b49125afdce494c4798d27b3c592d9a090e511aa
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128d           c6grid_00;
103     __m128d           c6grid_10;
104     __m128d           c6grid_20;
105     __m128d           c6grid_30;
106     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
107     real             *vdwgridparam;
108     __m128d           one_half = _mm_set1_pd(0.5);
109     __m128d           minus_one = _mm_set1_pd(-1.0);
110     __m128i          ewitab;
111     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
112     real             *ewtab;
113     __m128d          dummy_mask,cutoff_mask;
114     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
115     __m128d          one     = _mm_set1_pd(1.0);
116     __m128d          two     = _mm_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133     vdwgridparam     = fr->ljpme_c6grid;
134     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
135     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
136     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
137
138     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
146     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
147     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
148     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
175
176         fix0             = _mm_setzero_pd();
177         fiy0             = _mm_setzero_pd();
178         fiz0             = _mm_setzero_pd();
179         fix1             = _mm_setzero_pd();
180         fiy1             = _mm_setzero_pd();
181         fiz1             = _mm_setzero_pd();
182         fix2             = _mm_setzero_pd();
183         fiy2             = _mm_setzero_pd();
184         fiz2             = _mm_setzero_pd();
185         fix3             = _mm_setzero_pd();
186         fiy3             = _mm_setzero_pd();
187         fiz3             = _mm_setzero_pd();
188
189         /* Reset potential sums */
190         velecsum         = _mm_setzero_pd();
191         vvdwsum          = _mm_setzero_pd();
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
195         {
196
197             /* Get j neighbor index, and coordinate index */
198             jnrA             = jjnr[jidx];
199             jnrB             = jjnr[jidx+1];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202
203             /* load j atom coordinates */
204             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm_sub_pd(ix0,jx0);
209             dy00             = _mm_sub_pd(iy0,jy0);
210             dz00             = _mm_sub_pd(iz0,jz0);
211             dx10             = _mm_sub_pd(ix1,jx0);
212             dy10             = _mm_sub_pd(iy1,jy0);
213             dz10             = _mm_sub_pd(iz1,jz0);
214             dx20             = _mm_sub_pd(ix2,jx0);
215             dy20             = _mm_sub_pd(iy2,jy0);
216             dz20             = _mm_sub_pd(iz2,jz0);
217             dx30             = _mm_sub_pd(ix3,jx0);
218             dy30             = _mm_sub_pd(iy3,jy0);
219             dz30             = _mm_sub_pd(iz3,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
223             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
224             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
225             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
226
227             rinv00           = gmx_mm_invsqrt_pd(rsq00);
228             rinv10           = gmx_mm_invsqrt_pd(rsq10);
229             rinv20           = gmx_mm_invsqrt_pd(rsq20);
230             rinv30           = gmx_mm_invsqrt_pd(rsq30);
231
232             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
233             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
234             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
235             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
239             vdwjidx0A        = 2*vdwtype[jnrA+0];
240             vdwjidx0B        = 2*vdwtype[jnrB+0];
241
242             fjx0             = _mm_setzero_pd();
243             fjy0             = _mm_setzero_pd();
244             fjz0             = _mm_setzero_pd();
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             r00              = _mm_mul_pd(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
254                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
255
256             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
257                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
258
259             /* Analytical LJ-PME */
260             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
261             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
262             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
263             exponent         = gmx_simd_exp_d(ewcljrsq);
264             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
265             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
266             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
267             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
268             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
269             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
270             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
271             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
275
276             fscal            = fvdw;
277
278             /* Calculate temporary vectorial force */
279             tx               = _mm_mul_pd(fscal,dx00);
280             ty               = _mm_mul_pd(fscal,dy00);
281             tz               = _mm_mul_pd(fscal,dz00);
282
283             /* Update vectorial force */
284             fix0             = _mm_add_pd(fix0,tx);
285             fiy0             = _mm_add_pd(fiy0,ty);
286             fiz0             = _mm_add_pd(fiz0,tz);
287
288             fjx0             = _mm_add_pd(fjx0,tx);
289             fjy0             = _mm_add_pd(fjy0,ty);
290             fjz0             = _mm_add_pd(fjz0,tz);
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             r10              = _mm_mul_pd(rsq10,rinv10);
297
298             /* Compute parameters for interactions between i and j atoms */
299             qq10             = _mm_mul_pd(iq1,jq0);
300
301             /* EWALD ELECTROSTATICS */
302
303             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
304             ewrt             = _mm_mul_pd(r10,ewtabscale);
305             ewitab           = _mm_cvttpd_epi32(ewrt);
306             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
307             ewitab           = _mm_slli_epi32(ewitab,2);
308             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
309             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
310             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
311             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
312             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
313             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
314             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
315             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
316             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
317             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velecsum         = _mm_add_pd(velecsum,velec);
321
322             fscal            = felec;
323
324             /* Calculate temporary vectorial force */
325             tx               = _mm_mul_pd(fscal,dx10);
326             ty               = _mm_mul_pd(fscal,dy10);
327             tz               = _mm_mul_pd(fscal,dz10);
328
329             /* Update vectorial force */
330             fix1             = _mm_add_pd(fix1,tx);
331             fiy1             = _mm_add_pd(fiy1,ty);
332             fiz1             = _mm_add_pd(fiz1,tz);
333
334             fjx0             = _mm_add_pd(fjx0,tx);
335             fjy0             = _mm_add_pd(fjy0,ty);
336             fjz0             = _mm_add_pd(fjz0,tz);
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             r20              = _mm_mul_pd(rsq20,rinv20);
343
344             /* Compute parameters for interactions between i and j atoms */
345             qq20             = _mm_mul_pd(iq2,jq0);
346
347             /* EWALD ELECTROSTATICS */
348
349             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
350             ewrt             = _mm_mul_pd(r20,ewtabscale);
351             ewitab           = _mm_cvttpd_epi32(ewrt);
352             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
353             ewitab           = _mm_slli_epi32(ewitab,2);
354             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
355             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
356             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
357             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
358             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
359             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
360             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
361             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
362             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
363             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             velecsum         = _mm_add_pd(velecsum,velec);
367
368             fscal            = felec;
369
370             /* Calculate temporary vectorial force */
371             tx               = _mm_mul_pd(fscal,dx20);
372             ty               = _mm_mul_pd(fscal,dy20);
373             tz               = _mm_mul_pd(fscal,dz20);
374
375             /* Update vectorial force */
376             fix2             = _mm_add_pd(fix2,tx);
377             fiy2             = _mm_add_pd(fiy2,ty);
378             fiz2             = _mm_add_pd(fiz2,tz);
379
380             fjx0             = _mm_add_pd(fjx0,tx);
381             fjy0             = _mm_add_pd(fjy0,ty);
382             fjz0             = _mm_add_pd(fjz0,tz);
383
384             /**************************
385              * CALCULATE INTERACTIONS *
386              **************************/
387
388             r30              = _mm_mul_pd(rsq30,rinv30);
389
390             /* Compute parameters for interactions between i and j atoms */
391             qq30             = _mm_mul_pd(iq3,jq0);
392
393             /* EWALD ELECTROSTATICS */
394
395             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
396             ewrt             = _mm_mul_pd(r30,ewtabscale);
397             ewitab           = _mm_cvttpd_epi32(ewrt);
398             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
399             ewitab           = _mm_slli_epi32(ewitab,2);
400             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
401             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
402             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
403             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
404             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
405             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
406             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
407             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
408             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
409             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
410
411             /* Update potential sum for this i atom from the interaction with this j atom. */
412             velecsum         = _mm_add_pd(velecsum,velec);
413
414             fscal            = felec;
415
416             /* Calculate temporary vectorial force */
417             tx               = _mm_mul_pd(fscal,dx30);
418             ty               = _mm_mul_pd(fscal,dy30);
419             tz               = _mm_mul_pd(fscal,dz30);
420
421             /* Update vectorial force */
422             fix3             = _mm_add_pd(fix3,tx);
423             fiy3             = _mm_add_pd(fiy3,ty);
424             fiz3             = _mm_add_pd(fiz3,tz);
425
426             fjx0             = _mm_add_pd(fjx0,tx);
427             fjy0             = _mm_add_pd(fjy0,ty);
428             fjz0             = _mm_add_pd(fjz0,tz);
429
430             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
431
432             /* Inner loop uses 177 flops */
433         }
434
435         if(jidx<j_index_end)
436         {
437
438             jnrA             = jjnr[jidx];
439             j_coord_offsetA  = DIM*jnrA;
440
441             /* load j atom coordinates */
442             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
443                                               &jx0,&jy0,&jz0);
444
445             /* Calculate displacement vector */
446             dx00             = _mm_sub_pd(ix0,jx0);
447             dy00             = _mm_sub_pd(iy0,jy0);
448             dz00             = _mm_sub_pd(iz0,jz0);
449             dx10             = _mm_sub_pd(ix1,jx0);
450             dy10             = _mm_sub_pd(iy1,jy0);
451             dz10             = _mm_sub_pd(iz1,jz0);
452             dx20             = _mm_sub_pd(ix2,jx0);
453             dy20             = _mm_sub_pd(iy2,jy0);
454             dz20             = _mm_sub_pd(iz2,jz0);
455             dx30             = _mm_sub_pd(ix3,jx0);
456             dy30             = _mm_sub_pd(iy3,jy0);
457             dz30             = _mm_sub_pd(iz3,jz0);
458
459             /* Calculate squared distance and things based on it */
460             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
461             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
462             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
463             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
464
465             rinv00           = gmx_mm_invsqrt_pd(rsq00);
466             rinv10           = gmx_mm_invsqrt_pd(rsq10);
467             rinv20           = gmx_mm_invsqrt_pd(rsq20);
468             rinv30           = gmx_mm_invsqrt_pd(rsq30);
469
470             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
471             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
472             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
473             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
474
475             /* Load parameters for j particles */
476             jq0              = _mm_load_sd(charge+jnrA+0);
477             vdwjidx0A        = 2*vdwtype[jnrA+0];
478
479             fjx0             = _mm_setzero_pd();
480             fjy0             = _mm_setzero_pd();
481             fjz0             = _mm_setzero_pd();
482
483             /**************************
484              * CALCULATE INTERACTIONS *
485              **************************/
486
487             r00              = _mm_mul_pd(rsq00,rinv00);
488
489             /* Compute parameters for interactions between i and j atoms */
490             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
491
492             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
493
494             /* Analytical LJ-PME */
495             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
496             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
497             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
498             exponent         = gmx_simd_exp_d(ewcljrsq);
499             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
500             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
501             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
502             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
503             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
504             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
505             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
506             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
507
508             /* Update potential sum for this i atom from the interaction with this j atom. */
509             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
510             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
511
512             fscal            = fvdw;
513
514             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
515
516             /* Calculate temporary vectorial force */
517             tx               = _mm_mul_pd(fscal,dx00);
518             ty               = _mm_mul_pd(fscal,dy00);
519             tz               = _mm_mul_pd(fscal,dz00);
520
521             /* Update vectorial force */
522             fix0             = _mm_add_pd(fix0,tx);
523             fiy0             = _mm_add_pd(fiy0,ty);
524             fiz0             = _mm_add_pd(fiz0,tz);
525
526             fjx0             = _mm_add_pd(fjx0,tx);
527             fjy0             = _mm_add_pd(fjy0,ty);
528             fjz0             = _mm_add_pd(fjz0,tz);
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             r10              = _mm_mul_pd(rsq10,rinv10);
535
536             /* Compute parameters for interactions between i and j atoms */
537             qq10             = _mm_mul_pd(iq1,jq0);
538
539             /* EWALD ELECTROSTATICS */
540
541             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
542             ewrt             = _mm_mul_pd(r10,ewtabscale);
543             ewitab           = _mm_cvttpd_epi32(ewrt);
544             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
545             ewitab           = _mm_slli_epi32(ewitab,2);
546             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
547             ewtabD           = _mm_setzero_pd();
548             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
549             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
550             ewtabFn          = _mm_setzero_pd();
551             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
552             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
553             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
554             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
555             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
556
557             /* Update potential sum for this i atom from the interaction with this j atom. */
558             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
559             velecsum         = _mm_add_pd(velecsum,velec);
560
561             fscal            = felec;
562
563             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
564
565             /* Calculate temporary vectorial force */
566             tx               = _mm_mul_pd(fscal,dx10);
567             ty               = _mm_mul_pd(fscal,dy10);
568             tz               = _mm_mul_pd(fscal,dz10);
569
570             /* Update vectorial force */
571             fix1             = _mm_add_pd(fix1,tx);
572             fiy1             = _mm_add_pd(fiy1,ty);
573             fiz1             = _mm_add_pd(fiz1,tz);
574
575             fjx0             = _mm_add_pd(fjx0,tx);
576             fjy0             = _mm_add_pd(fjy0,ty);
577             fjz0             = _mm_add_pd(fjz0,tz);
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             r20              = _mm_mul_pd(rsq20,rinv20);
584
585             /* Compute parameters for interactions between i and j atoms */
586             qq20             = _mm_mul_pd(iq2,jq0);
587
588             /* EWALD ELECTROSTATICS */
589
590             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
591             ewrt             = _mm_mul_pd(r20,ewtabscale);
592             ewitab           = _mm_cvttpd_epi32(ewrt);
593             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
594             ewitab           = _mm_slli_epi32(ewitab,2);
595             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
596             ewtabD           = _mm_setzero_pd();
597             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
598             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
599             ewtabFn          = _mm_setzero_pd();
600             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
601             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
602             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
603             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
604             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
605
606             /* Update potential sum for this i atom from the interaction with this j atom. */
607             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
608             velecsum         = _mm_add_pd(velecsum,velec);
609
610             fscal            = felec;
611
612             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
613
614             /* Calculate temporary vectorial force */
615             tx               = _mm_mul_pd(fscal,dx20);
616             ty               = _mm_mul_pd(fscal,dy20);
617             tz               = _mm_mul_pd(fscal,dz20);
618
619             /* Update vectorial force */
620             fix2             = _mm_add_pd(fix2,tx);
621             fiy2             = _mm_add_pd(fiy2,ty);
622             fiz2             = _mm_add_pd(fiz2,tz);
623
624             fjx0             = _mm_add_pd(fjx0,tx);
625             fjy0             = _mm_add_pd(fjy0,ty);
626             fjz0             = _mm_add_pd(fjz0,tz);
627
628             /**************************
629              * CALCULATE INTERACTIONS *
630              **************************/
631
632             r30              = _mm_mul_pd(rsq30,rinv30);
633
634             /* Compute parameters for interactions between i and j atoms */
635             qq30             = _mm_mul_pd(iq3,jq0);
636
637             /* EWALD ELECTROSTATICS */
638
639             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
640             ewrt             = _mm_mul_pd(r30,ewtabscale);
641             ewitab           = _mm_cvttpd_epi32(ewrt);
642             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
643             ewitab           = _mm_slli_epi32(ewitab,2);
644             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
645             ewtabD           = _mm_setzero_pd();
646             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
647             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
648             ewtabFn          = _mm_setzero_pd();
649             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
650             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
651             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
652             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
653             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
654
655             /* Update potential sum for this i atom from the interaction with this j atom. */
656             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
657             velecsum         = _mm_add_pd(velecsum,velec);
658
659             fscal            = felec;
660
661             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
662
663             /* Calculate temporary vectorial force */
664             tx               = _mm_mul_pd(fscal,dx30);
665             ty               = _mm_mul_pd(fscal,dy30);
666             tz               = _mm_mul_pd(fscal,dz30);
667
668             /* Update vectorial force */
669             fix3             = _mm_add_pd(fix3,tx);
670             fiy3             = _mm_add_pd(fiy3,ty);
671             fiz3             = _mm_add_pd(fiz3,tz);
672
673             fjx0             = _mm_add_pd(fjx0,tx);
674             fjy0             = _mm_add_pd(fjy0,ty);
675             fjz0             = _mm_add_pd(fjz0,tz);
676
677             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
678
679             /* Inner loop uses 177 flops */
680         }
681
682         /* End of innermost loop */
683
684         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
685                                               f+i_coord_offset,fshift+i_shift_offset);
686
687         ggid                        = gid[iidx];
688         /* Update potential energies */
689         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
690         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
691
692         /* Increment number of inner iterations */
693         inneriter                  += j_index_end - j_index_start;
694
695         /* Outer loop uses 26 flops */
696     }
697
698     /* Increment number of outer iterations */
699     outeriter        += nri;
700
701     /* Update outer/inner flops */
702
703     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*177);
704 }
705 /*
706  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse2_double
707  * Electrostatics interaction: Ewald
708  * VdW interaction:            LJEwald
709  * Geometry:                   Water4-Particle
710  * Calculate force/pot:        Force
711  */
712 void
713 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse2_double
714                     (t_nblist                    * gmx_restrict       nlist,
715                      rvec                        * gmx_restrict          xx,
716                      rvec                        * gmx_restrict          ff,
717                      t_forcerec                  * gmx_restrict          fr,
718                      t_mdatoms                   * gmx_restrict     mdatoms,
719                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
720                      t_nrnb                      * gmx_restrict        nrnb)
721 {
722     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
723      * just 0 for non-waters.
724      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
725      * jnr indices corresponding to data put in the four positions in the SIMD register.
726      */
727     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
728     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
729     int              jnrA,jnrB;
730     int              j_coord_offsetA,j_coord_offsetB;
731     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
732     real             rcutoff_scalar;
733     real             *shiftvec,*fshift,*x,*f;
734     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
735     int              vdwioffset0;
736     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
737     int              vdwioffset1;
738     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
739     int              vdwioffset2;
740     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
741     int              vdwioffset3;
742     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
743     int              vdwjidx0A,vdwjidx0B;
744     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
745     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
746     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
747     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
748     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
749     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
750     real             *charge;
751     int              nvdwtype;
752     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
753     int              *vdwtype;
754     real             *vdwparam;
755     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
756     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
757     __m128d           c6grid_00;
758     __m128d           c6grid_10;
759     __m128d           c6grid_20;
760     __m128d           c6grid_30;
761     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
762     real             *vdwgridparam;
763     __m128d           one_half = _mm_set1_pd(0.5);
764     __m128d           minus_one = _mm_set1_pd(-1.0);
765     __m128i          ewitab;
766     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
767     real             *ewtab;
768     __m128d          dummy_mask,cutoff_mask;
769     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
770     __m128d          one     = _mm_set1_pd(1.0);
771     __m128d          two     = _mm_set1_pd(2.0);
772     x                = xx[0];
773     f                = ff[0];
774
775     nri              = nlist->nri;
776     iinr             = nlist->iinr;
777     jindex           = nlist->jindex;
778     jjnr             = nlist->jjnr;
779     shiftidx         = nlist->shift;
780     gid              = nlist->gid;
781     shiftvec         = fr->shift_vec[0];
782     fshift           = fr->fshift[0];
783     facel            = _mm_set1_pd(fr->epsfac);
784     charge           = mdatoms->chargeA;
785     nvdwtype         = fr->ntype;
786     vdwparam         = fr->nbfp;
787     vdwtype          = mdatoms->typeA;
788     vdwgridparam     = fr->ljpme_c6grid;
789     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
790     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
791     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
792
793     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
794     ewtab            = fr->ic->tabq_coul_F;
795     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
796     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
797
798     /* Setup water-specific parameters */
799     inr              = nlist->iinr[0];
800     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
801     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
802     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
803     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
804
805     /* Avoid stupid compiler warnings */
806     jnrA = jnrB = 0;
807     j_coord_offsetA = 0;
808     j_coord_offsetB = 0;
809
810     outeriter        = 0;
811     inneriter        = 0;
812
813     /* Start outer loop over neighborlists */
814     for(iidx=0; iidx<nri; iidx++)
815     {
816         /* Load shift vector for this list */
817         i_shift_offset   = DIM*shiftidx[iidx];
818
819         /* Load limits for loop over neighbors */
820         j_index_start    = jindex[iidx];
821         j_index_end      = jindex[iidx+1];
822
823         /* Get outer coordinate index */
824         inr              = iinr[iidx];
825         i_coord_offset   = DIM*inr;
826
827         /* Load i particle coords and add shift vector */
828         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
829                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
830
831         fix0             = _mm_setzero_pd();
832         fiy0             = _mm_setzero_pd();
833         fiz0             = _mm_setzero_pd();
834         fix1             = _mm_setzero_pd();
835         fiy1             = _mm_setzero_pd();
836         fiz1             = _mm_setzero_pd();
837         fix2             = _mm_setzero_pd();
838         fiy2             = _mm_setzero_pd();
839         fiz2             = _mm_setzero_pd();
840         fix3             = _mm_setzero_pd();
841         fiy3             = _mm_setzero_pd();
842         fiz3             = _mm_setzero_pd();
843
844         /* Start inner kernel loop */
845         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
846         {
847
848             /* Get j neighbor index, and coordinate index */
849             jnrA             = jjnr[jidx];
850             jnrB             = jjnr[jidx+1];
851             j_coord_offsetA  = DIM*jnrA;
852             j_coord_offsetB  = DIM*jnrB;
853
854             /* load j atom coordinates */
855             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
856                                               &jx0,&jy0,&jz0);
857
858             /* Calculate displacement vector */
859             dx00             = _mm_sub_pd(ix0,jx0);
860             dy00             = _mm_sub_pd(iy0,jy0);
861             dz00             = _mm_sub_pd(iz0,jz0);
862             dx10             = _mm_sub_pd(ix1,jx0);
863             dy10             = _mm_sub_pd(iy1,jy0);
864             dz10             = _mm_sub_pd(iz1,jz0);
865             dx20             = _mm_sub_pd(ix2,jx0);
866             dy20             = _mm_sub_pd(iy2,jy0);
867             dz20             = _mm_sub_pd(iz2,jz0);
868             dx30             = _mm_sub_pd(ix3,jx0);
869             dy30             = _mm_sub_pd(iy3,jy0);
870             dz30             = _mm_sub_pd(iz3,jz0);
871
872             /* Calculate squared distance and things based on it */
873             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
874             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
875             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
876             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
877
878             rinv00           = gmx_mm_invsqrt_pd(rsq00);
879             rinv10           = gmx_mm_invsqrt_pd(rsq10);
880             rinv20           = gmx_mm_invsqrt_pd(rsq20);
881             rinv30           = gmx_mm_invsqrt_pd(rsq30);
882
883             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
884             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
885             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
886             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
887
888             /* Load parameters for j particles */
889             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
890             vdwjidx0A        = 2*vdwtype[jnrA+0];
891             vdwjidx0B        = 2*vdwtype[jnrB+0];
892
893             fjx0             = _mm_setzero_pd();
894             fjy0             = _mm_setzero_pd();
895             fjz0             = _mm_setzero_pd();
896
897             /**************************
898              * CALCULATE INTERACTIONS *
899              **************************/
900
901             r00              = _mm_mul_pd(rsq00,rinv00);
902
903             /* Compute parameters for interactions between i and j atoms */
904             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
905                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
906
907             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
908                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
909
910             /* Analytical LJ-PME */
911             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
912             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
913             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
914             exponent         = gmx_simd_exp_d(ewcljrsq);
915             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
916             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
917             /* f6A = 6 * C6grid * (1 - poly) */
918             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
919             /* f6B = C6grid * exponent * beta^6 */
920             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
921             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
922             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
923
924             fscal            = fvdw;
925
926             /* Calculate temporary vectorial force */
927             tx               = _mm_mul_pd(fscal,dx00);
928             ty               = _mm_mul_pd(fscal,dy00);
929             tz               = _mm_mul_pd(fscal,dz00);
930
931             /* Update vectorial force */
932             fix0             = _mm_add_pd(fix0,tx);
933             fiy0             = _mm_add_pd(fiy0,ty);
934             fiz0             = _mm_add_pd(fiz0,tz);
935
936             fjx0             = _mm_add_pd(fjx0,tx);
937             fjy0             = _mm_add_pd(fjy0,ty);
938             fjz0             = _mm_add_pd(fjz0,tz);
939
940             /**************************
941              * CALCULATE INTERACTIONS *
942              **************************/
943
944             r10              = _mm_mul_pd(rsq10,rinv10);
945
946             /* Compute parameters for interactions between i and j atoms */
947             qq10             = _mm_mul_pd(iq1,jq0);
948
949             /* EWALD ELECTROSTATICS */
950
951             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
952             ewrt             = _mm_mul_pd(r10,ewtabscale);
953             ewitab           = _mm_cvttpd_epi32(ewrt);
954             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
955             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
956                                          &ewtabF,&ewtabFn);
957             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
958             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
959
960             fscal            = felec;
961
962             /* Calculate temporary vectorial force */
963             tx               = _mm_mul_pd(fscal,dx10);
964             ty               = _mm_mul_pd(fscal,dy10);
965             tz               = _mm_mul_pd(fscal,dz10);
966
967             /* Update vectorial force */
968             fix1             = _mm_add_pd(fix1,tx);
969             fiy1             = _mm_add_pd(fiy1,ty);
970             fiz1             = _mm_add_pd(fiz1,tz);
971
972             fjx0             = _mm_add_pd(fjx0,tx);
973             fjy0             = _mm_add_pd(fjy0,ty);
974             fjz0             = _mm_add_pd(fjz0,tz);
975
976             /**************************
977              * CALCULATE INTERACTIONS *
978              **************************/
979
980             r20              = _mm_mul_pd(rsq20,rinv20);
981
982             /* Compute parameters for interactions between i and j atoms */
983             qq20             = _mm_mul_pd(iq2,jq0);
984
985             /* EWALD ELECTROSTATICS */
986
987             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
988             ewrt             = _mm_mul_pd(r20,ewtabscale);
989             ewitab           = _mm_cvttpd_epi32(ewrt);
990             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
991             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
992                                          &ewtabF,&ewtabFn);
993             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
994             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
995
996             fscal            = felec;
997
998             /* Calculate temporary vectorial force */
999             tx               = _mm_mul_pd(fscal,dx20);
1000             ty               = _mm_mul_pd(fscal,dy20);
1001             tz               = _mm_mul_pd(fscal,dz20);
1002
1003             /* Update vectorial force */
1004             fix2             = _mm_add_pd(fix2,tx);
1005             fiy2             = _mm_add_pd(fiy2,ty);
1006             fiz2             = _mm_add_pd(fiz2,tz);
1007
1008             fjx0             = _mm_add_pd(fjx0,tx);
1009             fjy0             = _mm_add_pd(fjy0,ty);
1010             fjz0             = _mm_add_pd(fjz0,tz);
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             r30              = _mm_mul_pd(rsq30,rinv30);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq30             = _mm_mul_pd(iq3,jq0);
1020
1021             /* EWALD ELECTROSTATICS */
1022
1023             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1024             ewrt             = _mm_mul_pd(r30,ewtabscale);
1025             ewitab           = _mm_cvttpd_epi32(ewrt);
1026             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1027             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1028                                          &ewtabF,&ewtabFn);
1029             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1030             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1031
1032             fscal            = felec;
1033
1034             /* Calculate temporary vectorial force */
1035             tx               = _mm_mul_pd(fscal,dx30);
1036             ty               = _mm_mul_pd(fscal,dy30);
1037             tz               = _mm_mul_pd(fscal,dz30);
1038
1039             /* Update vectorial force */
1040             fix3             = _mm_add_pd(fix3,tx);
1041             fiy3             = _mm_add_pd(fiy3,ty);
1042             fiz3             = _mm_add_pd(fiz3,tz);
1043
1044             fjx0             = _mm_add_pd(fjx0,tx);
1045             fjy0             = _mm_add_pd(fjy0,ty);
1046             fjz0             = _mm_add_pd(fjz0,tz);
1047
1048             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1049
1050             /* Inner loop uses 157 flops */
1051         }
1052
1053         if(jidx<j_index_end)
1054         {
1055
1056             jnrA             = jjnr[jidx];
1057             j_coord_offsetA  = DIM*jnrA;
1058
1059             /* load j atom coordinates */
1060             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1061                                               &jx0,&jy0,&jz0);
1062
1063             /* Calculate displacement vector */
1064             dx00             = _mm_sub_pd(ix0,jx0);
1065             dy00             = _mm_sub_pd(iy0,jy0);
1066             dz00             = _mm_sub_pd(iz0,jz0);
1067             dx10             = _mm_sub_pd(ix1,jx0);
1068             dy10             = _mm_sub_pd(iy1,jy0);
1069             dz10             = _mm_sub_pd(iz1,jz0);
1070             dx20             = _mm_sub_pd(ix2,jx0);
1071             dy20             = _mm_sub_pd(iy2,jy0);
1072             dz20             = _mm_sub_pd(iz2,jz0);
1073             dx30             = _mm_sub_pd(ix3,jx0);
1074             dy30             = _mm_sub_pd(iy3,jy0);
1075             dz30             = _mm_sub_pd(iz3,jz0);
1076
1077             /* Calculate squared distance and things based on it */
1078             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1079             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1080             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1081             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1082
1083             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1084             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1085             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1086             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1087
1088             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1089             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1090             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1091             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1092
1093             /* Load parameters for j particles */
1094             jq0              = _mm_load_sd(charge+jnrA+0);
1095             vdwjidx0A        = 2*vdwtype[jnrA+0];
1096
1097             fjx0             = _mm_setzero_pd();
1098             fjy0             = _mm_setzero_pd();
1099             fjz0             = _mm_setzero_pd();
1100
1101             /**************************
1102              * CALCULATE INTERACTIONS *
1103              **************************/
1104
1105             r00              = _mm_mul_pd(rsq00,rinv00);
1106
1107             /* Compute parameters for interactions between i and j atoms */
1108             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1109
1110             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1111
1112             /* Analytical LJ-PME */
1113             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1114             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1115             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1116             exponent         = gmx_simd_exp_d(ewcljrsq);
1117             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1118             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1119             /* f6A = 6 * C6grid * (1 - poly) */
1120             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1121             /* f6B = C6grid * exponent * beta^6 */
1122             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1123             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1124             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1125
1126             fscal            = fvdw;
1127
1128             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1129
1130             /* Calculate temporary vectorial force */
1131             tx               = _mm_mul_pd(fscal,dx00);
1132             ty               = _mm_mul_pd(fscal,dy00);
1133             tz               = _mm_mul_pd(fscal,dz00);
1134
1135             /* Update vectorial force */
1136             fix0             = _mm_add_pd(fix0,tx);
1137             fiy0             = _mm_add_pd(fiy0,ty);
1138             fiz0             = _mm_add_pd(fiz0,tz);
1139
1140             fjx0             = _mm_add_pd(fjx0,tx);
1141             fjy0             = _mm_add_pd(fjy0,ty);
1142             fjz0             = _mm_add_pd(fjz0,tz);
1143
1144             /**************************
1145              * CALCULATE INTERACTIONS *
1146              **************************/
1147
1148             r10              = _mm_mul_pd(rsq10,rinv10);
1149
1150             /* Compute parameters for interactions between i and j atoms */
1151             qq10             = _mm_mul_pd(iq1,jq0);
1152
1153             /* EWALD ELECTROSTATICS */
1154
1155             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1156             ewrt             = _mm_mul_pd(r10,ewtabscale);
1157             ewitab           = _mm_cvttpd_epi32(ewrt);
1158             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1159             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1160             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1161             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1162
1163             fscal            = felec;
1164
1165             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1166
1167             /* Calculate temporary vectorial force */
1168             tx               = _mm_mul_pd(fscal,dx10);
1169             ty               = _mm_mul_pd(fscal,dy10);
1170             tz               = _mm_mul_pd(fscal,dz10);
1171
1172             /* Update vectorial force */
1173             fix1             = _mm_add_pd(fix1,tx);
1174             fiy1             = _mm_add_pd(fiy1,ty);
1175             fiz1             = _mm_add_pd(fiz1,tz);
1176
1177             fjx0             = _mm_add_pd(fjx0,tx);
1178             fjy0             = _mm_add_pd(fjy0,ty);
1179             fjz0             = _mm_add_pd(fjz0,tz);
1180
1181             /**************************
1182              * CALCULATE INTERACTIONS *
1183              **************************/
1184
1185             r20              = _mm_mul_pd(rsq20,rinv20);
1186
1187             /* Compute parameters for interactions between i and j atoms */
1188             qq20             = _mm_mul_pd(iq2,jq0);
1189
1190             /* EWALD ELECTROSTATICS */
1191
1192             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1193             ewrt             = _mm_mul_pd(r20,ewtabscale);
1194             ewitab           = _mm_cvttpd_epi32(ewrt);
1195             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1196             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1197             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1198             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1199
1200             fscal            = felec;
1201
1202             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1203
1204             /* Calculate temporary vectorial force */
1205             tx               = _mm_mul_pd(fscal,dx20);
1206             ty               = _mm_mul_pd(fscal,dy20);
1207             tz               = _mm_mul_pd(fscal,dz20);
1208
1209             /* Update vectorial force */
1210             fix2             = _mm_add_pd(fix2,tx);
1211             fiy2             = _mm_add_pd(fiy2,ty);
1212             fiz2             = _mm_add_pd(fiz2,tz);
1213
1214             fjx0             = _mm_add_pd(fjx0,tx);
1215             fjy0             = _mm_add_pd(fjy0,ty);
1216             fjz0             = _mm_add_pd(fjz0,tz);
1217
1218             /**************************
1219              * CALCULATE INTERACTIONS *
1220              **************************/
1221
1222             r30              = _mm_mul_pd(rsq30,rinv30);
1223
1224             /* Compute parameters for interactions between i and j atoms */
1225             qq30             = _mm_mul_pd(iq3,jq0);
1226
1227             /* EWALD ELECTROSTATICS */
1228
1229             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1230             ewrt             = _mm_mul_pd(r30,ewtabscale);
1231             ewitab           = _mm_cvttpd_epi32(ewrt);
1232             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1233             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1234             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1235             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1236
1237             fscal            = felec;
1238
1239             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1240
1241             /* Calculate temporary vectorial force */
1242             tx               = _mm_mul_pd(fscal,dx30);
1243             ty               = _mm_mul_pd(fscal,dy30);
1244             tz               = _mm_mul_pd(fscal,dz30);
1245
1246             /* Update vectorial force */
1247             fix3             = _mm_add_pd(fix3,tx);
1248             fiy3             = _mm_add_pd(fiy3,ty);
1249             fiz3             = _mm_add_pd(fiz3,tz);
1250
1251             fjx0             = _mm_add_pd(fjx0,tx);
1252             fjy0             = _mm_add_pd(fjy0,ty);
1253             fjz0             = _mm_add_pd(fjz0,tz);
1254
1255             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1256
1257             /* Inner loop uses 157 flops */
1258         }
1259
1260         /* End of innermost loop */
1261
1262         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1263                                               f+i_coord_offset,fshift+i_shift_offset);
1264
1265         /* Increment number of inner iterations */
1266         inneriter                  += j_index_end - j_index_start;
1267
1268         /* Outer loop uses 24 flops */
1269     }
1270
1271     /* Increment number of outer iterations */
1272     outeriter        += nri;
1273
1274     /* Update outer/inner flops */
1275
1276     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*157);
1277 }