21b9cd29b03b0aa4d3395707c754115df21ad794
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse2_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128d           c6grid_00;
105     __m128d           c6grid_10;
106     __m128d           c6grid_20;
107     __m128d           c6grid_30;
108     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
109     real             *vdwgridparam;
110     __m128d           one_half = _mm_set1_pd(0.5);
111     __m128d           minus_one = _mm_set1_pd(-1.0);
112     __m128i          ewitab;
113     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
114     real             *ewtab;
115     __m128d          dummy_mask,cutoff_mask;
116     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
117     __m128d          one     = _mm_set1_pd(1.0);
118     __m128d          two     = _mm_set1_pd(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm_set1_pd(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
137     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
138     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
139
140     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
148     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
149     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
177
178         fix0             = _mm_setzero_pd();
179         fiy0             = _mm_setzero_pd();
180         fiz0             = _mm_setzero_pd();
181         fix1             = _mm_setzero_pd();
182         fiy1             = _mm_setzero_pd();
183         fiz1             = _mm_setzero_pd();
184         fix2             = _mm_setzero_pd();
185         fiy2             = _mm_setzero_pd();
186         fiz2             = _mm_setzero_pd();
187         fix3             = _mm_setzero_pd();
188         fiy3             = _mm_setzero_pd();
189         fiz3             = _mm_setzero_pd();
190
191         /* Reset potential sums */
192         velecsum         = _mm_setzero_pd();
193         vvdwsum          = _mm_setzero_pd();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204
205             /* load j atom coordinates */
206             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_pd(ix0,jx0);
211             dy00             = _mm_sub_pd(iy0,jy0);
212             dz00             = _mm_sub_pd(iz0,jz0);
213             dx10             = _mm_sub_pd(ix1,jx0);
214             dy10             = _mm_sub_pd(iy1,jy0);
215             dz10             = _mm_sub_pd(iz1,jz0);
216             dx20             = _mm_sub_pd(ix2,jx0);
217             dy20             = _mm_sub_pd(iy2,jy0);
218             dz20             = _mm_sub_pd(iz2,jz0);
219             dx30             = _mm_sub_pd(ix3,jx0);
220             dy30             = _mm_sub_pd(iy3,jy0);
221             dz30             = _mm_sub_pd(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
225             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
226             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
227             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
228
229             rinv00           = gmx_mm_invsqrt_pd(rsq00);
230             rinv10           = gmx_mm_invsqrt_pd(rsq10);
231             rinv20           = gmx_mm_invsqrt_pd(rsq20);
232             rinv30           = gmx_mm_invsqrt_pd(rsq30);
233
234             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
235             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
236             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
237             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243
244             fjx0             = _mm_setzero_pd();
245             fjy0             = _mm_setzero_pd();
246             fjz0             = _mm_setzero_pd();
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             r00              = _mm_mul_pd(rsq00,rinv00);
253
254             /* Compute parameters for interactions between i and j atoms */
255             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
256                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
257
258             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
259                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
260
261             /* Analytical LJ-PME */
262             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
263             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
264             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
265             exponent         = gmx_simd_exp_d(ewcljrsq);
266             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
267             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
268             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
269             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
270             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
271             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
272             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
273             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
277
278             fscal            = fvdw;
279
280             /* Calculate temporary vectorial force */
281             tx               = _mm_mul_pd(fscal,dx00);
282             ty               = _mm_mul_pd(fscal,dy00);
283             tz               = _mm_mul_pd(fscal,dz00);
284
285             /* Update vectorial force */
286             fix0             = _mm_add_pd(fix0,tx);
287             fiy0             = _mm_add_pd(fiy0,ty);
288             fiz0             = _mm_add_pd(fiz0,tz);
289
290             fjx0             = _mm_add_pd(fjx0,tx);
291             fjy0             = _mm_add_pd(fjy0,ty);
292             fjz0             = _mm_add_pd(fjz0,tz);
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             r10              = _mm_mul_pd(rsq10,rinv10);
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq10             = _mm_mul_pd(iq1,jq0);
302
303             /* EWALD ELECTROSTATICS */
304
305             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
306             ewrt             = _mm_mul_pd(r10,ewtabscale);
307             ewitab           = _mm_cvttpd_epi32(ewrt);
308             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
309             ewitab           = _mm_slli_epi32(ewitab,2);
310             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
311             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
312             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
313             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
314             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
315             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
316             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
317             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
318             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
319             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velecsum         = _mm_add_pd(velecsum,velec);
323
324             fscal            = felec;
325
326             /* Calculate temporary vectorial force */
327             tx               = _mm_mul_pd(fscal,dx10);
328             ty               = _mm_mul_pd(fscal,dy10);
329             tz               = _mm_mul_pd(fscal,dz10);
330
331             /* Update vectorial force */
332             fix1             = _mm_add_pd(fix1,tx);
333             fiy1             = _mm_add_pd(fiy1,ty);
334             fiz1             = _mm_add_pd(fiz1,tz);
335
336             fjx0             = _mm_add_pd(fjx0,tx);
337             fjy0             = _mm_add_pd(fjy0,ty);
338             fjz0             = _mm_add_pd(fjz0,tz);
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             r20              = _mm_mul_pd(rsq20,rinv20);
345
346             /* Compute parameters for interactions between i and j atoms */
347             qq20             = _mm_mul_pd(iq2,jq0);
348
349             /* EWALD ELECTROSTATICS */
350
351             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
352             ewrt             = _mm_mul_pd(r20,ewtabscale);
353             ewitab           = _mm_cvttpd_epi32(ewrt);
354             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
355             ewitab           = _mm_slli_epi32(ewitab,2);
356             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
357             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
358             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
359             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
360             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
361             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
362             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
363             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
364             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
365             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velecsum         = _mm_add_pd(velecsum,velec);
369
370             fscal            = felec;
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm_mul_pd(fscal,dx20);
374             ty               = _mm_mul_pd(fscal,dy20);
375             tz               = _mm_mul_pd(fscal,dz20);
376
377             /* Update vectorial force */
378             fix2             = _mm_add_pd(fix2,tx);
379             fiy2             = _mm_add_pd(fiy2,ty);
380             fiz2             = _mm_add_pd(fiz2,tz);
381
382             fjx0             = _mm_add_pd(fjx0,tx);
383             fjy0             = _mm_add_pd(fjy0,ty);
384             fjz0             = _mm_add_pd(fjz0,tz);
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             r30              = _mm_mul_pd(rsq30,rinv30);
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq30             = _mm_mul_pd(iq3,jq0);
394
395             /* EWALD ELECTROSTATICS */
396
397             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
398             ewrt             = _mm_mul_pd(r30,ewtabscale);
399             ewitab           = _mm_cvttpd_epi32(ewrt);
400             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
401             ewitab           = _mm_slli_epi32(ewitab,2);
402             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
403             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
404             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
405             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
406             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
407             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
408             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
409             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
410             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
411             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
412
413             /* Update potential sum for this i atom from the interaction with this j atom. */
414             velecsum         = _mm_add_pd(velecsum,velec);
415
416             fscal            = felec;
417
418             /* Calculate temporary vectorial force */
419             tx               = _mm_mul_pd(fscal,dx30);
420             ty               = _mm_mul_pd(fscal,dy30);
421             tz               = _mm_mul_pd(fscal,dz30);
422
423             /* Update vectorial force */
424             fix3             = _mm_add_pd(fix3,tx);
425             fiy3             = _mm_add_pd(fiy3,ty);
426             fiz3             = _mm_add_pd(fiz3,tz);
427
428             fjx0             = _mm_add_pd(fjx0,tx);
429             fjy0             = _mm_add_pd(fjy0,ty);
430             fjz0             = _mm_add_pd(fjz0,tz);
431
432             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
433
434             /* Inner loop uses 177 flops */
435         }
436
437         if(jidx<j_index_end)
438         {
439
440             jnrA             = jjnr[jidx];
441             j_coord_offsetA  = DIM*jnrA;
442
443             /* load j atom coordinates */
444             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
445                                               &jx0,&jy0,&jz0);
446
447             /* Calculate displacement vector */
448             dx00             = _mm_sub_pd(ix0,jx0);
449             dy00             = _mm_sub_pd(iy0,jy0);
450             dz00             = _mm_sub_pd(iz0,jz0);
451             dx10             = _mm_sub_pd(ix1,jx0);
452             dy10             = _mm_sub_pd(iy1,jy0);
453             dz10             = _mm_sub_pd(iz1,jz0);
454             dx20             = _mm_sub_pd(ix2,jx0);
455             dy20             = _mm_sub_pd(iy2,jy0);
456             dz20             = _mm_sub_pd(iz2,jz0);
457             dx30             = _mm_sub_pd(ix3,jx0);
458             dy30             = _mm_sub_pd(iy3,jy0);
459             dz30             = _mm_sub_pd(iz3,jz0);
460
461             /* Calculate squared distance and things based on it */
462             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
463             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
464             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
465             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
466
467             rinv00           = gmx_mm_invsqrt_pd(rsq00);
468             rinv10           = gmx_mm_invsqrt_pd(rsq10);
469             rinv20           = gmx_mm_invsqrt_pd(rsq20);
470             rinv30           = gmx_mm_invsqrt_pd(rsq30);
471
472             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
473             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
474             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
475             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
476
477             /* Load parameters for j particles */
478             jq0              = _mm_load_sd(charge+jnrA+0);
479             vdwjidx0A        = 2*vdwtype[jnrA+0];
480
481             fjx0             = _mm_setzero_pd();
482             fjy0             = _mm_setzero_pd();
483             fjz0             = _mm_setzero_pd();
484
485             /**************************
486              * CALCULATE INTERACTIONS *
487              **************************/
488
489             r00              = _mm_mul_pd(rsq00,rinv00);
490
491             /* Compute parameters for interactions between i and j atoms */
492             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
493
494             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
495
496             /* Analytical LJ-PME */
497             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
498             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
499             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
500             exponent         = gmx_simd_exp_d(ewcljrsq);
501             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
502             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
503             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
504             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
505             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
506             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
507             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
508             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
509
510             /* Update potential sum for this i atom from the interaction with this j atom. */
511             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
512             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
513
514             fscal            = fvdw;
515
516             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
517
518             /* Calculate temporary vectorial force */
519             tx               = _mm_mul_pd(fscal,dx00);
520             ty               = _mm_mul_pd(fscal,dy00);
521             tz               = _mm_mul_pd(fscal,dz00);
522
523             /* Update vectorial force */
524             fix0             = _mm_add_pd(fix0,tx);
525             fiy0             = _mm_add_pd(fiy0,ty);
526             fiz0             = _mm_add_pd(fiz0,tz);
527
528             fjx0             = _mm_add_pd(fjx0,tx);
529             fjy0             = _mm_add_pd(fjy0,ty);
530             fjz0             = _mm_add_pd(fjz0,tz);
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             r10              = _mm_mul_pd(rsq10,rinv10);
537
538             /* Compute parameters for interactions between i and j atoms */
539             qq10             = _mm_mul_pd(iq1,jq0);
540
541             /* EWALD ELECTROSTATICS */
542
543             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
544             ewrt             = _mm_mul_pd(r10,ewtabscale);
545             ewitab           = _mm_cvttpd_epi32(ewrt);
546             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
547             ewitab           = _mm_slli_epi32(ewitab,2);
548             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
549             ewtabD           = _mm_setzero_pd();
550             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
551             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
552             ewtabFn          = _mm_setzero_pd();
553             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
554             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
555             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
556             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
557             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
558
559             /* Update potential sum for this i atom from the interaction with this j atom. */
560             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
561             velecsum         = _mm_add_pd(velecsum,velec);
562
563             fscal            = felec;
564
565             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
566
567             /* Calculate temporary vectorial force */
568             tx               = _mm_mul_pd(fscal,dx10);
569             ty               = _mm_mul_pd(fscal,dy10);
570             tz               = _mm_mul_pd(fscal,dz10);
571
572             /* Update vectorial force */
573             fix1             = _mm_add_pd(fix1,tx);
574             fiy1             = _mm_add_pd(fiy1,ty);
575             fiz1             = _mm_add_pd(fiz1,tz);
576
577             fjx0             = _mm_add_pd(fjx0,tx);
578             fjy0             = _mm_add_pd(fjy0,ty);
579             fjz0             = _mm_add_pd(fjz0,tz);
580
581             /**************************
582              * CALCULATE INTERACTIONS *
583              **************************/
584
585             r20              = _mm_mul_pd(rsq20,rinv20);
586
587             /* Compute parameters for interactions between i and j atoms */
588             qq20             = _mm_mul_pd(iq2,jq0);
589
590             /* EWALD ELECTROSTATICS */
591
592             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
593             ewrt             = _mm_mul_pd(r20,ewtabscale);
594             ewitab           = _mm_cvttpd_epi32(ewrt);
595             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
596             ewitab           = _mm_slli_epi32(ewitab,2);
597             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
598             ewtabD           = _mm_setzero_pd();
599             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
600             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
601             ewtabFn          = _mm_setzero_pd();
602             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
603             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
604             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
605             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
606             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
607
608             /* Update potential sum for this i atom from the interaction with this j atom. */
609             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
610             velecsum         = _mm_add_pd(velecsum,velec);
611
612             fscal            = felec;
613
614             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
615
616             /* Calculate temporary vectorial force */
617             tx               = _mm_mul_pd(fscal,dx20);
618             ty               = _mm_mul_pd(fscal,dy20);
619             tz               = _mm_mul_pd(fscal,dz20);
620
621             /* Update vectorial force */
622             fix2             = _mm_add_pd(fix2,tx);
623             fiy2             = _mm_add_pd(fiy2,ty);
624             fiz2             = _mm_add_pd(fiz2,tz);
625
626             fjx0             = _mm_add_pd(fjx0,tx);
627             fjy0             = _mm_add_pd(fjy0,ty);
628             fjz0             = _mm_add_pd(fjz0,tz);
629
630             /**************************
631              * CALCULATE INTERACTIONS *
632              **************************/
633
634             r30              = _mm_mul_pd(rsq30,rinv30);
635
636             /* Compute parameters for interactions between i and j atoms */
637             qq30             = _mm_mul_pd(iq3,jq0);
638
639             /* EWALD ELECTROSTATICS */
640
641             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
642             ewrt             = _mm_mul_pd(r30,ewtabscale);
643             ewitab           = _mm_cvttpd_epi32(ewrt);
644             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
645             ewitab           = _mm_slli_epi32(ewitab,2);
646             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
647             ewtabD           = _mm_setzero_pd();
648             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
649             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
650             ewtabFn          = _mm_setzero_pd();
651             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
652             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
653             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
654             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
655             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
656
657             /* Update potential sum for this i atom from the interaction with this j atom. */
658             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
659             velecsum         = _mm_add_pd(velecsum,velec);
660
661             fscal            = felec;
662
663             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
664
665             /* Calculate temporary vectorial force */
666             tx               = _mm_mul_pd(fscal,dx30);
667             ty               = _mm_mul_pd(fscal,dy30);
668             tz               = _mm_mul_pd(fscal,dz30);
669
670             /* Update vectorial force */
671             fix3             = _mm_add_pd(fix3,tx);
672             fiy3             = _mm_add_pd(fiy3,ty);
673             fiz3             = _mm_add_pd(fiz3,tz);
674
675             fjx0             = _mm_add_pd(fjx0,tx);
676             fjy0             = _mm_add_pd(fjy0,ty);
677             fjz0             = _mm_add_pd(fjz0,tz);
678
679             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
680
681             /* Inner loop uses 177 flops */
682         }
683
684         /* End of innermost loop */
685
686         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
687                                               f+i_coord_offset,fshift+i_shift_offset);
688
689         ggid                        = gid[iidx];
690         /* Update potential energies */
691         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
692         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
693
694         /* Increment number of inner iterations */
695         inneriter                  += j_index_end - j_index_start;
696
697         /* Outer loop uses 26 flops */
698     }
699
700     /* Increment number of outer iterations */
701     outeriter        += nri;
702
703     /* Update outer/inner flops */
704
705     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*177);
706 }
707 /*
708  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse2_double
709  * Electrostatics interaction: Ewald
710  * VdW interaction:            LJEwald
711  * Geometry:                   Water4-Particle
712  * Calculate force/pot:        Force
713  */
714 void
715 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_sse2_double
716                     (t_nblist                    * gmx_restrict       nlist,
717                      rvec                        * gmx_restrict          xx,
718                      rvec                        * gmx_restrict          ff,
719                      t_forcerec                  * gmx_restrict          fr,
720                      t_mdatoms                   * gmx_restrict     mdatoms,
721                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
722                      t_nrnb                      * gmx_restrict        nrnb)
723 {
724     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
725      * just 0 for non-waters.
726      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
727      * jnr indices corresponding to data put in the four positions in the SIMD register.
728      */
729     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
730     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
731     int              jnrA,jnrB;
732     int              j_coord_offsetA,j_coord_offsetB;
733     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
734     real             rcutoff_scalar;
735     real             *shiftvec,*fshift,*x,*f;
736     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
737     int              vdwioffset0;
738     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
739     int              vdwioffset1;
740     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
741     int              vdwioffset2;
742     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
743     int              vdwioffset3;
744     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
745     int              vdwjidx0A,vdwjidx0B;
746     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
747     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
748     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
749     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
750     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
751     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
752     real             *charge;
753     int              nvdwtype;
754     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
755     int              *vdwtype;
756     real             *vdwparam;
757     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
758     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
759     __m128d           c6grid_00;
760     __m128d           c6grid_10;
761     __m128d           c6grid_20;
762     __m128d           c6grid_30;
763     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
764     real             *vdwgridparam;
765     __m128d           one_half = _mm_set1_pd(0.5);
766     __m128d           minus_one = _mm_set1_pd(-1.0);
767     __m128i          ewitab;
768     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
769     real             *ewtab;
770     __m128d          dummy_mask,cutoff_mask;
771     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
772     __m128d          one     = _mm_set1_pd(1.0);
773     __m128d          two     = _mm_set1_pd(2.0);
774     x                = xx[0];
775     f                = ff[0];
776
777     nri              = nlist->nri;
778     iinr             = nlist->iinr;
779     jindex           = nlist->jindex;
780     jjnr             = nlist->jjnr;
781     shiftidx         = nlist->shift;
782     gid              = nlist->gid;
783     shiftvec         = fr->shift_vec[0];
784     fshift           = fr->fshift[0];
785     facel            = _mm_set1_pd(fr->epsfac);
786     charge           = mdatoms->chargeA;
787     nvdwtype         = fr->ntype;
788     vdwparam         = fr->nbfp;
789     vdwtype          = mdatoms->typeA;
790     vdwgridparam     = fr->ljpme_c6grid;
791     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
792     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
793     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
794
795     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
796     ewtab            = fr->ic->tabq_coul_F;
797     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
798     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
799
800     /* Setup water-specific parameters */
801     inr              = nlist->iinr[0];
802     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
803     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
804     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
805     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
806
807     /* Avoid stupid compiler warnings */
808     jnrA = jnrB = 0;
809     j_coord_offsetA = 0;
810     j_coord_offsetB = 0;
811
812     outeriter        = 0;
813     inneriter        = 0;
814
815     /* Start outer loop over neighborlists */
816     for(iidx=0; iidx<nri; iidx++)
817     {
818         /* Load shift vector for this list */
819         i_shift_offset   = DIM*shiftidx[iidx];
820
821         /* Load limits for loop over neighbors */
822         j_index_start    = jindex[iidx];
823         j_index_end      = jindex[iidx+1];
824
825         /* Get outer coordinate index */
826         inr              = iinr[iidx];
827         i_coord_offset   = DIM*inr;
828
829         /* Load i particle coords and add shift vector */
830         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
831                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
832
833         fix0             = _mm_setzero_pd();
834         fiy0             = _mm_setzero_pd();
835         fiz0             = _mm_setzero_pd();
836         fix1             = _mm_setzero_pd();
837         fiy1             = _mm_setzero_pd();
838         fiz1             = _mm_setzero_pd();
839         fix2             = _mm_setzero_pd();
840         fiy2             = _mm_setzero_pd();
841         fiz2             = _mm_setzero_pd();
842         fix3             = _mm_setzero_pd();
843         fiy3             = _mm_setzero_pd();
844         fiz3             = _mm_setzero_pd();
845
846         /* Start inner kernel loop */
847         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
848         {
849
850             /* Get j neighbor index, and coordinate index */
851             jnrA             = jjnr[jidx];
852             jnrB             = jjnr[jidx+1];
853             j_coord_offsetA  = DIM*jnrA;
854             j_coord_offsetB  = DIM*jnrB;
855
856             /* load j atom coordinates */
857             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
858                                               &jx0,&jy0,&jz0);
859
860             /* Calculate displacement vector */
861             dx00             = _mm_sub_pd(ix0,jx0);
862             dy00             = _mm_sub_pd(iy0,jy0);
863             dz00             = _mm_sub_pd(iz0,jz0);
864             dx10             = _mm_sub_pd(ix1,jx0);
865             dy10             = _mm_sub_pd(iy1,jy0);
866             dz10             = _mm_sub_pd(iz1,jz0);
867             dx20             = _mm_sub_pd(ix2,jx0);
868             dy20             = _mm_sub_pd(iy2,jy0);
869             dz20             = _mm_sub_pd(iz2,jz0);
870             dx30             = _mm_sub_pd(ix3,jx0);
871             dy30             = _mm_sub_pd(iy3,jy0);
872             dz30             = _mm_sub_pd(iz3,jz0);
873
874             /* Calculate squared distance and things based on it */
875             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
876             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
877             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
878             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
879
880             rinv00           = gmx_mm_invsqrt_pd(rsq00);
881             rinv10           = gmx_mm_invsqrt_pd(rsq10);
882             rinv20           = gmx_mm_invsqrt_pd(rsq20);
883             rinv30           = gmx_mm_invsqrt_pd(rsq30);
884
885             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
886             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
887             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
888             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
889
890             /* Load parameters for j particles */
891             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
892             vdwjidx0A        = 2*vdwtype[jnrA+0];
893             vdwjidx0B        = 2*vdwtype[jnrB+0];
894
895             fjx0             = _mm_setzero_pd();
896             fjy0             = _mm_setzero_pd();
897             fjz0             = _mm_setzero_pd();
898
899             /**************************
900              * CALCULATE INTERACTIONS *
901              **************************/
902
903             r00              = _mm_mul_pd(rsq00,rinv00);
904
905             /* Compute parameters for interactions between i and j atoms */
906             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
907                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
908
909             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
910                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
911
912             /* Analytical LJ-PME */
913             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
914             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
915             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
916             exponent         = gmx_simd_exp_d(ewcljrsq);
917             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
918             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
919             /* f6A = 6 * C6grid * (1 - poly) */
920             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
921             /* f6B = C6grid * exponent * beta^6 */
922             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
923             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
924             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
925
926             fscal            = fvdw;
927
928             /* Calculate temporary vectorial force */
929             tx               = _mm_mul_pd(fscal,dx00);
930             ty               = _mm_mul_pd(fscal,dy00);
931             tz               = _mm_mul_pd(fscal,dz00);
932
933             /* Update vectorial force */
934             fix0             = _mm_add_pd(fix0,tx);
935             fiy0             = _mm_add_pd(fiy0,ty);
936             fiz0             = _mm_add_pd(fiz0,tz);
937
938             fjx0             = _mm_add_pd(fjx0,tx);
939             fjy0             = _mm_add_pd(fjy0,ty);
940             fjz0             = _mm_add_pd(fjz0,tz);
941
942             /**************************
943              * CALCULATE INTERACTIONS *
944              **************************/
945
946             r10              = _mm_mul_pd(rsq10,rinv10);
947
948             /* Compute parameters for interactions between i and j atoms */
949             qq10             = _mm_mul_pd(iq1,jq0);
950
951             /* EWALD ELECTROSTATICS */
952
953             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
954             ewrt             = _mm_mul_pd(r10,ewtabscale);
955             ewitab           = _mm_cvttpd_epi32(ewrt);
956             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
957             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
958                                          &ewtabF,&ewtabFn);
959             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
960             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
961
962             fscal            = felec;
963
964             /* Calculate temporary vectorial force */
965             tx               = _mm_mul_pd(fscal,dx10);
966             ty               = _mm_mul_pd(fscal,dy10);
967             tz               = _mm_mul_pd(fscal,dz10);
968
969             /* Update vectorial force */
970             fix1             = _mm_add_pd(fix1,tx);
971             fiy1             = _mm_add_pd(fiy1,ty);
972             fiz1             = _mm_add_pd(fiz1,tz);
973
974             fjx0             = _mm_add_pd(fjx0,tx);
975             fjy0             = _mm_add_pd(fjy0,ty);
976             fjz0             = _mm_add_pd(fjz0,tz);
977
978             /**************************
979              * CALCULATE INTERACTIONS *
980              **************************/
981
982             r20              = _mm_mul_pd(rsq20,rinv20);
983
984             /* Compute parameters for interactions between i and j atoms */
985             qq20             = _mm_mul_pd(iq2,jq0);
986
987             /* EWALD ELECTROSTATICS */
988
989             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
990             ewrt             = _mm_mul_pd(r20,ewtabscale);
991             ewitab           = _mm_cvttpd_epi32(ewrt);
992             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
993             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
994                                          &ewtabF,&ewtabFn);
995             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
996             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
997
998             fscal            = felec;
999
1000             /* Calculate temporary vectorial force */
1001             tx               = _mm_mul_pd(fscal,dx20);
1002             ty               = _mm_mul_pd(fscal,dy20);
1003             tz               = _mm_mul_pd(fscal,dz20);
1004
1005             /* Update vectorial force */
1006             fix2             = _mm_add_pd(fix2,tx);
1007             fiy2             = _mm_add_pd(fiy2,ty);
1008             fiz2             = _mm_add_pd(fiz2,tz);
1009
1010             fjx0             = _mm_add_pd(fjx0,tx);
1011             fjy0             = _mm_add_pd(fjy0,ty);
1012             fjz0             = _mm_add_pd(fjz0,tz);
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             r30              = _mm_mul_pd(rsq30,rinv30);
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             qq30             = _mm_mul_pd(iq3,jq0);
1022
1023             /* EWALD ELECTROSTATICS */
1024
1025             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1026             ewrt             = _mm_mul_pd(r30,ewtabscale);
1027             ewitab           = _mm_cvttpd_epi32(ewrt);
1028             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1029             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1030                                          &ewtabF,&ewtabFn);
1031             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1032             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1033
1034             fscal            = felec;
1035
1036             /* Calculate temporary vectorial force */
1037             tx               = _mm_mul_pd(fscal,dx30);
1038             ty               = _mm_mul_pd(fscal,dy30);
1039             tz               = _mm_mul_pd(fscal,dz30);
1040
1041             /* Update vectorial force */
1042             fix3             = _mm_add_pd(fix3,tx);
1043             fiy3             = _mm_add_pd(fiy3,ty);
1044             fiz3             = _mm_add_pd(fiz3,tz);
1045
1046             fjx0             = _mm_add_pd(fjx0,tx);
1047             fjy0             = _mm_add_pd(fjy0,ty);
1048             fjz0             = _mm_add_pd(fjz0,tz);
1049
1050             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1051
1052             /* Inner loop uses 157 flops */
1053         }
1054
1055         if(jidx<j_index_end)
1056         {
1057
1058             jnrA             = jjnr[jidx];
1059             j_coord_offsetA  = DIM*jnrA;
1060
1061             /* load j atom coordinates */
1062             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1063                                               &jx0,&jy0,&jz0);
1064
1065             /* Calculate displacement vector */
1066             dx00             = _mm_sub_pd(ix0,jx0);
1067             dy00             = _mm_sub_pd(iy0,jy0);
1068             dz00             = _mm_sub_pd(iz0,jz0);
1069             dx10             = _mm_sub_pd(ix1,jx0);
1070             dy10             = _mm_sub_pd(iy1,jy0);
1071             dz10             = _mm_sub_pd(iz1,jz0);
1072             dx20             = _mm_sub_pd(ix2,jx0);
1073             dy20             = _mm_sub_pd(iy2,jy0);
1074             dz20             = _mm_sub_pd(iz2,jz0);
1075             dx30             = _mm_sub_pd(ix3,jx0);
1076             dy30             = _mm_sub_pd(iy3,jy0);
1077             dz30             = _mm_sub_pd(iz3,jz0);
1078
1079             /* Calculate squared distance and things based on it */
1080             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1081             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1082             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1083             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1084
1085             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1086             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1087             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1088             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1089
1090             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1091             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1092             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1093             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1094
1095             /* Load parameters for j particles */
1096             jq0              = _mm_load_sd(charge+jnrA+0);
1097             vdwjidx0A        = 2*vdwtype[jnrA+0];
1098
1099             fjx0             = _mm_setzero_pd();
1100             fjy0             = _mm_setzero_pd();
1101             fjz0             = _mm_setzero_pd();
1102
1103             /**************************
1104              * CALCULATE INTERACTIONS *
1105              **************************/
1106
1107             r00              = _mm_mul_pd(rsq00,rinv00);
1108
1109             /* Compute parameters for interactions between i and j atoms */
1110             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1111
1112             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1113
1114             /* Analytical LJ-PME */
1115             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1116             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1117             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1118             exponent         = gmx_simd_exp_d(ewcljrsq);
1119             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1120             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1121             /* f6A = 6 * C6grid * (1 - poly) */
1122             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1123             /* f6B = C6grid * exponent * beta^6 */
1124             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1125             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1126             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1127
1128             fscal            = fvdw;
1129
1130             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1131
1132             /* Calculate temporary vectorial force */
1133             tx               = _mm_mul_pd(fscal,dx00);
1134             ty               = _mm_mul_pd(fscal,dy00);
1135             tz               = _mm_mul_pd(fscal,dz00);
1136
1137             /* Update vectorial force */
1138             fix0             = _mm_add_pd(fix0,tx);
1139             fiy0             = _mm_add_pd(fiy0,ty);
1140             fiz0             = _mm_add_pd(fiz0,tz);
1141
1142             fjx0             = _mm_add_pd(fjx0,tx);
1143             fjy0             = _mm_add_pd(fjy0,ty);
1144             fjz0             = _mm_add_pd(fjz0,tz);
1145
1146             /**************************
1147              * CALCULATE INTERACTIONS *
1148              **************************/
1149
1150             r10              = _mm_mul_pd(rsq10,rinv10);
1151
1152             /* Compute parameters for interactions between i and j atoms */
1153             qq10             = _mm_mul_pd(iq1,jq0);
1154
1155             /* EWALD ELECTROSTATICS */
1156
1157             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1158             ewrt             = _mm_mul_pd(r10,ewtabscale);
1159             ewitab           = _mm_cvttpd_epi32(ewrt);
1160             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1161             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1162             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1163             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1164
1165             fscal            = felec;
1166
1167             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1168
1169             /* Calculate temporary vectorial force */
1170             tx               = _mm_mul_pd(fscal,dx10);
1171             ty               = _mm_mul_pd(fscal,dy10);
1172             tz               = _mm_mul_pd(fscal,dz10);
1173
1174             /* Update vectorial force */
1175             fix1             = _mm_add_pd(fix1,tx);
1176             fiy1             = _mm_add_pd(fiy1,ty);
1177             fiz1             = _mm_add_pd(fiz1,tz);
1178
1179             fjx0             = _mm_add_pd(fjx0,tx);
1180             fjy0             = _mm_add_pd(fjy0,ty);
1181             fjz0             = _mm_add_pd(fjz0,tz);
1182
1183             /**************************
1184              * CALCULATE INTERACTIONS *
1185              **************************/
1186
1187             r20              = _mm_mul_pd(rsq20,rinv20);
1188
1189             /* Compute parameters for interactions between i and j atoms */
1190             qq20             = _mm_mul_pd(iq2,jq0);
1191
1192             /* EWALD ELECTROSTATICS */
1193
1194             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1195             ewrt             = _mm_mul_pd(r20,ewtabscale);
1196             ewitab           = _mm_cvttpd_epi32(ewrt);
1197             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1198             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1199             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1200             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1201
1202             fscal            = felec;
1203
1204             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1205
1206             /* Calculate temporary vectorial force */
1207             tx               = _mm_mul_pd(fscal,dx20);
1208             ty               = _mm_mul_pd(fscal,dy20);
1209             tz               = _mm_mul_pd(fscal,dz20);
1210
1211             /* Update vectorial force */
1212             fix2             = _mm_add_pd(fix2,tx);
1213             fiy2             = _mm_add_pd(fiy2,ty);
1214             fiz2             = _mm_add_pd(fiz2,tz);
1215
1216             fjx0             = _mm_add_pd(fjx0,tx);
1217             fjy0             = _mm_add_pd(fjy0,ty);
1218             fjz0             = _mm_add_pd(fjz0,tz);
1219
1220             /**************************
1221              * CALCULATE INTERACTIONS *
1222              **************************/
1223
1224             r30              = _mm_mul_pd(rsq30,rinv30);
1225
1226             /* Compute parameters for interactions between i and j atoms */
1227             qq30             = _mm_mul_pd(iq3,jq0);
1228
1229             /* EWALD ELECTROSTATICS */
1230
1231             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1232             ewrt             = _mm_mul_pd(r30,ewtabscale);
1233             ewitab           = _mm_cvttpd_epi32(ewrt);
1234             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1235             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1236             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1237             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1238
1239             fscal            = felec;
1240
1241             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1242
1243             /* Calculate temporary vectorial force */
1244             tx               = _mm_mul_pd(fscal,dx30);
1245             ty               = _mm_mul_pd(fscal,dy30);
1246             tz               = _mm_mul_pd(fscal,dz30);
1247
1248             /* Update vectorial force */
1249             fix3             = _mm_add_pd(fix3,tx);
1250             fiy3             = _mm_add_pd(fiy3,ty);
1251             fiz3             = _mm_add_pd(fiz3,tz);
1252
1253             fjx0             = _mm_add_pd(fjx0,tx);
1254             fjy0             = _mm_add_pd(fjy0,ty);
1255             fjz0             = _mm_add_pd(fjz0,tz);
1256
1257             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1258
1259             /* Inner loop uses 157 flops */
1260         }
1261
1262         /* End of innermost loop */
1263
1264         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1265                                               f+i_coord_offset,fshift+i_shift_offset);
1266
1267         /* Increment number of inner iterations */
1268         inneriter                  += j_index_end - j_index_start;
1269
1270         /* Outer loop uses 24 flops */
1271     }
1272
1273     /* Increment number of outer iterations */
1274     outeriter        += nri;
1275
1276     /* Update outer/inner flops */
1277
1278     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*157);
1279 }