm_mul_pd(iq1,jq1);
1397     qq12             = _mm_mul_pd(iq1,jq2);
1398     qq13             = _mm_mul_pd(iq1,jq3);
1399     qq21             = _mm_mul_pd(iq2,jq1);
1400     qq22             = _mm_mul_pd(iq2,jq2);
1401     qq23             = _mm_mul_pd(iq2,jq3);
1402     qq31             = _mm_mul_pd(iq3,jq1);
1403     qq32             = _mm_mul_pd(iq3,jq2);
1404     qq33             = _mm_mul_pd(iq3,jq3);
1405
1406     /* Avoid stupid compiler warnings */
1407     jnrA = jnrB = 0;
1408     j_coord_offsetA = 0;
1409     j_coord_offsetB = 0;
1410
1411     outeriter        = 0;
1412     inneriter        = 0;
1413
1414     /* Start outer loop over neighborlists */
1415     for(iidx=0; iidx<nri; iidx++)
1416     {
1417         /* Load shift vector for this list */
1418         i_shift_offset   = DIM*shiftidx[iidx];
1419
1420         /* Load limits for loop over neighbors */
1421         j_index_start    = jindex[iidx];
1422         j_index_end      = jindex[iidx+1];
1423
1424         /* Get outer coordinate index */
1425         inr              = iinr[iidx];
1426         i_coord_offset   = DIM*inr;
1427
1428         /* Load i particle coords and add shift vector */
1429         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1430                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1431
1432         fix0             = _mm_setzero_pd();
1433         fiy0             = _mm_setzero_pd();
1434         fiz0             = _mm_setzero_pd();
1435         fix1             = _mm_setzero_pd();
1436         fiy1             = _mm_setzero_pd();
1437         fiz1             = _mm_setzero_pd();
1438         fix2             = _mm_setzero_pd();
1439         fiy2             = _mm_setzero_pd();
1440         fiz2             = _mm_setzero_pd();
1441         fix3             = _mm_setzero_pd();
1442         fiy3             = _mm_setzero_pd();
1443         fiz3             = _mm_setzero_pd();
1444
1445         /* Start inner kernel loop */
1446         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1447         {
1448
1449             /* Get j neighbor index, and coordinate index */
1450             jnrA             = jjnr[jidx];
1451             jnrB             = jjnr[jidx+1];
1452             j_coord_offsetA  = DIM*jnrA;
1453             j_coord_offsetB  = DIM*jnrB;
1454
1455             /* load j atom coordinates */
1456             gmx_mm_load_4rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1457                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1458                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1459
1460             /* Calculate displacement vector */
1461             dx00             = _mm_sub_pd(ix0,jx0);
1462             dy00             = _mm_sub_pd(iy0,jy0);
1463             dz00             = _mm_sub_pd(iz0,jz0);
1464             dx11             = _mm_sub_pd(ix1,jx1);
1465             dy11             = _mm_sub_pd(iy1,jy1);
1466             dz11             = _mm_sub_pd(iz1,jz1);
1467             dx12             = _mm_sub_pd(ix1,jx2);
1468             dy12             = _mm_sub_pd(iy1,jy2);
1469             dz12             = _mm_sub_pd(iz1,jz2);
1470             dx13             = _mm_sub_pd(ix1,jx3);
1471             dy13             = _mm_sub_pd(iy1,jy3);
1472             dz13             = _mm_sub_pd(iz1,jz3);
1473             dx21             = _mm_sub_pd(ix2,jx1);
1474             dy21             = _mm_sub_pd(iy2,jy1);
1475             dz21             = _mm_sub_pd(iz2,jz1);
1476             dx22             = _mm_sub_pd(ix2,jx2);
1477             dy22             = _mm_sub_pd(iy2,jy2);
1478             dz22             = _mm_sub_pd(iz2,jz2);
1479             dx23             = _mm_sub_pd(ix2,jx3);
1480             dy23             = _mm_sub_pd(iy2,jy3);
1481             dz23             = _mm_sub_pd(iz2,jz3);
1482             dx31             = _mm_sub_pd(ix3,jx1);
1483             dy31             = _mm_sub_pd(iy3,jy1);
1484             dz31             = _mm_sub_pd(iz3,jz1);
1485             dx32             = _mm_sub_pd(ix3,jx2);
1486             dy32             = _mm_sub_pd(iy3,jy2);
1487             dz32             = _mm_sub_pd(iz3,jz2);
1488             dx33             = _mm_sub_pd(ix3,jx3);
1489             dy33             = _mm_sub_pd(iy3,jy3);
1490             dz33             = _mm_sub_pd(iz3,jz3);
1491
1492             /* Calculate squared distance and things based on it */
1493             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1494             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1495             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1496             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1497             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1498             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1499             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1500             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1501             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1502             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1503
1504             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1505             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1506             rinv13           = gmx_mm_invsqrt_pd(rsq13);
1507             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1508             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1509             rinv23           = gmx_mm_invsqrt_pd(rsq23);
1510             rinv31           = gmx_mm_invsqrt_pd(rsq31);
1511             rinv32           = gmx_mm_invsqrt_pd(rsq32);
1512             rinv33           = gmx_mm_invsqrt_pd(rsq33);
1513
1514             rinvsq00         = gmx_mm_inv_pd(rsq00);
1515             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1516             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1517             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
1518             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1519             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1520             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
1521             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
1522             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
1523             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
1524
1525             fjx0             = _mm_setzero_pd();
1526             fjy0             = _mm_setzero_pd();
1527             fjz0             = _mm_setzero_pd();
1528             fjx1             = _mm_setzero_pd();
1529             fjy1             = _mm_setzero_pd();
1530             fjz1             = _mm_setzero_pd();
1531             fjx2             = _mm_setzero_pd();
1532             fjy2             = _mm_setzero_pd();
1533             fjz2             = _mm_setzero_pd();
1534             fjx3             = _mm_setzero_pd();
1535             fjy3             = _mm_setzero_pd();
1536             fjz3             = _mm_setzero_pd();
1537
1538             /**************************
1539              * CALCULATE INTERACTIONS *
1540              **************************/
1541
1542             /* LENNARD-JONES DISPERSION/REPULSION */
1543
1544             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1545             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1546
1547             fscal            = fvdw;
1548
1549             /* Calculate temporary vectorial force */
1550             tx               = _mm_mul_pd(fscal,dx00);
1551             ty               = _mm_mul_pd(fscal,dy00);
1552             tz               = _mm_mul_pd(fscal,dz00);
1553
1554             /* Update vectorial force */
1555             fix0             = _mm_add_pd(fix0,tx);
1556             fiy0             = _mm_add_pd(fiy0,ty);
1557             fiz0             = _mm_add_pd(fiz0,tz);
1558
1559             fjx0             = _mm_add_pd(fjx0,tx);
1560             fjy0             = _mm_add_pd(fjy0,ty);
1561             fjz0             = _mm_add_pd(fjz0,tz);
1562
1563             /**************************
1564              * CALCULATE INTERACTIONS *
1565              **************************/
1566
1567             r11              = _mm_mul_pd(rsq11,rinv11);
1568
1569             /* EWALD ELECTROSTATICS */
1570
1571             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1572             ewrt             = _mm_mul_pd(r11,ewtabscale);
1573             ewitab           = _mm_cvttpd_epi32(ewrt);
1574             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1575             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1576                                          &ewtabF,&ewtabFn);
1577             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1578             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1579
1580             fscal            = felec;
1581
1582             /* Calculate temporary vectorial force */
1583             tx               = _mm_mul_pd(fscal,dx11);
1584             ty               = _mm_mul_pd(fscal,dy11);
1585             tz               = _mm_mul_pd(fscal,dz11);
1586
1587             /* Update vectorial force */
1588             fix1             = _mm_add_pd(fix1,tx);
1589             fiy1             = _mm_add_pd(fiy1,ty);
1590             fiz1             = _mm_add_pd(fiz1,tz);
1591
1592             fjx1             = _mm_add_pd(fjx1,tx);
1593             fjy1             = _mm_add_pd(fjy1,ty);
1594             fjz1             = _mm_add_pd(fjz1,tz);
1595
1596             /**************************
1597              * CALCULATE INTERACTIONS *
1598              **************************/
1599
1600             r12              = _mm_mul_pd(rsq12,rinv12);
1601
1602             /* EWALD ELECTROSTATICS */
1603
1604             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1605             ewrt             = _mm_mul_pd(r12,ewtabscale);
1606             ewitab           = _mm_cvttpd_epi32(ewrt);
1607             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1608             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1609                                          &ewtabF,&ewtabFn);
1610             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1611             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1612
1613             fscal            = felec;
1614
1615             /* Calculate temporary vectorial force */
1616             tx               = _mm_mul_pd(fscal,dx12);
1617             ty               = _mm_mul_pd(fscal,dy12);
1618             tz               = _mm_mul_pd(fscal,dz12);
1619
1620             /* Update vectorial force */
1621             fix1             = _mm_add_pd(fix1,tx);
1622             fiy1             = _mm_add_pd(fiy1,ty);
1623             fiz1             = _mm_add_pd(fiz1,tz);
1624
1625             fjx2             = _mm_add_pd(fjx2,tx);
1626             fjy2             = _mm_add_pd(fjy2,ty);
1627             fjz2             = _mm_add_pd(fjz2,tz);
1628
1629             /**************************
1630              * CALCULATE INTERACTIONS *
1631              **************************/
1632
1633             r13              = _mm_mul_pd(rsq13,rinv13);
1634
1635             /* EWALD ELECTROSTATICS */
1636
1637             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1638             ewrt             = _mm_mul_pd(r13,ewtabscale);
1639             ewitab           = _mm_cvttpd_epi32(ewrt);
1640             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1641             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1642                                          &ewtabF,&ewtabFn);
1643             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1644             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1645
1646             fscal            = felec;
1647
1648             /* Calculate temporary vectorial force */
1649             tx               = _mm_mul_pd(fscal,dx13);
1650             ty               = _mm_mul_pd(fscal,dy13);
1651             tz               = _mm_mul_pd(fscal,dz13);
1652
1653             /* Update vectorial force */
1654             fix1             = _mm_add_pd(fix1,tx);
1655             fiy1             = _mm_add_pd(fiy1,ty);
1656             fiz1             = _mm_add_pd(fiz1,tz);
1657
1658             fjx3             = _mm_add_pd(fjx3,tx);
1659             fjy3             = _mm_add_pd(fjy3,ty);
1660             fjz3             = _mm_add_pd(fjz3,tz);
1661
1662             /**************************
1663              * CALCULATE INTERACTIONS *
1664              **************************/
1665
1666             r21              = _mm_mul_pd(rsq21,rinv21);
1667
1668             /* EWALD ELECTROSTATICS */
1669
1670             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1671             ewrt             = _mm_mul_pd(r21,ewtabscale);
1672             ewitab           = _mm_cvttpd_epi32(ewrt);
1673             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1674             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1675                                          &ewtabF,&ewtabFn);
1676             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1677             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1678
1679             fscal            = felec;
1680
1681             /* Calculate temporary vectorial force */
1682             tx               = _mm_mul_pd(fscal,dx21);
1683             ty               = _mm_mul_pd(fscal,dy21);
1684             tz               = _mm_mul_pd(fscal,dz21);
1685
1686             /* Update vectorial force */
1687             fix2             = _mm_add_pd(fix2,tx);
1688             fiy2             = _mm_add_pd(fiy2,ty);
1689             fiz2             = _mm_add_pd(fiz2,tz);
1690
1691             fjx1             = _mm_add_pd(fjx1,tx);
1692             fjy1             = _mm_add_pd(fjy1,ty);
1693             fjz1             = _mm_add_pd(fjz1,tz);
1694
1695             /**************************
1696              * CALCULATE INTERACTIONS *
1697              **************************/
1698
1699             r22              = _mm_mul_pd(rsq22,rinv22);
1700
1701             /* EWALD ELECTROSTATICS */
1702
1703             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1704             ewrt             = _mm_mul_pd(r22,ewtabscale);
1705             ewitab           = _mm_cvttpd_epi32(ewrt);
1706             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1707             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1708                                          &ewtabF,&ewtabFn);
1709             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1710             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1711
1712             fscal            = felec;
1713
1714             /* Calculate temporary vectorial force */
1715             tx               = _mm_mul_pd(fscal,dx22);
1716             ty               = _mm_mul_pd(fscal,dy22);
1717             tz               = _mm_mul_pd(fscal,dz22);
1718
1719             /* Update vectorial force */
1720             fix2             = _mm_add_pd(fix2,tx);
1721             fiy2             = _mm_add_pd(fiy2,ty);
1722             fiz2             = _mm_add_pd(fiz2,tz);
1723
1724             fjx2             = _mm_add_pd(fjx2,tx);
1725             fjy2             = _mm_add_pd(fjy2,ty);
1726             fjz2             = _mm_add_pd(fjz2,tz);
1727
1728             /**************************
1729              * CALCULATE INTERACTIONS *
1730              **************************/
1731
1732             r23              = _mm_mul_pd(rsq23,rinv23);
1733
1734             /* EWALD ELECTROSTATICS */
1735
1736             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1737             ewrt             = _mm_mul_pd(r23,ewtabscale);
1738             ewitab           = _mm_cvttpd_epi32(ewrt);
1739             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1740             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1741                                          &ewtabF,&ewtabFn);
1742             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1743             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1744
1745             fscal            = felec;
1746
1747             /* Calculate temporary vectorial force */
1748             tx               = _mm_mul_pd(fscal,dx23);
1749             ty               = _mm_mul_pd(fscal,dy23);
1750             tz               = _mm_mul_pd(fscal,dz23);
1751
1752             /* Update vectorial force */
1753             fix2             = _mm_add_pd(fix2,tx);
1754             fiy2             = _mm_add_pd(fiy2,ty);
1755             fiz2             = _mm_add_pd(fiz2,tz);
1756
1757             fjx3             = _mm_add_pd(fjx3,tx);
1758             fjy3             = _mm_add_pd(fjy3,ty);
1759             fjz3             = _mm_add_pd(fjz3,tz);
1760
1761             /**************************
1762              * CALCULATE INTERACTIONS *
1763              **************************/
1764
1765             r31              = _mm_mul_pd(rsq31,rinv31);
1766
1767             /* EWALD ELECTROSTATICS */
1768
1769             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1770             ewrt             = _mm_mul_pd(r31,ewtabscale);
1771             ewitab           = _mm_cvttpd_epi32(ewrt);
1772             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1773             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1774                                          &ewtabF,&ewtabFn);
1775             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1776             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1777
1778             fscal            = felec;
1779
1780             /* Calculate temporary vectorial force */
1781             tx               = _mm_mul_pd(fscal,dx31);
1782             ty               = _mm_mul_pd(fscal,dy31);
1783             tz               = _mm_mul_pd(fscal,dz31);
1784
1785             /* Update vectorial force */
1786             fix3             = _mm_add_pd(fix3,tx);
1787             fiy3             = _mm_add_pd(fiy3,ty);
1788             fiz3             = _mm_add_pd(fiz3,tz);
1789
1790             fjx1             = _mm_add_pd(fjx1,tx);
1791             fjy1             = _mm_add_pd(fjy1,ty);
1792             fjz1             = _mm_add_pd(fjz1,tz);
1793
1794             /**************************
1795              * CALCULATE INTERACTIONS *
1796              **************************/
1797
1798             r32              = _mm_mul_pd(rsq32,rinv32);
1799
1800             /* EWALD ELECTROSTATICS */
1801
1802             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1803             ewrt             = _mm_mul_pd(r32,ewtabscale);
1804             ewitab           = _mm_cvttpd_epi32(ewrt);
1805             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1806             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1807                                          &ewtabF,&ewtabFn);
1808             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1809             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1810
1811             fscal            = felec;
1812
1813             /* Calculate temporary vectorial force */
1814             tx               = _mm_mul_pd(fscal,dx32);
1815             ty               = _mm_mul_pd(fscal,dy32);
1816             tz               = _mm_mul_pd(fscal,dz32);
1817
1818             /* Update vectorial force */
1819             fix3             = _mm_add_pd(fix3,tx);
1820             fiy3             = _mm_add_pd(fiy3,ty);
1821             fiz3             = _mm_add_pd(fiz3,tz);
1822
1823             fjx2             = _mm_add_pd(fjx2,tx);
1824             fjy2             = _mm_add_pd(fjy2,ty);
1825             fjz2             = _mm_add_pd(fjz2,tz);
1826
1827             /**************************
1828              * CALCULATE INTERACTIONS *
1829              **************************/
1830
1831             r33              = _mm_mul_pd(rsq33,rinv33);
1832
1833             /* EWALD ELECTROSTATICS */
1834
1835             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1836             ewrt             = _mm_mul_pd(r33,ewtabscale);
1837             ewitab           = _mm_cvttpd_epi32(ewrt);
1838             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1839             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1840                                          &ewtabF,&ewtabFn);
1841             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1842             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1843
1844             fscal            = felec;
1845
1846             /* Calculate temporary vectorial force */
1847             tx               = _mm_mul_pd(fscal,dx33);
1848             ty               = _mm_mul_pd(fscal,dy33);
1849             tz               = _mm_mul_pd(fscal,dz33);
1850
1851             /* Update vectorial force */
1852             fix3             = _mm_add_pd(fix3,tx);
1853             fiy3             = _mm_add_pd(fiy3,ty);
1854             fiz3             = _mm_add_pd(fiz3,tz);
1855
1856             fjx3             = _mm_add_pd(fjx3,tx);
1857             fjy3             = _mm_add_pd(fjy3,ty);
1858             fjz3             = _mm_add_pd(fjz3,tz);
1859
1860             gmx_mm_decrement_4rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1861
1862             /* Inner loop uses 354 flops */
1863         }
1864
1865         if(jidx<j_index_end)
1866         {
1867
1868             jnrA             = jjnr[jidx];
1869             j_coord_offsetA  = DIM*jnrA;
1870
1871             /* load j atom coordinates */
1872             gmx_mm_load_4rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1873                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1874                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1875
1876             /* Calculate displacement vector */
1877             dx00             = _mm_sub_pd(ix0,jx0);
1878             dy00             = _mm_sub_pd(iy0,jy0);
1879             dz00             = _mm_sub_pd(iz0,jz0);
1880             dx11             = _mm_sub_pd(ix1,jx1);
1881             dy11             = _mm_sub_pd(iy1,jy1);
1882             dz11             = _mm_sub_pd(iz1,jz1);
1883             dx12             = _mm_sub_pd(ix1,jx2);
1884             dy12             = _mm_sub_pd(iy1,jy2);
1885             dz12             = _mm_sub_pd(iz1,jz2);
1886             dx13             = _mm_sub_pd(ix1,jx3);
1887             dy13             = _mm_sub_pd(iy1,jy3);
1888             dz13             = _mm_sub_pd(iz1,jz3);
1889             dx21             = _mm_sub_pd(ix2,jx1);
1890             dy21             = _mm_sub_pd(iy2,jy1);
1891             dz21             = _mm_sub_pd(iz2,jz1);
1892             dx22             = _mm_sub_pd(ix2,jx2);
1893             dy22             = _mm_sub_pd(iy2,jy2);
1894             dz22             = _mm_sub_pd(iz2,jz2);
1895             dx23             = _mm_sub_pd(ix2,jx3);
1896             dy23             = _mm_sub_pd(iy2,jy3);
1897             dz23             = _mm_sub_pd(iz2,jz3);
1898             dx31             = _mm_sub_pd(ix3,jx1);
1899             dy31             = _mm_sub_pd(iy3,jy1);
1900             dz31             = _mm_sub_pd(iz3,jz1);
1901             dx32             = _mm_sub_pd(ix3,jx2);
1902             dy32             = _mm_sub_pd(iy3,jy2);
1903             dz32             = _mm_sub_pd(iz3,jz2);
1904             dx33             = _mm_sub_pd(ix3,jx3);
1905             dy33             = _mm_sub_pd(iy3,jy3);
1906             dz33             = _mm_sub_pd(iz3,jz3);
1907
1908             /* Calculate squared distance and things based on it */
1909             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1910             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1911             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1912             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1913             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1914             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1915             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1916             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1917             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1918             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1919
1920             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1921             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1922             rinv13           = gmx_mm_invsqrt_pd(rsq13);
1923             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1924             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1925             rinv23           = gmx_mm_invsqrt_pd(rsq23);
1926             rinv31           = gmx_mm_invsqrt_pd(rsq31);
1927             rinv32           = gmx_mm_invsqrt_pd(rsq32);
1928             rinv33           = gmx_mm_invsqrt_pd(rsq33);
1929
1930             rinvsq00         = gmx_mm_inv_pd(rsq00);
1931             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1932             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1933             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
1934             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1935             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1936             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
1937             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
1938             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
1939             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
1940
1941             fjx0             = _mm_setzero_pd();
1942             fjy0             = _mm_setzero_pd();
1943             fjz0             = _mm_setzero_pd();
1944             fjx1             = _mm_setzero_pd();
1945             fjy1             = _mm_setzero_pd();
1946             fjz1             = _mm_setzero_pd();
1947             fjx2             = _mm_setzero_pd();
1948             fjy2             = _mm_setzero_pd();
1949             fjz2             = _mm_setzero_pd();
1950             fjx3             = _mm_setzero_pd();
1951             fjy3             = _mm_setzero_pd();
1952             fjz3             = _mm_setzero_pd();
1953
1954             /**************************
1955              * CALCULATE INTERACTIONS *
1956              **************************/
1957
1958             /* LENNARD-JONES DISPERSION/REPULSION */
1959
1960             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1961             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1962
1963             fscal            = fvdw;
1964
1965             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1966
1967             /* Calculate temporary vectorial force */
1968             tx               = _mm_mul_pd(fscal,dx00);
1969             ty               = _mm_mul_pd(fscal,dy00);
1970             tz               = _mm_mul_pd(fscal,dz00);
1971
1972             /* Update vectorial force */
1973             fix0             = _mm_add_pd(fix0,tx);
1974             fiy0             = _mm_add_pd(fiy0,ty);
1975             fiz0             = _mm_add_pd(fiz0,tz);
1976
1977             fjx0             = _mm_add_pd(fjx0,tx);
1978             fjy0             = _mm_add_pd(fjy0,ty);
1979             fjz0             = _mm_add_pd(fjz0,tz);
1980
1981             /**************************
1982              * CALCULATE INTERACTIONS *
1983              **************************/
1984
1985             r11              = _mm_mul_pd(rsq11,rinv11);
1986
1987             /* EWALD ELECTROSTATICS */
1988
1989             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1990             ewrt             = _mm_mul_pd(r11,ewtabscale);
1991             ewitab           = _mm_cvttpd_epi32(ewrt);
1992             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1993             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1994             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1995             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1996
1997             fscal            = felec;
1998
1999             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2000
2001             /* Calculate temporary vectorial force */
2002             tx               = _mm_mul_pd(fscal,dx11);
2003             ty               = _mm_mul_pd(fscal,dy11);
2004             tz               = _mm_mul_pd(fscal,dz11);
2005
2006             /* Update vectorial force */
2007             fix1             = _mm_add_pd(fix1,tx);
2008             fiy1             = _mm_add_pd(fiy1,ty);
2009             fiz1             = _mm_add_pd(fiz1,tz);
2010
2011             fjx1             = _mm_add_pd(fjx1,tx);
2012             fjy1             = _mm_add_pd(fjy1,ty);
2013             fjz1             = _mm_add_pd(fjz1,tz);
2014
2015             /**************************
2016              * CALCULATE INTERACTIONS *
2017              **************************/
2018
2019             r12              = _mm_mul_pd(rsq12,rinv12);
2020
2021             /* EWALD ELECTROSTATICS */
2022
2023             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2024             ewrt             = _mm_mul_pd(r12,ewtabscale);
2025             ewitab           = _mm_cvttpd_epi32(ewrt);
2026             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2027             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2028             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2029             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2030
2031             fscal            = felec;
2032
2033             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2034
2035             /* Calculate temporary vectorial force */
2036             tx               = _mm_mul_pd(fscal,dx12);
2037             ty               = _mm_mul_pd(fscal,dy12);
2038             tz               = _mm_mul_pd(fscal,dz12);
2039
2040             /* Update vectorial force */
2041             fix1             = _mm_add_pd(fix1,tx);
2042             fiy1             = _mm_add_pd(fiy1,ty);
2043             fiz1             = _mm_add_pd(fiz1,tz);
2044
2045             fjx2             = _mm_add_pd(fjx2,tx);
2046             fjy2             = _mm_add_pd(fjy2,ty);
2047             fjz2             = _mm_add_pd(fjz2,tz);
2048
2049             /**************************
2050              * CALCULATE INTERACTIONS *
2051              **************************/
2052
2053             r13              = _mm_mul_pd(rsq13,rinv13);
2054
2055             /* EWALD ELECTROSTATICS */
2056
2057             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2058             ewrt             = _mm_mul_pd(r13,ewtabscale);
2059             ewitab           = _mm_cvttpd_epi32(ewrt);
2060             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2061             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2062             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2063             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
2064
2065             fscal            = felec;
2066
2067             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2068
2069             /* Calculate temporary vectorial force */
2070             tx               = _mm_mul_pd(fscal,dx13);
2071             ty               = _mm_mul_pd(fscal,dy13);
2072             tz               = _mm_mul_pd(fscal,dz13);
2073
2074             /* Update vectorial force */
2075             fix1             = _mm_add_pd(fix1,tx);
2076             fiy1             = _mm_add_pd(fiy1,ty);
2077             fiz1             = _mm_add_pd(fiz1,tz);
2078
2079             fjx3             = _mm_add_pd(fjx3,tx);
2080             fjy3             = _mm_add_pd(fjy3,ty);
2081             fjz3             = _mm_add_pd(fjz3,tz);
2082
2083             /**************************
2084              * CALCULATE INTERACTIONS *
2085              **************************/
2086
2087             r21              = _mm_mul_pd(rsq21,rinv21);
2088
2089             /* EWALD ELECTROSTATICS */
2090
2091             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2092             ewrt             = _mm_mul_pd(r21,ewtabscale);
2093             ewitab           = _mm_cvttpd_epi32(ewrt);
2094             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2095             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2096             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2097             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2098
2099             fscal            = felec;
2100
2101             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2102
2103             /* Calculate temporary vectorial force */
2104             tx               = _mm_mul_pd(fscal,dx21);
2105             ty               = _mm_mul_pd(fscal,dy21);
2106             tz               = _mm_mul_pd(fscal,dz21);
2107
2108             /* Update vectorial force */
2109             fix2             = _mm_add_pd(fix2,tx);
2110             fiy2             = _mm_add_pd(fiy2,ty);
2111             fiz2             = _mm_add_pd(fiz2,tz);
2112
2113             fjx1             = _mm_add_pd(fjx1,tx);
2114             fjy1             = _mm_add_pd(fjy1,ty);
2115             fjz1             = _mm_add_pd(fjz1,tz);
2116
2117             /**************************
2118              * CALCULATE INTERACTIONS *
2119              **************************/
2120
2121             r22              = _mm_mul_pd(rsq22,rinv22);
2122
2123             /* EWALD ELECTROSTATICS */
2124
2125             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2126             ewrt             = _mm_mul_pd(r22,ewtabscale);
2127             ewitab           = _mm_cvttpd_epi32(ewrt);
2128             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2129             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2130             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2131             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2132
2133             fscal            = felec;
2134
2135             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2136
2137             /* Calculate temporary vectorial force */
2138             tx               = _mm_mul_pd(fscal,dx22);
2139             ty               = _mm_mul_pd(fscal,dy22);
2140             tz               = _mm_mul_pd(fscal,dz22);
2141
2142             /* Update vectorial force */
2143             fix2             = _mm_add_pd(fix2,tx);
2144             fiy2             = _mm_add_pd(fiy2,ty);
2145             fiz2             = _mm_add_pd(fiz2,tz);
2146
2147             fjx2             = _mm_add_pd(fjx2,tx);
2148             fjy2             = _mm_add_pd(fjy2,ty);
2149             fjz2             = _mm_add_pd(fjz2,tz);
2150
2151             /**************************
2152              * CALCULATE INTERACTIONS *
2153              **************************/
2154
2155             r23              = _mm_mul_pd(rsq23,rinv23);
2156
2157             /* EWALD ELECTROSTATICS */
2158
2159             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2160             ewrt             = _mm_mul_pd(r23,ewtabscale);
2161             ewitab           = _mm_cvttpd_epi32(ewrt);
2162             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2163             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2164             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2165             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
2166
2167             fscal            = felec;
2168
2169             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2170
2171             /* Calculate temporary vectorial force */
2172             tx               = _mm_mul_pd(fscal,dx23);
2173             ty               = _mm_mul_pd(fscal,dy23);
2174             tz               = _mm_mul_pd(fscal,dz23);
2175
2176             /* Update vectorial force */
2177             fix2             = _mm_add_pd(fix2,tx);
2178             fiy2             = _mm_add_pd(fiy2,ty);
2179             fiz2             = _mm_add_pd(fiz2,tz);
2180
2181             fjx3             = _mm_add_pd(fjx3,tx);
2182             fjy3             = _mm_add_pd(fjy3,ty);
2183             fjz3             = _mm_add_pd(fjz3,tz);
2184
2185             /**************************
2186              * CALCULATE INTERACTIONS *
2187              **************************/
2188
2189             r31              = _mm_mul_pd(rsq31,rinv31);
2190
2191             /* EWALD ELECTROSTATICS */
2192
2193             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2194             ewrt             = _mm_mul_pd(r31,ewtabscale);
2195             ewitab           = _mm_cvttpd_epi32(ewrt);
2196             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2197             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2198             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2199             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
2200
2201             fscal            = felec;
2202
2203             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2204
2205             /* Calculate temporary vectorial force */
2206             tx               = _mm_mul_pd(fscal,dx31);
2207             ty               = _mm_mul_pd(fscal,dy31);
2208             tz               = _mm_mul_pd(fscal,dz31);
2209
2210             /* Update vectorial force */
2211             fix3             = _mm_add_pd(fix3,tx);
2212             fiy3             = _mm_add_pd(fiy3,ty);
2213             fiz3             = _mm_add_pd(fiz3,tz);
2214
2215             fjx1             = _mm_add_pd(fjx1,tx);
2216             fjy1             = _mm_add_pd(fjy1,ty);
2217             fjz1             = _mm_add_pd(fjz1,tz);
2218
2219             /**************************
2220              * CALCULATE INTERACTIONS *
2221              **************************/
2222
2223             r32              = _mm_mul_pd(rsq32,rinv32);
2224
2225             /* EWALD ELECTROSTATICS */
2226
2227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2228             ewrt             = _mm_mul_pd(r32,ewtabscale);
2229             ewitab           = _mm_cvttpd_epi32(ewrt);
2230             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2231             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2232             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2233             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
2234
2235             fscal            = felec;
2236
2237             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2238
2239             /* Calculate temporary vectorial force */
2240             tx               = _mm_mul_pd(fscal,dx32);
2241             ty               = _mm_mul_pd(fscal,dy32);
2242             tz               = _mm_mul_pd(fscal,dz32);
2243
2244             /* Update vectorial force */
2245             fix3             = _mm_add_pd(fix3,tx);
2246             fiy3             = _mm_add_pd(fiy3,ty);
2247             fiz3             = _mm_add_pd(fiz3,tz);
2248
2249             fjx2             = _mm_add_pd(fjx2,tx);
2250             fjy2             = _mm_add_pd(fjy2,ty);
2251             fjz2             = _mm_add_pd(fjz2,tz);
2252
2253             /**************************
2254              * CALCULATE INTERACTIONS *
2255              **************************/
2256
2257             r33              = _mm_mul_pd(rsq33,rinv33);
2258
2259             /* EWALD ELECTROSTATICS */
2260
2261             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2262             ewrt             = _mm_mul_pd(r33,ewtabscale);
2263             ewitab           = _mm_cvttpd_epi32(ewrt);
2264             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2265             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2266             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2267             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
2268
2269             fscal            = felec;
2270
2271             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2272
2273             /* Calculate temporary vectorial force */
2274             tx               = _mm_mul_pd(fscal,dx33);
2275             ty               = _mm_mul_pd(fscal,dy33);
2276             tz               = _mm_mul_pd(fscal,dz33);
2277
2278             /* Update vectorial force */
2279             fix3             = _mm_add_pd(fix3,tx);
2280             fiy3             = _mm_add_pd(fiy3,ty);
2281             fiz3             = _mm_add_pd(fiz3,tz);
2282
2283             fjx3             = _mm_add_pd(fjx3,tx);
2284             fjy3             = _mm_add_pd(fjy3,ty);
2285             fjz3             = _mm_add_pd(fjz3,tz);
2286
2287             gmx_mm_decrement_4rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2288
2289             /* Inner loop uses 354 flops */
2290         }
2291
2292         /* End of innermost loop */
2293
2294         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2295                                               f+i_coord_offset,fshift+i_shift_offset);
2296
2297         /* Increment number of inner iterations */
2298         inneriter                  += j_index_end - j_index_start;
2299
2300         /* Outer loop uses 24 flops */
2301     }
2302
2303     /* Increment number of outer iterations */
2304     outeriter        += nri;
2305
2306     /* Update outer/inner flops */
2307
2308     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*24 + inneriter*354);
2309 }