Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJ_GeomW4P1_sse2_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          ewitab;
102     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     real             *ewtab;
104     __m128d          dummy_mask,cutoff_mask;
105     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
106     __m128d          one     = _mm_set1_pd(1.0);
107     __m128d          two     = _mm_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_pd(fr->ic->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
128     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
133     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
134     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
162
163         fix0             = _mm_setzero_pd();
164         fiy0             = _mm_setzero_pd();
165         fiz0             = _mm_setzero_pd();
166         fix1             = _mm_setzero_pd();
167         fiy1             = _mm_setzero_pd();
168         fiz1             = _mm_setzero_pd();
169         fix2             = _mm_setzero_pd();
170         fiy2             = _mm_setzero_pd();
171         fiz2             = _mm_setzero_pd();
172         fix3             = _mm_setzero_pd();
173         fiy3             = _mm_setzero_pd();
174         fiz3             = _mm_setzero_pd();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_pd();
178         vvdwsum          = _mm_setzero_pd();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_pd(ix0,jx0);
196             dy00             = _mm_sub_pd(iy0,jy0);
197             dz00             = _mm_sub_pd(iz0,jz0);
198             dx10             = _mm_sub_pd(ix1,jx0);
199             dy10             = _mm_sub_pd(iy1,jy0);
200             dz10             = _mm_sub_pd(iz1,jz0);
201             dx20             = _mm_sub_pd(ix2,jx0);
202             dy20             = _mm_sub_pd(iy2,jy0);
203             dz20             = _mm_sub_pd(iz2,jz0);
204             dx30             = _mm_sub_pd(ix3,jx0);
205             dy30             = _mm_sub_pd(iy3,jy0);
206             dz30             = _mm_sub_pd(iz3,jz0);
207
208             /* Calculate squared distance and things based on it */
209             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
210             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
211             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
212             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
213
214             rinv10           = sse2_invsqrt_d(rsq10);
215             rinv20           = sse2_invsqrt_d(rsq20);
216             rinv30           = sse2_invsqrt_d(rsq30);
217
218             rinvsq00         = sse2_inv_d(rsq00);
219             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
220             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
221             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227
228             fjx0             = _mm_setzero_pd();
229             fjy0             = _mm_setzero_pd();
230             fjz0             = _mm_setzero_pd();
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             /* Compute parameters for interactions between i and j atoms */
237             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
238                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
239
240             /* LENNARD-JONES DISPERSION/REPULSION */
241
242             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
243             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
244             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
245             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
246             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
250
251             fscal            = fvdw;
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm_mul_pd(fscal,dx00);
255             ty               = _mm_mul_pd(fscal,dy00);
256             tz               = _mm_mul_pd(fscal,dz00);
257
258             /* Update vectorial force */
259             fix0             = _mm_add_pd(fix0,tx);
260             fiy0             = _mm_add_pd(fiy0,ty);
261             fiz0             = _mm_add_pd(fiz0,tz);
262
263             fjx0             = _mm_add_pd(fjx0,tx);
264             fjy0             = _mm_add_pd(fjy0,ty);
265             fjz0             = _mm_add_pd(fjz0,tz);
266
267             /**************************
268              * CALCULATE INTERACTIONS *
269              **************************/
270
271             r10              = _mm_mul_pd(rsq10,rinv10);
272
273             /* Compute parameters for interactions between i and j atoms */
274             qq10             = _mm_mul_pd(iq1,jq0);
275
276             /* EWALD ELECTROSTATICS */
277
278             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
279             ewrt             = _mm_mul_pd(r10,ewtabscale);
280             ewitab           = _mm_cvttpd_epi32(ewrt);
281             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
282             ewitab           = _mm_slli_epi32(ewitab,2);
283             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
284             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
285             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
286             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
287             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
288             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
289             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
290             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
291             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
292             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             velecsum         = _mm_add_pd(velecsum,velec);
296
297             fscal            = felec;
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm_mul_pd(fscal,dx10);
301             ty               = _mm_mul_pd(fscal,dy10);
302             tz               = _mm_mul_pd(fscal,dz10);
303
304             /* Update vectorial force */
305             fix1             = _mm_add_pd(fix1,tx);
306             fiy1             = _mm_add_pd(fiy1,ty);
307             fiz1             = _mm_add_pd(fiz1,tz);
308
309             fjx0             = _mm_add_pd(fjx0,tx);
310             fjy0             = _mm_add_pd(fjy0,ty);
311             fjz0             = _mm_add_pd(fjz0,tz);
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             r20              = _mm_mul_pd(rsq20,rinv20);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq20             = _mm_mul_pd(iq2,jq0);
321
322             /* EWALD ELECTROSTATICS */
323
324             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
325             ewrt             = _mm_mul_pd(r20,ewtabscale);
326             ewitab           = _mm_cvttpd_epi32(ewrt);
327             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
328             ewitab           = _mm_slli_epi32(ewitab,2);
329             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
330             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
331             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
332             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
333             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
334             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
335             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
336             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
337             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
338             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velecsum         = _mm_add_pd(velecsum,velec);
342
343             fscal            = felec;
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm_mul_pd(fscal,dx20);
347             ty               = _mm_mul_pd(fscal,dy20);
348             tz               = _mm_mul_pd(fscal,dz20);
349
350             /* Update vectorial force */
351             fix2             = _mm_add_pd(fix2,tx);
352             fiy2             = _mm_add_pd(fiy2,ty);
353             fiz2             = _mm_add_pd(fiz2,tz);
354
355             fjx0             = _mm_add_pd(fjx0,tx);
356             fjy0             = _mm_add_pd(fjy0,ty);
357             fjz0             = _mm_add_pd(fjz0,tz);
358
359             /**************************
360              * CALCULATE INTERACTIONS *
361              **************************/
362
363             r30              = _mm_mul_pd(rsq30,rinv30);
364
365             /* Compute parameters for interactions between i and j atoms */
366             qq30             = _mm_mul_pd(iq3,jq0);
367
368             /* EWALD ELECTROSTATICS */
369
370             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
371             ewrt             = _mm_mul_pd(r30,ewtabscale);
372             ewitab           = _mm_cvttpd_epi32(ewrt);
373             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
374             ewitab           = _mm_slli_epi32(ewitab,2);
375             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
376             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
377             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
378             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
379             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
380             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
381             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
382             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
383             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
384             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
385
386             /* Update potential sum for this i atom from the interaction with this j atom. */
387             velecsum         = _mm_add_pd(velecsum,velec);
388
389             fscal            = felec;
390
391             /* Calculate temporary vectorial force */
392             tx               = _mm_mul_pd(fscal,dx30);
393             ty               = _mm_mul_pd(fscal,dy30);
394             tz               = _mm_mul_pd(fscal,dz30);
395
396             /* Update vectorial force */
397             fix3             = _mm_add_pd(fix3,tx);
398             fiy3             = _mm_add_pd(fiy3,ty);
399             fiz3             = _mm_add_pd(fiz3,tz);
400
401             fjx0             = _mm_add_pd(fjx0,tx);
402             fjy0             = _mm_add_pd(fjy0,ty);
403             fjz0             = _mm_add_pd(fjz0,tz);
404
405             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
406
407             /* Inner loop uses 158 flops */
408         }
409
410         if(jidx<j_index_end)
411         {
412
413             jnrA             = jjnr[jidx];
414             j_coord_offsetA  = DIM*jnrA;
415
416             /* load j atom coordinates */
417             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
418                                               &jx0,&jy0,&jz0);
419
420             /* Calculate displacement vector */
421             dx00             = _mm_sub_pd(ix0,jx0);
422             dy00             = _mm_sub_pd(iy0,jy0);
423             dz00             = _mm_sub_pd(iz0,jz0);
424             dx10             = _mm_sub_pd(ix1,jx0);
425             dy10             = _mm_sub_pd(iy1,jy0);
426             dz10             = _mm_sub_pd(iz1,jz0);
427             dx20             = _mm_sub_pd(ix2,jx0);
428             dy20             = _mm_sub_pd(iy2,jy0);
429             dz20             = _mm_sub_pd(iz2,jz0);
430             dx30             = _mm_sub_pd(ix3,jx0);
431             dy30             = _mm_sub_pd(iy3,jy0);
432             dz30             = _mm_sub_pd(iz3,jz0);
433
434             /* Calculate squared distance and things based on it */
435             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
436             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
437             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
438             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
439
440             rinv10           = sse2_invsqrt_d(rsq10);
441             rinv20           = sse2_invsqrt_d(rsq20);
442             rinv30           = sse2_invsqrt_d(rsq30);
443
444             rinvsq00         = sse2_inv_d(rsq00);
445             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
446             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
447             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
448
449             /* Load parameters for j particles */
450             jq0              = _mm_load_sd(charge+jnrA+0);
451             vdwjidx0A        = 2*vdwtype[jnrA+0];
452
453             fjx0             = _mm_setzero_pd();
454             fjy0             = _mm_setzero_pd();
455             fjz0             = _mm_setzero_pd();
456
457             /**************************
458              * CALCULATE INTERACTIONS *
459              **************************/
460
461             /* Compute parameters for interactions between i and j atoms */
462             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
463
464             /* LENNARD-JONES DISPERSION/REPULSION */
465
466             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
467             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
468             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
469             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
470             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
471
472             /* Update potential sum for this i atom from the interaction with this j atom. */
473             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
474             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
475
476             fscal            = fvdw;
477
478             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
479
480             /* Calculate temporary vectorial force */
481             tx               = _mm_mul_pd(fscal,dx00);
482             ty               = _mm_mul_pd(fscal,dy00);
483             tz               = _mm_mul_pd(fscal,dz00);
484
485             /* Update vectorial force */
486             fix0             = _mm_add_pd(fix0,tx);
487             fiy0             = _mm_add_pd(fiy0,ty);
488             fiz0             = _mm_add_pd(fiz0,tz);
489
490             fjx0             = _mm_add_pd(fjx0,tx);
491             fjy0             = _mm_add_pd(fjy0,ty);
492             fjz0             = _mm_add_pd(fjz0,tz);
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             r10              = _mm_mul_pd(rsq10,rinv10);
499
500             /* Compute parameters for interactions between i and j atoms */
501             qq10             = _mm_mul_pd(iq1,jq0);
502
503             /* EWALD ELECTROSTATICS */
504
505             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
506             ewrt             = _mm_mul_pd(r10,ewtabscale);
507             ewitab           = _mm_cvttpd_epi32(ewrt);
508             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
509             ewitab           = _mm_slli_epi32(ewitab,2);
510             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
511             ewtabD           = _mm_setzero_pd();
512             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
513             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
514             ewtabFn          = _mm_setzero_pd();
515             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
516             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
517             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
518             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
519             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
520
521             /* Update potential sum for this i atom from the interaction with this j atom. */
522             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
523             velecsum         = _mm_add_pd(velecsum,velec);
524
525             fscal            = felec;
526
527             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_pd(fscal,dx10);
531             ty               = _mm_mul_pd(fscal,dy10);
532             tz               = _mm_mul_pd(fscal,dz10);
533
534             /* Update vectorial force */
535             fix1             = _mm_add_pd(fix1,tx);
536             fiy1             = _mm_add_pd(fiy1,ty);
537             fiz1             = _mm_add_pd(fiz1,tz);
538
539             fjx0             = _mm_add_pd(fjx0,tx);
540             fjy0             = _mm_add_pd(fjy0,ty);
541             fjz0             = _mm_add_pd(fjz0,tz);
542
543             /**************************
544              * CALCULATE INTERACTIONS *
545              **************************/
546
547             r20              = _mm_mul_pd(rsq20,rinv20);
548
549             /* Compute parameters for interactions between i and j atoms */
550             qq20             = _mm_mul_pd(iq2,jq0);
551
552             /* EWALD ELECTROSTATICS */
553
554             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
555             ewrt             = _mm_mul_pd(r20,ewtabscale);
556             ewitab           = _mm_cvttpd_epi32(ewrt);
557             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
558             ewitab           = _mm_slli_epi32(ewitab,2);
559             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
560             ewtabD           = _mm_setzero_pd();
561             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
562             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
563             ewtabFn          = _mm_setzero_pd();
564             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
565             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
566             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
567             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
568             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
569
570             /* Update potential sum for this i atom from the interaction with this j atom. */
571             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
572             velecsum         = _mm_add_pd(velecsum,velec);
573
574             fscal            = felec;
575
576             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
577
578             /* Calculate temporary vectorial force */
579             tx               = _mm_mul_pd(fscal,dx20);
580             ty               = _mm_mul_pd(fscal,dy20);
581             tz               = _mm_mul_pd(fscal,dz20);
582
583             /* Update vectorial force */
584             fix2             = _mm_add_pd(fix2,tx);
585             fiy2             = _mm_add_pd(fiy2,ty);
586             fiz2             = _mm_add_pd(fiz2,tz);
587
588             fjx0             = _mm_add_pd(fjx0,tx);
589             fjy0             = _mm_add_pd(fjy0,ty);
590             fjz0             = _mm_add_pd(fjz0,tz);
591
592             /**************************
593              * CALCULATE INTERACTIONS *
594              **************************/
595
596             r30              = _mm_mul_pd(rsq30,rinv30);
597
598             /* Compute parameters for interactions between i and j atoms */
599             qq30             = _mm_mul_pd(iq3,jq0);
600
601             /* EWALD ELECTROSTATICS */
602
603             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
604             ewrt             = _mm_mul_pd(r30,ewtabscale);
605             ewitab           = _mm_cvttpd_epi32(ewrt);
606             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
607             ewitab           = _mm_slli_epi32(ewitab,2);
608             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
609             ewtabD           = _mm_setzero_pd();
610             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
611             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
612             ewtabFn          = _mm_setzero_pd();
613             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
614             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
615             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
616             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
617             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
618
619             /* Update potential sum for this i atom from the interaction with this j atom. */
620             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
621             velecsum         = _mm_add_pd(velecsum,velec);
622
623             fscal            = felec;
624
625             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
626
627             /* Calculate temporary vectorial force */
628             tx               = _mm_mul_pd(fscal,dx30);
629             ty               = _mm_mul_pd(fscal,dy30);
630             tz               = _mm_mul_pd(fscal,dz30);
631
632             /* Update vectorial force */
633             fix3             = _mm_add_pd(fix3,tx);
634             fiy3             = _mm_add_pd(fiy3,ty);
635             fiz3             = _mm_add_pd(fiz3,tz);
636
637             fjx0             = _mm_add_pd(fjx0,tx);
638             fjy0             = _mm_add_pd(fjy0,ty);
639             fjz0             = _mm_add_pd(fjz0,tz);
640
641             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
642
643             /* Inner loop uses 158 flops */
644         }
645
646         /* End of innermost loop */
647
648         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
649                                               f+i_coord_offset,fshift+i_shift_offset);
650
651         ggid                        = gid[iidx];
652         /* Update potential energies */
653         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
654         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
655
656         /* Increment number of inner iterations */
657         inneriter                  += j_index_end - j_index_start;
658
659         /* Outer loop uses 26 flops */
660     }
661
662     /* Increment number of outer iterations */
663     outeriter        += nri;
664
665     /* Update outer/inner flops */
666
667     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*158);
668 }
669 /*
670  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_double
671  * Electrostatics interaction: Ewald
672  * VdW interaction:            LennardJones
673  * Geometry:                   Water4-Particle
674  * Calculate force/pot:        Force
675  */
676 void
677 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_double
678                     (t_nblist                    * gmx_restrict       nlist,
679                      rvec                        * gmx_restrict          xx,
680                      rvec                        * gmx_restrict          ff,
681                      struct t_forcerec           * gmx_restrict          fr,
682                      t_mdatoms                   * gmx_restrict     mdatoms,
683                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
684                      t_nrnb                      * gmx_restrict        nrnb)
685 {
686     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
687      * just 0 for non-waters.
688      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
689      * jnr indices corresponding to data put in the four positions in the SIMD register.
690      */
691     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
692     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
693     int              jnrA,jnrB;
694     int              j_coord_offsetA,j_coord_offsetB;
695     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
696     real             rcutoff_scalar;
697     real             *shiftvec,*fshift,*x,*f;
698     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
699     int              vdwioffset0;
700     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
701     int              vdwioffset1;
702     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
703     int              vdwioffset2;
704     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
705     int              vdwioffset3;
706     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
707     int              vdwjidx0A,vdwjidx0B;
708     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
709     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
710     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
711     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
712     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
713     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
714     real             *charge;
715     int              nvdwtype;
716     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
717     int              *vdwtype;
718     real             *vdwparam;
719     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
720     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
721     __m128i          ewitab;
722     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
723     real             *ewtab;
724     __m128d          dummy_mask,cutoff_mask;
725     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
726     __m128d          one     = _mm_set1_pd(1.0);
727     __m128d          two     = _mm_set1_pd(2.0);
728     x                = xx[0];
729     f                = ff[0];
730
731     nri              = nlist->nri;
732     iinr             = nlist->iinr;
733     jindex           = nlist->jindex;
734     jjnr             = nlist->jjnr;
735     shiftidx         = nlist->shift;
736     gid              = nlist->gid;
737     shiftvec         = fr->shift_vec[0];
738     fshift           = fr->fshift[0];
739     facel            = _mm_set1_pd(fr->ic->epsfac);
740     charge           = mdatoms->chargeA;
741     nvdwtype         = fr->ntype;
742     vdwparam         = fr->nbfp;
743     vdwtype          = mdatoms->typeA;
744
745     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
746     ewtab            = fr->ic->tabq_coul_F;
747     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
748     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
749
750     /* Setup water-specific parameters */
751     inr              = nlist->iinr[0];
752     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
753     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
754     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
755     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
756
757     /* Avoid stupid compiler warnings */
758     jnrA = jnrB = 0;
759     j_coord_offsetA = 0;
760     j_coord_offsetB = 0;
761
762     outeriter        = 0;
763     inneriter        = 0;
764
765     /* Start outer loop over neighborlists */
766     for(iidx=0; iidx<nri; iidx++)
767     {
768         /* Load shift vector for this list */
769         i_shift_offset   = DIM*shiftidx[iidx];
770
771         /* Load limits for loop over neighbors */
772         j_index_start    = jindex[iidx];
773         j_index_end      = jindex[iidx+1];
774
775         /* Get outer coordinate index */
776         inr              = iinr[iidx];
777         i_coord_offset   = DIM*inr;
778
779         /* Load i particle coords and add shift vector */
780         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
781                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
782
783         fix0             = _mm_setzero_pd();
784         fiy0             = _mm_setzero_pd();
785         fiz0             = _mm_setzero_pd();
786         fix1             = _mm_setzero_pd();
787         fiy1             = _mm_setzero_pd();
788         fiz1             = _mm_setzero_pd();
789         fix2             = _mm_setzero_pd();
790         fiy2             = _mm_setzero_pd();
791         fiz2             = _mm_setzero_pd();
792         fix3             = _mm_setzero_pd();
793         fiy3             = _mm_setzero_pd();
794         fiz3             = _mm_setzero_pd();
795
796         /* Start inner kernel loop */
797         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
798         {
799
800             /* Get j neighbor index, and coordinate index */
801             jnrA             = jjnr[jidx];
802             jnrB             = jjnr[jidx+1];
803             j_coord_offsetA  = DIM*jnrA;
804             j_coord_offsetB  = DIM*jnrB;
805
806             /* load j atom coordinates */
807             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
808                                               &jx0,&jy0,&jz0);
809
810             /* Calculate displacement vector */
811             dx00             = _mm_sub_pd(ix0,jx0);
812             dy00             = _mm_sub_pd(iy0,jy0);
813             dz00             = _mm_sub_pd(iz0,jz0);
814             dx10             = _mm_sub_pd(ix1,jx0);
815             dy10             = _mm_sub_pd(iy1,jy0);
816             dz10             = _mm_sub_pd(iz1,jz0);
817             dx20             = _mm_sub_pd(ix2,jx0);
818             dy20             = _mm_sub_pd(iy2,jy0);
819             dz20             = _mm_sub_pd(iz2,jz0);
820             dx30             = _mm_sub_pd(ix3,jx0);
821             dy30             = _mm_sub_pd(iy3,jy0);
822             dz30             = _mm_sub_pd(iz3,jz0);
823
824             /* Calculate squared distance and things based on it */
825             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
826             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
827             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
828             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
829
830             rinv10           = sse2_invsqrt_d(rsq10);
831             rinv20           = sse2_invsqrt_d(rsq20);
832             rinv30           = sse2_invsqrt_d(rsq30);
833
834             rinvsq00         = sse2_inv_d(rsq00);
835             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
836             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
837             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
838
839             /* Load parameters for j particles */
840             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
841             vdwjidx0A        = 2*vdwtype[jnrA+0];
842             vdwjidx0B        = 2*vdwtype[jnrB+0];
843
844             fjx0             = _mm_setzero_pd();
845             fjy0             = _mm_setzero_pd();
846             fjz0             = _mm_setzero_pd();
847
848             /**************************
849              * CALCULATE INTERACTIONS *
850              **************************/
851
852             /* Compute parameters for interactions between i and j atoms */
853             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
854                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
855
856             /* LENNARD-JONES DISPERSION/REPULSION */
857
858             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
859             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
860
861             fscal            = fvdw;
862
863             /* Calculate temporary vectorial force */
864             tx               = _mm_mul_pd(fscal,dx00);
865             ty               = _mm_mul_pd(fscal,dy00);
866             tz               = _mm_mul_pd(fscal,dz00);
867
868             /* Update vectorial force */
869             fix0             = _mm_add_pd(fix0,tx);
870             fiy0             = _mm_add_pd(fiy0,ty);
871             fiz0             = _mm_add_pd(fiz0,tz);
872
873             fjx0             = _mm_add_pd(fjx0,tx);
874             fjy0             = _mm_add_pd(fjy0,ty);
875             fjz0             = _mm_add_pd(fjz0,tz);
876
877             /**************************
878              * CALCULATE INTERACTIONS *
879              **************************/
880
881             r10              = _mm_mul_pd(rsq10,rinv10);
882
883             /* Compute parameters for interactions between i and j atoms */
884             qq10             = _mm_mul_pd(iq1,jq0);
885
886             /* EWALD ELECTROSTATICS */
887
888             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
889             ewrt             = _mm_mul_pd(r10,ewtabscale);
890             ewitab           = _mm_cvttpd_epi32(ewrt);
891             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
892             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
893                                          &ewtabF,&ewtabFn);
894             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
895             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
896
897             fscal            = felec;
898
899             /* Calculate temporary vectorial force */
900             tx               = _mm_mul_pd(fscal,dx10);
901             ty               = _mm_mul_pd(fscal,dy10);
902             tz               = _mm_mul_pd(fscal,dz10);
903
904             /* Update vectorial force */
905             fix1             = _mm_add_pd(fix1,tx);
906             fiy1             = _mm_add_pd(fiy1,ty);
907             fiz1             = _mm_add_pd(fiz1,tz);
908
909             fjx0             = _mm_add_pd(fjx0,tx);
910             fjy0             = _mm_add_pd(fjy0,ty);
911             fjz0             = _mm_add_pd(fjz0,tz);
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r20              = _mm_mul_pd(rsq20,rinv20);
918
919             /* Compute parameters for interactions between i and j atoms */
920             qq20             = _mm_mul_pd(iq2,jq0);
921
922             /* EWALD ELECTROSTATICS */
923
924             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
925             ewrt             = _mm_mul_pd(r20,ewtabscale);
926             ewitab           = _mm_cvttpd_epi32(ewrt);
927             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
928             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
929                                          &ewtabF,&ewtabFn);
930             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
931             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
932
933             fscal            = felec;
934
935             /* Calculate temporary vectorial force */
936             tx               = _mm_mul_pd(fscal,dx20);
937             ty               = _mm_mul_pd(fscal,dy20);
938             tz               = _mm_mul_pd(fscal,dz20);
939
940             /* Update vectorial force */
941             fix2             = _mm_add_pd(fix2,tx);
942             fiy2             = _mm_add_pd(fiy2,ty);
943             fiz2             = _mm_add_pd(fiz2,tz);
944
945             fjx0             = _mm_add_pd(fjx0,tx);
946             fjy0             = _mm_add_pd(fjy0,ty);
947             fjz0             = _mm_add_pd(fjz0,tz);
948
949             /**************************
950              * CALCULATE INTERACTIONS *
951              **************************/
952
953             r30              = _mm_mul_pd(rsq30,rinv30);
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq30             = _mm_mul_pd(iq3,jq0);
957
958             /* EWALD ELECTROSTATICS */
959
960             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
961             ewrt             = _mm_mul_pd(r30,ewtabscale);
962             ewitab           = _mm_cvttpd_epi32(ewrt);
963             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
964             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
965                                          &ewtabF,&ewtabFn);
966             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
967             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
968
969             fscal            = felec;
970
971             /* Calculate temporary vectorial force */
972             tx               = _mm_mul_pd(fscal,dx30);
973             ty               = _mm_mul_pd(fscal,dy30);
974             tz               = _mm_mul_pd(fscal,dz30);
975
976             /* Update vectorial force */
977             fix3             = _mm_add_pd(fix3,tx);
978             fiy3             = _mm_add_pd(fiy3,ty);
979             fiz3             = _mm_add_pd(fiz3,tz);
980
981             fjx0             = _mm_add_pd(fjx0,tx);
982             fjy0             = _mm_add_pd(fjy0,ty);
983             fjz0             = _mm_add_pd(fjz0,tz);
984
985             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
986
987             /* Inner loop uses 138 flops */
988         }
989
990         if(jidx<j_index_end)
991         {
992
993             jnrA             = jjnr[jidx];
994             j_coord_offsetA  = DIM*jnrA;
995
996             /* load j atom coordinates */
997             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
998                                               &jx0,&jy0,&jz0);
999
1000             /* Calculate displacement vector */
1001             dx00             = _mm_sub_pd(ix0,jx0);
1002             dy00             = _mm_sub_pd(iy0,jy0);
1003             dz00             = _mm_sub_pd(iz0,jz0);
1004             dx10             = _mm_sub_pd(ix1,jx0);
1005             dy10             = _mm_sub_pd(iy1,jy0);
1006             dz10             = _mm_sub_pd(iz1,jz0);
1007             dx20             = _mm_sub_pd(ix2,jx0);
1008             dy20             = _mm_sub_pd(iy2,jy0);
1009             dz20             = _mm_sub_pd(iz2,jz0);
1010             dx30             = _mm_sub_pd(ix3,jx0);
1011             dy30             = _mm_sub_pd(iy3,jy0);
1012             dz30             = _mm_sub_pd(iz3,jz0);
1013
1014             /* Calculate squared distance and things based on it */
1015             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1016             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1017             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1018             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1019
1020             rinv10           = sse2_invsqrt_d(rsq10);
1021             rinv20           = sse2_invsqrt_d(rsq20);
1022             rinv30           = sse2_invsqrt_d(rsq30);
1023
1024             rinvsq00         = sse2_inv_d(rsq00);
1025             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1026             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1027             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1028
1029             /* Load parameters for j particles */
1030             jq0              = _mm_load_sd(charge+jnrA+0);
1031             vdwjidx0A        = 2*vdwtype[jnrA+0];
1032
1033             fjx0             = _mm_setzero_pd();
1034             fjy0             = _mm_setzero_pd();
1035             fjz0             = _mm_setzero_pd();
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             /* Compute parameters for interactions between i and j atoms */
1042             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1043
1044             /* LENNARD-JONES DISPERSION/REPULSION */
1045
1046             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1047             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1048
1049             fscal            = fvdw;
1050
1051             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1052
1053             /* Calculate temporary vectorial force */
1054             tx               = _mm_mul_pd(fscal,dx00);
1055             ty               = _mm_mul_pd(fscal,dy00);
1056             tz               = _mm_mul_pd(fscal,dz00);
1057
1058             /* Update vectorial force */
1059             fix0             = _mm_add_pd(fix0,tx);
1060             fiy0             = _mm_add_pd(fiy0,ty);
1061             fiz0             = _mm_add_pd(fiz0,tz);
1062
1063             fjx0             = _mm_add_pd(fjx0,tx);
1064             fjy0             = _mm_add_pd(fjy0,ty);
1065             fjz0             = _mm_add_pd(fjz0,tz);
1066
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             r10              = _mm_mul_pd(rsq10,rinv10);
1072
1073             /* Compute parameters for interactions between i and j atoms */
1074             qq10             = _mm_mul_pd(iq1,jq0);
1075
1076             /* EWALD ELECTROSTATICS */
1077
1078             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1079             ewrt             = _mm_mul_pd(r10,ewtabscale);
1080             ewitab           = _mm_cvttpd_epi32(ewrt);
1081             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1082             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1083             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1084             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1085
1086             fscal            = felec;
1087
1088             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1089
1090             /* Calculate temporary vectorial force */
1091             tx               = _mm_mul_pd(fscal,dx10);
1092             ty               = _mm_mul_pd(fscal,dy10);
1093             tz               = _mm_mul_pd(fscal,dz10);
1094
1095             /* Update vectorial force */
1096             fix1             = _mm_add_pd(fix1,tx);
1097             fiy1             = _mm_add_pd(fiy1,ty);
1098             fiz1             = _mm_add_pd(fiz1,tz);
1099
1100             fjx0             = _mm_add_pd(fjx0,tx);
1101             fjy0             = _mm_add_pd(fjy0,ty);
1102             fjz0             = _mm_add_pd(fjz0,tz);
1103
1104             /**************************
1105              * CALCULATE INTERACTIONS *
1106              **************************/
1107
1108             r20              = _mm_mul_pd(rsq20,rinv20);
1109
1110             /* Compute parameters for interactions between i and j atoms */
1111             qq20             = _mm_mul_pd(iq2,jq0);
1112
1113             /* EWALD ELECTROSTATICS */
1114
1115             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1116             ewrt             = _mm_mul_pd(r20,ewtabscale);
1117             ewitab           = _mm_cvttpd_epi32(ewrt);
1118             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1119             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1120             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1121             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1122
1123             fscal            = felec;
1124
1125             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1126
1127             /* Calculate temporary vectorial force */
1128             tx               = _mm_mul_pd(fscal,dx20);
1129             ty               = _mm_mul_pd(fscal,dy20);
1130             tz               = _mm_mul_pd(fscal,dz20);
1131
1132             /* Update vectorial force */
1133             fix2             = _mm_add_pd(fix2,tx);
1134             fiy2             = _mm_add_pd(fiy2,ty);
1135             fiz2             = _mm_add_pd(fiz2,tz);
1136
1137             fjx0             = _mm_add_pd(fjx0,tx);
1138             fjy0             = _mm_add_pd(fjy0,ty);
1139             fjz0             = _mm_add_pd(fjz0,tz);
1140
1141             /**************************
1142              * CALCULATE INTERACTIONS *
1143              **************************/
1144
1145             r30              = _mm_mul_pd(rsq30,rinv30);
1146
1147             /* Compute parameters for interactions between i and j atoms */
1148             qq30             = _mm_mul_pd(iq3,jq0);
1149
1150             /* EWALD ELECTROSTATICS */
1151
1152             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1153             ewrt             = _mm_mul_pd(r30,ewtabscale);
1154             ewitab           = _mm_cvttpd_epi32(ewrt);
1155             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1156             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1157             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1158             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1159
1160             fscal            = felec;
1161
1162             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1163
1164             /* Calculate temporary vectorial force */
1165             tx               = _mm_mul_pd(fscal,dx30);
1166             ty               = _mm_mul_pd(fscal,dy30);
1167             tz               = _mm_mul_pd(fscal,dz30);
1168
1169             /* Update vectorial force */
1170             fix3             = _mm_add_pd(fix3,tx);
1171             fiy3             = _mm_add_pd(fiy3,ty);
1172             fiz3             = _mm_add_pd(fiz3,tz);
1173
1174             fjx0             = _mm_add_pd(fjx0,tx);
1175             fjy0             = _mm_add_pd(fjy0,ty);
1176             fjz0             = _mm_add_pd(fjz0,tz);
1177
1178             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1179
1180             /* Inner loop uses 138 flops */
1181         }
1182
1183         /* End of innermost loop */
1184
1185         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1186                                               f+i_coord_offset,fshift+i_shift_offset);
1187
1188         /* Increment number of inner iterations */
1189         inneriter                  += j_index_end - j_index_start;
1190
1191         /* Outer loop uses 24 flops */
1192     }
1193
1194     /* Increment number of outer iterations */
1195     outeriter        += nri;
1196
1197     /* Update outer/inner flops */
1198
1199     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*138);
1200 }