8b88531e40bd3e9b1f76ed50c97e5a386d5cfc53
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJ_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          ewitab;
103     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     real             *ewtab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
134     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
135     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
136     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
162                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
163
164         fix0             = _mm_setzero_pd();
165         fiy0             = _mm_setzero_pd();
166         fiz0             = _mm_setzero_pd();
167         fix1             = _mm_setzero_pd();
168         fiy1             = _mm_setzero_pd();
169         fiz1             = _mm_setzero_pd();
170         fix2             = _mm_setzero_pd();
171         fiy2             = _mm_setzero_pd();
172         fiz2             = _mm_setzero_pd();
173         fix3             = _mm_setzero_pd();
174         fiy3             = _mm_setzero_pd();
175         fiz3             = _mm_setzero_pd();
176
177         /* Reset potential sums */
178         velecsum         = _mm_setzero_pd();
179         vvdwsum          = _mm_setzero_pd();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_pd(ix0,jx0);
197             dy00             = _mm_sub_pd(iy0,jy0);
198             dz00             = _mm_sub_pd(iz0,jz0);
199             dx10             = _mm_sub_pd(ix1,jx0);
200             dy10             = _mm_sub_pd(iy1,jy0);
201             dz10             = _mm_sub_pd(iz1,jz0);
202             dx20             = _mm_sub_pd(ix2,jx0);
203             dy20             = _mm_sub_pd(iy2,jy0);
204             dz20             = _mm_sub_pd(iz2,jz0);
205             dx30             = _mm_sub_pd(ix3,jx0);
206             dy30             = _mm_sub_pd(iy3,jy0);
207             dz30             = _mm_sub_pd(iz3,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
213             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
214
215             rinv10           = gmx_mm_invsqrt_pd(rsq10);
216             rinv20           = gmx_mm_invsqrt_pd(rsq20);
217             rinv30           = gmx_mm_invsqrt_pd(rsq30);
218
219             rinvsq00         = gmx_mm_inv_pd(rsq00);
220             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
221             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
222             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
226             vdwjidx0A        = 2*vdwtype[jnrA+0];
227             vdwjidx0B        = 2*vdwtype[jnrB+0];
228
229             fjx0             = _mm_setzero_pd();
230             fjy0             = _mm_setzero_pd();
231             fjz0             = _mm_setzero_pd();
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             /* Compute parameters for interactions between i and j atoms */
238             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
239                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
240
241             /* LENNARD-JONES DISPERSION/REPULSION */
242
243             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
244             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
245             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
246             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
247             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
251
252             fscal            = fvdw;
253
254             /* Calculate temporary vectorial force */
255             tx               = _mm_mul_pd(fscal,dx00);
256             ty               = _mm_mul_pd(fscal,dy00);
257             tz               = _mm_mul_pd(fscal,dz00);
258
259             /* Update vectorial force */
260             fix0             = _mm_add_pd(fix0,tx);
261             fiy0             = _mm_add_pd(fiy0,ty);
262             fiz0             = _mm_add_pd(fiz0,tz);
263
264             fjx0             = _mm_add_pd(fjx0,tx);
265             fjy0             = _mm_add_pd(fjy0,ty);
266             fjz0             = _mm_add_pd(fjz0,tz);
267
268             /**************************
269              * CALCULATE INTERACTIONS *
270              **************************/
271
272             r10              = _mm_mul_pd(rsq10,rinv10);
273
274             /* Compute parameters for interactions between i and j atoms */
275             qq10             = _mm_mul_pd(iq1,jq0);
276
277             /* EWALD ELECTROSTATICS */
278
279             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
280             ewrt             = _mm_mul_pd(r10,ewtabscale);
281             ewitab           = _mm_cvttpd_epi32(ewrt);
282             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
283             ewitab           = _mm_slli_epi32(ewitab,2);
284             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
285             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
286             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
287             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
288             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
289             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
290             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
291             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
292             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
293             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _mm_add_pd(velecsum,velec);
297
298             fscal            = felec;
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm_mul_pd(fscal,dx10);
302             ty               = _mm_mul_pd(fscal,dy10);
303             tz               = _mm_mul_pd(fscal,dz10);
304
305             /* Update vectorial force */
306             fix1             = _mm_add_pd(fix1,tx);
307             fiy1             = _mm_add_pd(fiy1,ty);
308             fiz1             = _mm_add_pd(fiz1,tz);
309
310             fjx0             = _mm_add_pd(fjx0,tx);
311             fjy0             = _mm_add_pd(fjy0,ty);
312             fjz0             = _mm_add_pd(fjz0,tz);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r20              = _mm_mul_pd(rsq20,rinv20);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq20             = _mm_mul_pd(iq2,jq0);
322
323             /* EWALD ELECTROSTATICS */
324
325             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
326             ewrt             = _mm_mul_pd(r20,ewtabscale);
327             ewitab           = _mm_cvttpd_epi32(ewrt);
328             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
329             ewitab           = _mm_slli_epi32(ewitab,2);
330             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
331             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
332             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
333             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
334             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
335             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
336             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
337             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
338             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
339             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velecsum         = _mm_add_pd(velecsum,velec);
343
344             fscal            = felec;
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_pd(fscal,dx20);
348             ty               = _mm_mul_pd(fscal,dy20);
349             tz               = _mm_mul_pd(fscal,dz20);
350
351             /* Update vectorial force */
352             fix2             = _mm_add_pd(fix2,tx);
353             fiy2             = _mm_add_pd(fiy2,ty);
354             fiz2             = _mm_add_pd(fiz2,tz);
355
356             fjx0             = _mm_add_pd(fjx0,tx);
357             fjy0             = _mm_add_pd(fjy0,ty);
358             fjz0             = _mm_add_pd(fjz0,tz);
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             r30              = _mm_mul_pd(rsq30,rinv30);
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq30             = _mm_mul_pd(iq3,jq0);
368
369             /* EWALD ELECTROSTATICS */
370
371             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
372             ewrt             = _mm_mul_pd(r30,ewtabscale);
373             ewitab           = _mm_cvttpd_epi32(ewrt);
374             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
375             ewitab           = _mm_slli_epi32(ewitab,2);
376             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
377             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
378             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
379             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
380             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
381             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
382             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
383             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
384             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
385             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velecsum         = _mm_add_pd(velecsum,velec);
389
390             fscal            = felec;
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm_mul_pd(fscal,dx30);
394             ty               = _mm_mul_pd(fscal,dy30);
395             tz               = _mm_mul_pd(fscal,dz30);
396
397             /* Update vectorial force */
398             fix3             = _mm_add_pd(fix3,tx);
399             fiy3             = _mm_add_pd(fiy3,ty);
400             fiz3             = _mm_add_pd(fiz3,tz);
401
402             fjx0             = _mm_add_pd(fjx0,tx);
403             fjy0             = _mm_add_pd(fjy0,ty);
404             fjz0             = _mm_add_pd(fjz0,tz);
405
406             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
407
408             /* Inner loop uses 158 flops */
409         }
410
411         if(jidx<j_index_end)
412         {
413
414             jnrA             = jjnr[jidx];
415             j_coord_offsetA  = DIM*jnrA;
416
417             /* load j atom coordinates */
418             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
419                                               &jx0,&jy0,&jz0);
420
421             /* Calculate displacement vector */
422             dx00             = _mm_sub_pd(ix0,jx0);
423             dy00             = _mm_sub_pd(iy0,jy0);
424             dz00             = _mm_sub_pd(iz0,jz0);
425             dx10             = _mm_sub_pd(ix1,jx0);
426             dy10             = _mm_sub_pd(iy1,jy0);
427             dz10             = _mm_sub_pd(iz1,jz0);
428             dx20             = _mm_sub_pd(ix2,jx0);
429             dy20             = _mm_sub_pd(iy2,jy0);
430             dz20             = _mm_sub_pd(iz2,jz0);
431             dx30             = _mm_sub_pd(ix3,jx0);
432             dy30             = _mm_sub_pd(iy3,jy0);
433             dz30             = _mm_sub_pd(iz3,jz0);
434
435             /* Calculate squared distance and things based on it */
436             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
437             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
438             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
439             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
440
441             rinv10           = gmx_mm_invsqrt_pd(rsq10);
442             rinv20           = gmx_mm_invsqrt_pd(rsq20);
443             rinv30           = gmx_mm_invsqrt_pd(rsq30);
444
445             rinvsq00         = gmx_mm_inv_pd(rsq00);
446             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
447             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
448             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
449
450             /* Load parameters for j particles */
451             jq0              = _mm_load_sd(charge+jnrA+0);
452             vdwjidx0A        = 2*vdwtype[jnrA+0];
453
454             fjx0             = _mm_setzero_pd();
455             fjy0             = _mm_setzero_pd();
456             fjz0             = _mm_setzero_pd();
457
458             /**************************
459              * CALCULATE INTERACTIONS *
460              **************************/
461
462             /* Compute parameters for interactions between i and j atoms */
463             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
464
465             /* LENNARD-JONES DISPERSION/REPULSION */
466
467             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
468             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
469             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
470             vvdw             = _mm_sub_pd( _mm_mul_pd(vvdw12,one_twelfth) , _mm_mul_pd(vvdw6,one_sixth) );
471             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
472
473             /* Update potential sum for this i atom from the interaction with this j atom. */
474             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
475             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
476
477             fscal            = fvdw;
478
479             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
480
481             /* Calculate temporary vectorial force */
482             tx               = _mm_mul_pd(fscal,dx00);
483             ty               = _mm_mul_pd(fscal,dy00);
484             tz               = _mm_mul_pd(fscal,dz00);
485
486             /* Update vectorial force */
487             fix0             = _mm_add_pd(fix0,tx);
488             fiy0             = _mm_add_pd(fiy0,ty);
489             fiz0             = _mm_add_pd(fiz0,tz);
490
491             fjx0             = _mm_add_pd(fjx0,tx);
492             fjy0             = _mm_add_pd(fjy0,ty);
493             fjz0             = _mm_add_pd(fjz0,tz);
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             r10              = _mm_mul_pd(rsq10,rinv10);
500
501             /* Compute parameters for interactions between i and j atoms */
502             qq10             = _mm_mul_pd(iq1,jq0);
503
504             /* EWALD ELECTROSTATICS */
505
506             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
507             ewrt             = _mm_mul_pd(r10,ewtabscale);
508             ewitab           = _mm_cvttpd_epi32(ewrt);
509             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
510             ewitab           = _mm_slli_epi32(ewitab,2);
511             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
512             ewtabD           = _mm_setzero_pd();
513             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
514             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
515             ewtabFn          = _mm_setzero_pd();
516             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
517             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
518             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
519             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
520             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
521
522             /* Update potential sum for this i atom from the interaction with this j atom. */
523             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
524             velecsum         = _mm_add_pd(velecsum,velec);
525
526             fscal            = felec;
527
528             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
529
530             /* Calculate temporary vectorial force */
531             tx               = _mm_mul_pd(fscal,dx10);
532             ty               = _mm_mul_pd(fscal,dy10);
533             tz               = _mm_mul_pd(fscal,dz10);
534
535             /* Update vectorial force */
536             fix1             = _mm_add_pd(fix1,tx);
537             fiy1             = _mm_add_pd(fiy1,ty);
538             fiz1             = _mm_add_pd(fiz1,tz);
539
540             fjx0             = _mm_add_pd(fjx0,tx);
541             fjy0             = _mm_add_pd(fjy0,ty);
542             fjz0             = _mm_add_pd(fjz0,tz);
543
544             /**************************
545              * CALCULATE INTERACTIONS *
546              **************************/
547
548             r20              = _mm_mul_pd(rsq20,rinv20);
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq20             = _mm_mul_pd(iq2,jq0);
552
553             /* EWALD ELECTROSTATICS */
554
555             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
556             ewrt             = _mm_mul_pd(r20,ewtabscale);
557             ewitab           = _mm_cvttpd_epi32(ewrt);
558             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
559             ewitab           = _mm_slli_epi32(ewitab,2);
560             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
561             ewtabD           = _mm_setzero_pd();
562             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
563             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
564             ewtabFn          = _mm_setzero_pd();
565             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
566             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
567             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
568             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
569             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
570
571             /* Update potential sum for this i atom from the interaction with this j atom. */
572             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
573             velecsum         = _mm_add_pd(velecsum,velec);
574
575             fscal            = felec;
576
577             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
578
579             /* Calculate temporary vectorial force */
580             tx               = _mm_mul_pd(fscal,dx20);
581             ty               = _mm_mul_pd(fscal,dy20);
582             tz               = _mm_mul_pd(fscal,dz20);
583
584             /* Update vectorial force */
585             fix2             = _mm_add_pd(fix2,tx);
586             fiy2             = _mm_add_pd(fiy2,ty);
587             fiz2             = _mm_add_pd(fiz2,tz);
588
589             fjx0             = _mm_add_pd(fjx0,tx);
590             fjy0             = _mm_add_pd(fjy0,ty);
591             fjz0             = _mm_add_pd(fjz0,tz);
592
593             /**************************
594              * CALCULATE INTERACTIONS *
595              **************************/
596
597             r30              = _mm_mul_pd(rsq30,rinv30);
598
599             /* Compute parameters for interactions between i and j atoms */
600             qq30             = _mm_mul_pd(iq3,jq0);
601
602             /* EWALD ELECTROSTATICS */
603
604             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
605             ewrt             = _mm_mul_pd(r30,ewtabscale);
606             ewitab           = _mm_cvttpd_epi32(ewrt);
607             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
608             ewitab           = _mm_slli_epi32(ewitab,2);
609             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
610             ewtabD           = _mm_setzero_pd();
611             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
612             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
613             ewtabFn          = _mm_setzero_pd();
614             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
615             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
616             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
617             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
618             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
619
620             /* Update potential sum for this i atom from the interaction with this j atom. */
621             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
622             velecsum         = _mm_add_pd(velecsum,velec);
623
624             fscal            = felec;
625
626             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
627
628             /* Calculate temporary vectorial force */
629             tx               = _mm_mul_pd(fscal,dx30);
630             ty               = _mm_mul_pd(fscal,dy30);
631             tz               = _mm_mul_pd(fscal,dz30);
632
633             /* Update vectorial force */
634             fix3             = _mm_add_pd(fix3,tx);
635             fiy3             = _mm_add_pd(fiy3,ty);
636             fiz3             = _mm_add_pd(fiz3,tz);
637
638             fjx0             = _mm_add_pd(fjx0,tx);
639             fjy0             = _mm_add_pd(fjy0,ty);
640             fjz0             = _mm_add_pd(fjz0,tz);
641
642             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
643
644             /* Inner loop uses 158 flops */
645         }
646
647         /* End of innermost loop */
648
649         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
650                                               f+i_coord_offset,fshift+i_shift_offset);
651
652         ggid                        = gid[iidx];
653         /* Update potential energies */
654         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
655         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
656
657         /* Increment number of inner iterations */
658         inneriter                  += j_index_end - j_index_start;
659
660         /* Outer loop uses 26 flops */
661     }
662
663     /* Increment number of outer iterations */
664     outeriter        += nri;
665
666     /* Update outer/inner flops */
667
668     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*158);
669 }
670 /*
671  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_double
672  * Electrostatics interaction: Ewald
673  * VdW interaction:            LennardJones
674  * Geometry:                   Water4-Particle
675  * Calculate force/pot:        Force
676  */
677 void
678 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse2_double
679                     (t_nblist                    * gmx_restrict       nlist,
680                      rvec                        * gmx_restrict          xx,
681                      rvec                        * gmx_restrict          ff,
682                      t_forcerec                  * gmx_restrict          fr,
683                      t_mdatoms                   * gmx_restrict     mdatoms,
684                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
685                      t_nrnb                      * gmx_restrict        nrnb)
686 {
687     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
688      * just 0 for non-waters.
689      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
690      * jnr indices corresponding to data put in the four positions in the SIMD register.
691      */
692     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
693     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
694     int              jnrA,jnrB;
695     int              j_coord_offsetA,j_coord_offsetB;
696     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
697     real             rcutoff_scalar;
698     real             *shiftvec,*fshift,*x,*f;
699     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
700     int              vdwioffset0;
701     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
702     int              vdwioffset1;
703     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
704     int              vdwioffset2;
705     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
706     int              vdwioffset3;
707     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
708     int              vdwjidx0A,vdwjidx0B;
709     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
710     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
711     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
712     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
713     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
714     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
715     real             *charge;
716     int              nvdwtype;
717     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
718     int              *vdwtype;
719     real             *vdwparam;
720     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
721     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
722     __m128i          ewitab;
723     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
724     real             *ewtab;
725     __m128d          dummy_mask,cutoff_mask;
726     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
727     __m128d          one     = _mm_set1_pd(1.0);
728     __m128d          two     = _mm_set1_pd(2.0);
729     x                = xx[0];
730     f                = ff[0];
731
732     nri              = nlist->nri;
733     iinr             = nlist->iinr;
734     jindex           = nlist->jindex;
735     jjnr             = nlist->jjnr;
736     shiftidx         = nlist->shift;
737     gid              = nlist->gid;
738     shiftvec         = fr->shift_vec[0];
739     fshift           = fr->fshift[0];
740     facel            = _mm_set1_pd(fr->epsfac);
741     charge           = mdatoms->chargeA;
742     nvdwtype         = fr->ntype;
743     vdwparam         = fr->nbfp;
744     vdwtype          = mdatoms->typeA;
745
746     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
747     ewtab            = fr->ic->tabq_coul_F;
748     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
749     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
750
751     /* Setup water-specific parameters */
752     inr              = nlist->iinr[0];
753     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
754     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
755     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
756     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
757
758     /* Avoid stupid compiler warnings */
759     jnrA = jnrB = 0;
760     j_coord_offsetA = 0;
761     j_coord_offsetB = 0;
762
763     outeriter        = 0;
764     inneriter        = 0;
765
766     /* Start outer loop over neighborlists */
767     for(iidx=0; iidx<nri; iidx++)
768     {
769         /* Load shift vector for this list */
770         i_shift_offset   = DIM*shiftidx[iidx];
771
772         /* Load limits for loop over neighbors */
773         j_index_start    = jindex[iidx];
774         j_index_end      = jindex[iidx+1];
775
776         /* Get outer coordinate index */
777         inr              = iinr[iidx];
778         i_coord_offset   = DIM*inr;
779
780         /* Load i particle coords and add shift vector */
781         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
782                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
783
784         fix0             = _mm_setzero_pd();
785         fiy0             = _mm_setzero_pd();
786         fiz0             = _mm_setzero_pd();
787         fix1             = _mm_setzero_pd();
788         fiy1             = _mm_setzero_pd();
789         fiz1             = _mm_setzero_pd();
790         fix2             = _mm_setzero_pd();
791         fiy2             = _mm_setzero_pd();
792         fiz2             = _mm_setzero_pd();
793         fix3             = _mm_setzero_pd();
794         fiy3             = _mm_setzero_pd();
795         fiz3             = _mm_setzero_pd();
796
797         /* Start inner kernel loop */
798         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
799         {
800
801             /* Get j neighbor index, and coordinate index */
802             jnrA             = jjnr[jidx];
803             jnrB             = jjnr[jidx+1];
804             j_coord_offsetA  = DIM*jnrA;
805             j_coord_offsetB  = DIM*jnrB;
806
807             /* load j atom coordinates */
808             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
809                                               &jx0,&jy0,&jz0);
810
811             /* Calculate displacement vector */
812             dx00             = _mm_sub_pd(ix0,jx0);
813             dy00             = _mm_sub_pd(iy0,jy0);
814             dz00             = _mm_sub_pd(iz0,jz0);
815             dx10             = _mm_sub_pd(ix1,jx0);
816             dy10             = _mm_sub_pd(iy1,jy0);
817             dz10             = _mm_sub_pd(iz1,jz0);
818             dx20             = _mm_sub_pd(ix2,jx0);
819             dy20             = _mm_sub_pd(iy2,jy0);
820             dz20             = _mm_sub_pd(iz2,jz0);
821             dx30             = _mm_sub_pd(ix3,jx0);
822             dy30             = _mm_sub_pd(iy3,jy0);
823             dz30             = _mm_sub_pd(iz3,jz0);
824
825             /* Calculate squared distance and things based on it */
826             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
827             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
828             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
829             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
830
831             rinv10           = gmx_mm_invsqrt_pd(rsq10);
832             rinv20           = gmx_mm_invsqrt_pd(rsq20);
833             rinv30           = gmx_mm_invsqrt_pd(rsq30);
834
835             rinvsq00         = gmx_mm_inv_pd(rsq00);
836             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
837             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
838             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
839
840             /* Load parameters for j particles */
841             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
842             vdwjidx0A        = 2*vdwtype[jnrA+0];
843             vdwjidx0B        = 2*vdwtype[jnrB+0];
844
845             fjx0             = _mm_setzero_pd();
846             fjy0             = _mm_setzero_pd();
847             fjz0             = _mm_setzero_pd();
848
849             /**************************
850              * CALCULATE INTERACTIONS *
851              **************************/
852
853             /* Compute parameters for interactions between i and j atoms */
854             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
855                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
856
857             /* LENNARD-JONES DISPERSION/REPULSION */
858
859             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
860             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
861
862             fscal            = fvdw;
863
864             /* Calculate temporary vectorial force */
865             tx               = _mm_mul_pd(fscal,dx00);
866             ty               = _mm_mul_pd(fscal,dy00);
867             tz               = _mm_mul_pd(fscal,dz00);
868
869             /* Update vectorial force */
870             fix0             = _mm_add_pd(fix0,tx);
871             fiy0             = _mm_add_pd(fiy0,ty);
872             fiz0             = _mm_add_pd(fiz0,tz);
873
874             fjx0             = _mm_add_pd(fjx0,tx);
875             fjy0             = _mm_add_pd(fjy0,ty);
876             fjz0             = _mm_add_pd(fjz0,tz);
877
878             /**************************
879              * CALCULATE INTERACTIONS *
880              **************************/
881
882             r10              = _mm_mul_pd(rsq10,rinv10);
883
884             /* Compute parameters for interactions between i and j atoms */
885             qq10             = _mm_mul_pd(iq1,jq0);
886
887             /* EWALD ELECTROSTATICS */
888
889             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
890             ewrt             = _mm_mul_pd(r10,ewtabscale);
891             ewitab           = _mm_cvttpd_epi32(ewrt);
892             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
893             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
894                                          &ewtabF,&ewtabFn);
895             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
896             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
897
898             fscal            = felec;
899
900             /* Calculate temporary vectorial force */
901             tx               = _mm_mul_pd(fscal,dx10);
902             ty               = _mm_mul_pd(fscal,dy10);
903             tz               = _mm_mul_pd(fscal,dz10);
904
905             /* Update vectorial force */
906             fix1             = _mm_add_pd(fix1,tx);
907             fiy1             = _mm_add_pd(fiy1,ty);
908             fiz1             = _mm_add_pd(fiz1,tz);
909
910             fjx0             = _mm_add_pd(fjx0,tx);
911             fjy0             = _mm_add_pd(fjy0,ty);
912             fjz0             = _mm_add_pd(fjz0,tz);
913
914             /**************************
915              * CALCULATE INTERACTIONS *
916              **************************/
917
918             r20              = _mm_mul_pd(rsq20,rinv20);
919
920             /* Compute parameters for interactions between i and j atoms */
921             qq20             = _mm_mul_pd(iq2,jq0);
922
923             /* EWALD ELECTROSTATICS */
924
925             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
926             ewrt             = _mm_mul_pd(r20,ewtabscale);
927             ewitab           = _mm_cvttpd_epi32(ewrt);
928             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
929             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
930                                          &ewtabF,&ewtabFn);
931             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
932             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
933
934             fscal            = felec;
935
936             /* Calculate temporary vectorial force */
937             tx               = _mm_mul_pd(fscal,dx20);
938             ty               = _mm_mul_pd(fscal,dy20);
939             tz               = _mm_mul_pd(fscal,dz20);
940
941             /* Update vectorial force */
942             fix2             = _mm_add_pd(fix2,tx);
943             fiy2             = _mm_add_pd(fiy2,ty);
944             fiz2             = _mm_add_pd(fiz2,tz);
945
946             fjx0             = _mm_add_pd(fjx0,tx);
947             fjy0             = _mm_add_pd(fjy0,ty);
948             fjz0             = _mm_add_pd(fjz0,tz);
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             r30              = _mm_mul_pd(rsq30,rinv30);
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq30             = _mm_mul_pd(iq3,jq0);
958
959             /* EWALD ELECTROSTATICS */
960
961             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
962             ewrt             = _mm_mul_pd(r30,ewtabscale);
963             ewitab           = _mm_cvttpd_epi32(ewrt);
964             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
965             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
966                                          &ewtabF,&ewtabFn);
967             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
968             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
969
970             fscal            = felec;
971
972             /* Calculate temporary vectorial force */
973             tx               = _mm_mul_pd(fscal,dx30);
974             ty               = _mm_mul_pd(fscal,dy30);
975             tz               = _mm_mul_pd(fscal,dz30);
976
977             /* Update vectorial force */
978             fix3             = _mm_add_pd(fix3,tx);
979             fiy3             = _mm_add_pd(fiy3,ty);
980             fiz3             = _mm_add_pd(fiz3,tz);
981
982             fjx0             = _mm_add_pd(fjx0,tx);
983             fjy0             = _mm_add_pd(fjy0,ty);
984             fjz0             = _mm_add_pd(fjz0,tz);
985
986             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
987
988             /* Inner loop uses 138 flops */
989         }
990
991         if(jidx<j_index_end)
992         {
993
994             jnrA             = jjnr[jidx];
995             j_coord_offsetA  = DIM*jnrA;
996
997             /* load j atom coordinates */
998             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
999                                               &jx0,&jy0,&jz0);
1000
1001             /* Calculate displacement vector */
1002             dx00             = _mm_sub_pd(ix0,jx0);
1003             dy00             = _mm_sub_pd(iy0,jy0);
1004             dz00             = _mm_sub_pd(iz0,jz0);
1005             dx10             = _mm_sub_pd(ix1,jx0);
1006             dy10             = _mm_sub_pd(iy1,jy0);
1007             dz10             = _mm_sub_pd(iz1,jz0);
1008             dx20             = _mm_sub_pd(ix2,jx0);
1009             dy20             = _mm_sub_pd(iy2,jy0);
1010             dz20             = _mm_sub_pd(iz2,jz0);
1011             dx30             = _mm_sub_pd(ix3,jx0);
1012             dy30             = _mm_sub_pd(iy3,jy0);
1013             dz30             = _mm_sub_pd(iz3,jz0);
1014
1015             /* Calculate squared distance and things based on it */
1016             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1017             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1018             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1019             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1020
1021             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1022             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1023             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1024
1025             rinvsq00         = gmx_mm_inv_pd(rsq00);
1026             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1027             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1028             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1029
1030             /* Load parameters for j particles */
1031             jq0              = _mm_load_sd(charge+jnrA+0);
1032             vdwjidx0A        = 2*vdwtype[jnrA+0];
1033
1034             fjx0             = _mm_setzero_pd();
1035             fjy0             = _mm_setzero_pd();
1036             fjz0             = _mm_setzero_pd();
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             /* Compute parameters for interactions between i and j atoms */
1043             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1044
1045             /* LENNARD-JONES DISPERSION/REPULSION */
1046
1047             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1048             fvdw             = _mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1049
1050             fscal            = fvdw;
1051
1052             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1053
1054             /* Calculate temporary vectorial force */
1055             tx               = _mm_mul_pd(fscal,dx00);
1056             ty               = _mm_mul_pd(fscal,dy00);
1057             tz               = _mm_mul_pd(fscal,dz00);
1058
1059             /* Update vectorial force */
1060             fix0             = _mm_add_pd(fix0,tx);
1061             fiy0             = _mm_add_pd(fiy0,ty);
1062             fiz0             = _mm_add_pd(fiz0,tz);
1063
1064             fjx0             = _mm_add_pd(fjx0,tx);
1065             fjy0             = _mm_add_pd(fjy0,ty);
1066             fjz0             = _mm_add_pd(fjz0,tz);
1067
1068             /**************************
1069              * CALCULATE INTERACTIONS *
1070              **************************/
1071
1072             r10              = _mm_mul_pd(rsq10,rinv10);
1073
1074             /* Compute parameters for interactions between i and j atoms */
1075             qq10             = _mm_mul_pd(iq1,jq0);
1076
1077             /* EWALD ELECTROSTATICS */
1078
1079             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1080             ewrt             = _mm_mul_pd(r10,ewtabscale);
1081             ewitab           = _mm_cvttpd_epi32(ewrt);
1082             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1083             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1084             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1085             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1086
1087             fscal            = felec;
1088
1089             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1090
1091             /* Calculate temporary vectorial force */
1092             tx               = _mm_mul_pd(fscal,dx10);
1093             ty               = _mm_mul_pd(fscal,dy10);
1094             tz               = _mm_mul_pd(fscal,dz10);
1095
1096             /* Update vectorial force */
1097             fix1             = _mm_add_pd(fix1,tx);
1098             fiy1             = _mm_add_pd(fiy1,ty);
1099             fiz1             = _mm_add_pd(fiz1,tz);
1100
1101             fjx0             = _mm_add_pd(fjx0,tx);
1102             fjy0             = _mm_add_pd(fjy0,ty);
1103             fjz0             = _mm_add_pd(fjz0,tz);
1104
1105             /**************************
1106              * CALCULATE INTERACTIONS *
1107              **************************/
1108
1109             r20              = _mm_mul_pd(rsq20,rinv20);
1110
1111             /* Compute parameters for interactions between i and j atoms */
1112             qq20             = _mm_mul_pd(iq2,jq0);
1113
1114             /* EWALD ELECTROSTATICS */
1115
1116             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1117             ewrt             = _mm_mul_pd(r20,ewtabscale);
1118             ewitab           = _mm_cvttpd_epi32(ewrt);
1119             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1120             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1121             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1122             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1123
1124             fscal            = felec;
1125
1126             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1127
1128             /* Calculate temporary vectorial force */
1129             tx               = _mm_mul_pd(fscal,dx20);
1130             ty               = _mm_mul_pd(fscal,dy20);
1131             tz               = _mm_mul_pd(fscal,dz20);
1132
1133             /* Update vectorial force */
1134             fix2             = _mm_add_pd(fix2,tx);
1135             fiy2             = _mm_add_pd(fiy2,ty);
1136             fiz2             = _mm_add_pd(fiz2,tz);
1137
1138             fjx0             = _mm_add_pd(fjx0,tx);
1139             fjy0             = _mm_add_pd(fjy0,ty);
1140             fjz0             = _mm_add_pd(fjz0,tz);
1141
1142             /**************************
1143              * CALCULATE INTERACTIONS *
1144              **************************/
1145
1146             r30              = _mm_mul_pd(rsq30,rinv30);
1147
1148             /* Compute parameters for interactions between i and j atoms */
1149             qq30             = _mm_mul_pd(iq3,jq0);
1150
1151             /* EWALD ELECTROSTATICS */
1152
1153             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1154             ewrt             = _mm_mul_pd(r30,ewtabscale);
1155             ewitab           = _mm_cvttpd_epi32(ewrt);
1156             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1157             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1158             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1159             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1160
1161             fscal            = felec;
1162
1163             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1164
1165             /* Calculate temporary vectorial force */
1166             tx               = _mm_mul_pd(fscal,dx30);
1167             ty               = _mm_mul_pd(fscal,dy30);
1168             tz               = _mm_mul_pd(fscal,dz30);
1169
1170             /* Update vectorial force */
1171             fix3             = _mm_add_pd(fix3,tx);
1172             fiy3             = _mm_add_pd(fiy3,ty);
1173             fiz3             = _mm_add_pd(fiz3,tz);
1174
1175             fjx0             = _mm_add_pd(fjx0,tx);
1176             fjy0             = _mm_add_pd(fjy0,ty);
1177             fjz0             = _mm_add_pd(fjz0,tz);
1178
1179             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1180
1181             /* Inner loop uses 138 flops */
1182         }
1183
1184         /* End of innermost loop */
1185
1186         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1187                                               f+i_coord_offset,fshift+i_shift_offset);
1188
1189         /* Increment number of inner iterations */
1190         inneriter                  += j_index_end - j_index_start;
1191
1192         /* Outer loop uses 24 flops */
1193     }
1194
1195     /* Increment number of outer iterations */
1196     outeriter        += nri;
1197
1198     /* Update outer/inner flops */
1199
1200     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*138);
1201 }