Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJEw_GeomW3W3_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3W3_VF_sse2_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Water3
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW3W3_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     int              vdwjidx1A,vdwjidx1B;
91     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
92     int              vdwjidx2A,vdwjidx2B;
93     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
94     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
96     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
97     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
99     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
100     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
102     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
103     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
104     real             *charge;
105     int              nvdwtype;
106     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
107     int              *vdwtype;
108     real             *vdwparam;
109     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
110     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
111     __m128d           c6grid_00;
112     __m128d           c6grid_01;
113     __m128d           c6grid_02;
114     __m128d           c6grid_10;
115     __m128d           c6grid_11;
116     __m128d           c6grid_12;
117     __m128d           c6grid_20;
118     __m128d           c6grid_21;
119     __m128d           c6grid_22;
120     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
121     real             *vdwgridparam;
122     __m128d           one_half = _mm_set1_pd(0.5);
123     __m128d           minus_one = _mm_set1_pd(-1.0);
124     __m128i          ewitab;
125     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
126     real             *ewtab;
127     __m128d          dummy_mask,cutoff_mask;
128     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
129     __m128d          one     = _mm_set1_pd(1.0);
130     __m128d          two     = _mm_set1_pd(2.0);
131     x                = xx[0];
132     f                = ff[0];
133
134     nri              = nlist->nri;
135     iinr             = nlist->iinr;
136     jindex           = nlist->jindex;
137     jjnr             = nlist->jjnr;
138     shiftidx         = nlist->shift;
139     gid              = nlist->gid;
140     shiftvec         = fr->shift_vec[0];
141     fshift           = fr->fshift[0];
142     facel            = _mm_set1_pd(fr->epsfac);
143     charge           = mdatoms->chargeA;
144     nvdwtype         = fr->ntype;
145     vdwparam         = fr->nbfp;
146     vdwtype          = mdatoms->typeA;
147     vdwgridparam     = fr->ljpme_c6grid;
148     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
149     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
150     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
151
152     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
153     ewtab            = fr->ic->tabq_coul_FDV0;
154     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
155     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
156
157     /* Setup water-specific parameters */
158     inr              = nlist->iinr[0];
159     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
160     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
161     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
162     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164     jq0              = _mm_set1_pd(charge[inr+0]);
165     jq1              = _mm_set1_pd(charge[inr+1]);
166     jq2              = _mm_set1_pd(charge[inr+2]);
167     vdwjidx0A        = 2*vdwtype[inr+0];
168     qq00             = _mm_mul_pd(iq0,jq0);
169     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
170     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
171     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
172     qq01             = _mm_mul_pd(iq0,jq1);
173     qq02             = _mm_mul_pd(iq0,jq2);
174     qq10             = _mm_mul_pd(iq1,jq0);
175     qq11             = _mm_mul_pd(iq1,jq1);
176     qq12             = _mm_mul_pd(iq1,jq2);
177     qq20             = _mm_mul_pd(iq2,jq0);
178     qq21             = _mm_mul_pd(iq2,jq1);
179     qq22             = _mm_mul_pd(iq2,jq2);
180
181     /* Avoid stupid compiler warnings */
182     jnrA = jnrB = 0;
183     j_coord_offsetA = 0;
184     j_coord_offsetB = 0;
185
186     outeriter        = 0;
187     inneriter        = 0;
188
189     /* Start outer loop over neighborlists */
190     for(iidx=0; iidx<nri; iidx++)
191     {
192         /* Load shift vector for this list */
193         i_shift_offset   = DIM*shiftidx[iidx];
194
195         /* Load limits for loop over neighbors */
196         j_index_start    = jindex[iidx];
197         j_index_end      = jindex[iidx+1];
198
199         /* Get outer coordinate index */
200         inr              = iinr[iidx];
201         i_coord_offset   = DIM*inr;
202
203         /* Load i particle coords and add shift vector */
204         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
205                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
206
207         fix0             = _mm_setzero_pd();
208         fiy0             = _mm_setzero_pd();
209         fiz0             = _mm_setzero_pd();
210         fix1             = _mm_setzero_pd();
211         fiy1             = _mm_setzero_pd();
212         fiz1             = _mm_setzero_pd();
213         fix2             = _mm_setzero_pd();
214         fiy2             = _mm_setzero_pd();
215         fiz2             = _mm_setzero_pd();
216
217         /* Reset potential sums */
218         velecsum         = _mm_setzero_pd();
219         vvdwsum          = _mm_setzero_pd();
220
221         /* Start inner kernel loop */
222         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
223         {
224
225             /* Get j neighbor index, and coordinate index */
226             jnrA             = jjnr[jidx];
227             jnrB             = jjnr[jidx+1];
228             j_coord_offsetA  = DIM*jnrA;
229             j_coord_offsetB  = DIM*jnrB;
230
231             /* load j atom coordinates */
232             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
233                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
234
235             /* Calculate displacement vector */
236             dx00             = _mm_sub_pd(ix0,jx0);
237             dy00             = _mm_sub_pd(iy0,jy0);
238             dz00             = _mm_sub_pd(iz0,jz0);
239             dx01             = _mm_sub_pd(ix0,jx1);
240             dy01             = _mm_sub_pd(iy0,jy1);
241             dz01             = _mm_sub_pd(iz0,jz1);
242             dx02             = _mm_sub_pd(ix0,jx2);
243             dy02             = _mm_sub_pd(iy0,jy2);
244             dz02             = _mm_sub_pd(iz0,jz2);
245             dx10             = _mm_sub_pd(ix1,jx0);
246             dy10             = _mm_sub_pd(iy1,jy0);
247             dz10             = _mm_sub_pd(iz1,jz0);
248             dx11             = _mm_sub_pd(ix1,jx1);
249             dy11             = _mm_sub_pd(iy1,jy1);
250             dz11             = _mm_sub_pd(iz1,jz1);
251             dx12             = _mm_sub_pd(ix1,jx2);
252             dy12             = _mm_sub_pd(iy1,jy2);
253             dz12             = _mm_sub_pd(iz1,jz2);
254             dx20             = _mm_sub_pd(ix2,jx0);
255             dy20             = _mm_sub_pd(iy2,jy0);
256             dz20             = _mm_sub_pd(iz2,jz0);
257             dx21             = _mm_sub_pd(ix2,jx1);
258             dy21             = _mm_sub_pd(iy2,jy1);
259             dz21             = _mm_sub_pd(iz2,jz1);
260             dx22             = _mm_sub_pd(ix2,jx2);
261             dy22             = _mm_sub_pd(iy2,jy2);
262             dz22             = _mm_sub_pd(iz2,jz2);
263
264             /* Calculate squared distance and things based on it */
265             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
266             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
267             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
268             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
269             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
270             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
271             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
272             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
273             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
274
275             rinv00           = gmx_mm_invsqrt_pd(rsq00);
276             rinv01           = gmx_mm_invsqrt_pd(rsq01);
277             rinv02           = gmx_mm_invsqrt_pd(rsq02);
278             rinv10           = gmx_mm_invsqrt_pd(rsq10);
279             rinv11           = gmx_mm_invsqrt_pd(rsq11);
280             rinv12           = gmx_mm_invsqrt_pd(rsq12);
281             rinv20           = gmx_mm_invsqrt_pd(rsq20);
282             rinv21           = gmx_mm_invsqrt_pd(rsq21);
283             rinv22           = gmx_mm_invsqrt_pd(rsq22);
284
285             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
286             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
287             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
288             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
289             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
290             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
291             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
292             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
293             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
294
295             fjx0             = _mm_setzero_pd();
296             fjy0             = _mm_setzero_pd();
297             fjz0             = _mm_setzero_pd();
298             fjx1             = _mm_setzero_pd();
299             fjy1             = _mm_setzero_pd();
300             fjz1             = _mm_setzero_pd();
301             fjx2             = _mm_setzero_pd();
302             fjy2             = _mm_setzero_pd();
303             fjz2             = _mm_setzero_pd();
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             r00              = _mm_mul_pd(rsq00,rinv00);
310
311             /* EWALD ELECTROSTATICS */
312
313             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
314             ewrt             = _mm_mul_pd(r00,ewtabscale);
315             ewitab           = _mm_cvttpd_epi32(ewrt);
316             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
317             ewitab           = _mm_slli_epi32(ewitab,2);
318             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
319             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
320             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
321             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
322             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
323             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
324             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
325             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
326             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
327             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
328
329             /* Analytical LJ-PME */
330             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
331             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
332             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
333             exponent         = gmx_simd_exp_d(ewcljrsq);
334             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
335             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
336             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
337             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
338             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
339             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
340             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
341             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velecsum         = _mm_add_pd(velecsum,velec);
345             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
346
347             fscal            = _mm_add_pd(felec,fvdw);
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm_mul_pd(fscal,dx00);
351             ty               = _mm_mul_pd(fscal,dy00);
352             tz               = _mm_mul_pd(fscal,dz00);
353
354             /* Update vectorial force */
355             fix0             = _mm_add_pd(fix0,tx);
356             fiy0             = _mm_add_pd(fiy0,ty);
357             fiz0             = _mm_add_pd(fiz0,tz);
358
359             fjx0             = _mm_add_pd(fjx0,tx);
360             fjy0             = _mm_add_pd(fjy0,ty);
361             fjz0             = _mm_add_pd(fjz0,tz);
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             r01              = _mm_mul_pd(rsq01,rinv01);
368
369             /* EWALD ELECTROSTATICS */
370
371             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
372             ewrt             = _mm_mul_pd(r01,ewtabscale);
373             ewitab           = _mm_cvttpd_epi32(ewrt);
374             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
375             ewitab           = _mm_slli_epi32(ewitab,2);
376             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
377             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
378             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
379             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
380             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
381             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
382             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
383             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
384             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
385             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velecsum         = _mm_add_pd(velecsum,velec);
389
390             fscal            = felec;
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm_mul_pd(fscal,dx01);
394             ty               = _mm_mul_pd(fscal,dy01);
395             tz               = _mm_mul_pd(fscal,dz01);
396
397             /* Update vectorial force */
398             fix0             = _mm_add_pd(fix0,tx);
399             fiy0             = _mm_add_pd(fiy0,ty);
400             fiz0             = _mm_add_pd(fiz0,tz);
401
402             fjx1             = _mm_add_pd(fjx1,tx);
403             fjy1             = _mm_add_pd(fjy1,ty);
404             fjz1             = _mm_add_pd(fjz1,tz);
405
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             r02              = _mm_mul_pd(rsq02,rinv02);
411
412             /* EWALD ELECTROSTATICS */
413
414             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
415             ewrt             = _mm_mul_pd(r02,ewtabscale);
416             ewitab           = _mm_cvttpd_epi32(ewrt);
417             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
418             ewitab           = _mm_slli_epi32(ewitab,2);
419             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
420             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
421             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
422             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
423             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
424             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
425             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
426             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
427             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
428             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
429
430             /* Update potential sum for this i atom from the interaction with this j atom. */
431             velecsum         = _mm_add_pd(velecsum,velec);
432
433             fscal            = felec;
434
435             /* Calculate temporary vectorial force */
436             tx               = _mm_mul_pd(fscal,dx02);
437             ty               = _mm_mul_pd(fscal,dy02);
438             tz               = _mm_mul_pd(fscal,dz02);
439
440             /* Update vectorial force */
441             fix0             = _mm_add_pd(fix0,tx);
442             fiy0             = _mm_add_pd(fiy0,ty);
443             fiz0             = _mm_add_pd(fiz0,tz);
444
445             fjx2             = _mm_add_pd(fjx2,tx);
446             fjy2             = _mm_add_pd(fjy2,ty);
447             fjz2             = _mm_add_pd(fjz2,tz);
448
449             /**************************
450              * CALCULATE INTERACTIONS *
451              **************************/
452
453             r10              = _mm_mul_pd(rsq10,rinv10);
454
455             /* EWALD ELECTROSTATICS */
456
457             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
458             ewrt             = _mm_mul_pd(r10,ewtabscale);
459             ewitab           = _mm_cvttpd_epi32(ewrt);
460             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
461             ewitab           = _mm_slli_epi32(ewitab,2);
462             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
463             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
464             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
465             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
466             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
467             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
468             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
469             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
470             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
471             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
472
473             /* Update potential sum for this i atom from the interaction with this j atom. */
474             velecsum         = _mm_add_pd(velecsum,velec);
475
476             fscal            = felec;
477
478             /* Calculate temporary vectorial force */
479             tx               = _mm_mul_pd(fscal,dx10);
480             ty               = _mm_mul_pd(fscal,dy10);
481             tz               = _mm_mul_pd(fscal,dz10);
482
483             /* Update vectorial force */
484             fix1             = _mm_add_pd(fix1,tx);
485             fiy1             = _mm_add_pd(fiy1,ty);
486             fiz1             = _mm_add_pd(fiz1,tz);
487
488             fjx0             = _mm_add_pd(fjx0,tx);
489             fjy0             = _mm_add_pd(fjy0,ty);
490             fjz0             = _mm_add_pd(fjz0,tz);
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             r11              = _mm_mul_pd(rsq11,rinv11);
497
498             /* EWALD ELECTROSTATICS */
499
500             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
501             ewrt             = _mm_mul_pd(r11,ewtabscale);
502             ewitab           = _mm_cvttpd_epi32(ewrt);
503             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
504             ewitab           = _mm_slli_epi32(ewitab,2);
505             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
506             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
507             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
508             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
509             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
510             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
511             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
512             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
513             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
514             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
515
516             /* Update potential sum for this i atom from the interaction with this j atom. */
517             velecsum         = _mm_add_pd(velecsum,velec);
518
519             fscal            = felec;
520
521             /* Calculate temporary vectorial force */
522             tx               = _mm_mul_pd(fscal,dx11);
523             ty               = _mm_mul_pd(fscal,dy11);
524             tz               = _mm_mul_pd(fscal,dz11);
525
526             /* Update vectorial force */
527             fix1             = _mm_add_pd(fix1,tx);
528             fiy1             = _mm_add_pd(fiy1,ty);
529             fiz1             = _mm_add_pd(fiz1,tz);
530
531             fjx1             = _mm_add_pd(fjx1,tx);
532             fjy1             = _mm_add_pd(fjy1,ty);
533             fjz1             = _mm_add_pd(fjz1,tz);
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             r12              = _mm_mul_pd(rsq12,rinv12);
540
541             /* EWALD ELECTROSTATICS */
542
543             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
544             ewrt             = _mm_mul_pd(r12,ewtabscale);
545             ewitab           = _mm_cvttpd_epi32(ewrt);
546             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
547             ewitab           = _mm_slli_epi32(ewitab,2);
548             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
549             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
550             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
551             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
552             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
553             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
554             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
555             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
556             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
557             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
558
559             /* Update potential sum for this i atom from the interaction with this j atom. */
560             velecsum         = _mm_add_pd(velecsum,velec);
561
562             fscal            = felec;
563
564             /* Calculate temporary vectorial force */
565             tx               = _mm_mul_pd(fscal,dx12);
566             ty               = _mm_mul_pd(fscal,dy12);
567             tz               = _mm_mul_pd(fscal,dz12);
568
569             /* Update vectorial force */
570             fix1             = _mm_add_pd(fix1,tx);
571             fiy1             = _mm_add_pd(fiy1,ty);
572             fiz1             = _mm_add_pd(fiz1,tz);
573
574             fjx2             = _mm_add_pd(fjx2,tx);
575             fjy2             = _mm_add_pd(fjy2,ty);
576             fjz2             = _mm_add_pd(fjz2,tz);
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             r20              = _mm_mul_pd(rsq20,rinv20);
583
584             /* EWALD ELECTROSTATICS */
585
586             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
587             ewrt             = _mm_mul_pd(r20,ewtabscale);
588             ewitab           = _mm_cvttpd_epi32(ewrt);
589             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
590             ewitab           = _mm_slli_epi32(ewitab,2);
591             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
592             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
593             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
594             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
595             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
596             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
597             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
598             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
599             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
600             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             velecsum         = _mm_add_pd(velecsum,velec);
604
605             fscal            = felec;
606
607             /* Calculate temporary vectorial force */
608             tx               = _mm_mul_pd(fscal,dx20);
609             ty               = _mm_mul_pd(fscal,dy20);
610             tz               = _mm_mul_pd(fscal,dz20);
611
612             /* Update vectorial force */
613             fix2             = _mm_add_pd(fix2,tx);
614             fiy2             = _mm_add_pd(fiy2,ty);
615             fiz2             = _mm_add_pd(fiz2,tz);
616
617             fjx0             = _mm_add_pd(fjx0,tx);
618             fjy0             = _mm_add_pd(fjy0,ty);
619             fjz0             = _mm_add_pd(fjz0,tz);
620
621             /**************************
622              * CALCULATE INTERACTIONS *
623              **************************/
624
625             r21              = _mm_mul_pd(rsq21,rinv21);
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
630             ewrt             = _mm_mul_pd(r21,ewtabscale);
631             ewitab           = _mm_cvttpd_epi32(ewrt);
632             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
633             ewitab           = _mm_slli_epi32(ewitab,2);
634             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
635             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
636             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
637             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
638             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
639             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
640             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
641             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
642             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
643             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
644
645             /* Update potential sum for this i atom from the interaction with this j atom. */
646             velecsum         = _mm_add_pd(velecsum,velec);
647
648             fscal            = felec;
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm_mul_pd(fscal,dx21);
652             ty               = _mm_mul_pd(fscal,dy21);
653             tz               = _mm_mul_pd(fscal,dz21);
654
655             /* Update vectorial force */
656             fix2             = _mm_add_pd(fix2,tx);
657             fiy2             = _mm_add_pd(fiy2,ty);
658             fiz2             = _mm_add_pd(fiz2,tz);
659
660             fjx1             = _mm_add_pd(fjx1,tx);
661             fjy1             = _mm_add_pd(fjy1,ty);
662             fjz1             = _mm_add_pd(fjz1,tz);
663
664             /**************************
665              * CALCULATE INTERACTIONS *
666              **************************/
667
668             r22              = _mm_mul_pd(rsq22,rinv22);
669
670             /* EWALD ELECTROSTATICS */
671
672             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
673             ewrt             = _mm_mul_pd(r22,ewtabscale);
674             ewitab           = _mm_cvttpd_epi32(ewrt);
675             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
676             ewitab           = _mm_slli_epi32(ewitab,2);
677             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
678             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
679             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
680             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
681             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
682             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
683             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
684             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
685             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
686             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
687
688             /* Update potential sum for this i atom from the interaction with this j atom. */
689             velecsum         = _mm_add_pd(velecsum,velec);
690
691             fscal            = felec;
692
693             /* Calculate temporary vectorial force */
694             tx               = _mm_mul_pd(fscal,dx22);
695             ty               = _mm_mul_pd(fscal,dy22);
696             tz               = _mm_mul_pd(fscal,dz22);
697
698             /* Update vectorial force */
699             fix2             = _mm_add_pd(fix2,tx);
700             fiy2             = _mm_add_pd(fiy2,ty);
701             fiz2             = _mm_add_pd(fiz2,tz);
702
703             fjx2             = _mm_add_pd(fjx2,tx);
704             fjy2             = _mm_add_pd(fjy2,ty);
705             fjz2             = _mm_add_pd(fjz2,tz);
706
707             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
708
709             /* Inner loop uses 397 flops */
710         }
711
712         if(jidx<j_index_end)
713         {
714
715             jnrA             = jjnr[jidx];
716             j_coord_offsetA  = DIM*jnrA;
717
718             /* load j atom coordinates */
719             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
720                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
721
722             /* Calculate displacement vector */
723             dx00             = _mm_sub_pd(ix0,jx0);
724             dy00             = _mm_sub_pd(iy0,jy0);
725             dz00             = _mm_sub_pd(iz0,jz0);
726             dx01             = _mm_sub_pd(ix0,jx1);
727             dy01             = _mm_sub_pd(iy0,jy1);
728             dz01             = _mm_sub_pd(iz0,jz1);
729             dx02             = _mm_sub_pd(ix0,jx2);
730             dy02             = _mm_sub_pd(iy0,jy2);
731             dz02             = _mm_sub_pd(iz0,jz2);
732             dx10             = _mm_sub_pd(ix1,jx0);
733             dy10             = _mm_sub_pd(iy1,jy0);
734             dz10             = _mm_sub_pd(iz1,jz0);
735             dx11             = _mm_sub_pd(ix1,jx1);
736             dy11             = _mm_sub_pd(iy1,jy1);
737             dz11             = _mm_sub_pd(iz1,jz1);
738             dx12             = _mm_sub_pd(ix1,jx2);
739             dy12             = _mm_sub_pd(iy1,jy2);
740             dz12             = _mm_sub_pd(iz1,jz2);
741             dx20             = _mm_sub_pd(ix2,jx0);
742             dy20             = _mm_sub_pd(iy2,jy0);
743             dz20             = _mm_sub_pd(iz2,jz0);
744             dx21             = _mm_sub_pd(ix2,jx1);
745             dy21             = _mm_sub_pd(iy2,jy1);
746             dz21             = _mm_sub_pd(iz2,jz1);
747             dx22             = _mm_sub_pd(ix2,jx2);
748             dy22             = _mm_sub_pd(iy2,jy2);
749             dz22             = _mm_sub_pd(iz2,jz2);
750
751             /* Calculate squared distance and things based on it */
752             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
753             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
754             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
755             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
756             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
757             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
758             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
759             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
760             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
761
762             rinv00           = gmx_mm_invsqrt_pd(rsq00);
763             rinv01           = gmx_mm_invsqrt_pd(rsq01);
764             rinv02           = gmx_mm_invsqrt_pd(rsq02);
765             rinv10           = gmx_mm_invsqrt_pd(rsq10);
766             rinv11           = gmx_mm_invsqrt_pd(rsq11);
767             rinv12           = gmx_mm_invsqrt_pd(rsq12);
768             rinv20           = gmx_mm_invsqrt_pd(rsq20);
769             rinv21           = gmx_mm_invsqrt_pd(rsq21);
770             rinv22           = gmx_mm_invsqrt_pd(rsq22);
771
772             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
773             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
774             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
775             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
776             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
777             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
778             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
779             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
780             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
781
782             fjx0             = _mm_setzero_pd();
783             fjy0             = _mm_setzero_pd();
784             fjz0             = _mm_setzero_pd();
785             fjx1             = _mm_setzero_pd();
786             fjy1             = _mm_setzero_pd();
787             fjz1             = _mm_setzero_pd();
788             fjx2             = _mm_setzero_pd();
789             fjy2             = _mm_setzero_pd();
790             fjz2             = _mm_setzero_pd();
791
792             /**************************
793              * CALCULATE INTERACTIONS *
794              **************************/
795
796             r00              = _mm_mul_pd(rsq00,rinv00);
797
798             /* EWALD ELECTROSTATICS */
799
800             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
801             ewrt             = _mm_mul_pd(r00,ewtabscale);
802             ewitab           = _mm_cvttpd_epi32(ewrt);
803             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
804             ewitab           = _mm_slli_epi32(ewitab,2);
805             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
806             ewtabD           = _mm_setzero_pd();
807             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
808             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
809             ewtabFn          = _mm_setzero_pd();
810             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
811             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
812             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
813             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
814             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
815
816             /* Analytical LJ-PME */
817             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
818             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
819             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
820             exponent         = gmx_simd_exp_d(ewcljrsq);
821             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
822             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
823             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
824             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
825             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
826             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
827             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
828             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
829
830             /* Update potential sum for this i atom from the interaction with this j atom. */
831             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
832             velecsum         = _mm_add_pd(velecsum,velec);
833             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
834             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
835
836             fscal            = _mm_add_pd(felec,fvdw);
837
838             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
839
840             /* Calculate temporary vectorial force */
841             tx               = _mm_mul_pd(fscal,dx00);
842             ty               = _mm_mul_pd(fscal,dy00);
843             tz               = _mm_mul_pd(fscal,dz00);
844
845             /* Update vectorial force */
846             fix0             = _mm_add_pd(fix0,tx);
847             fiy0             = _mm_add_pd(fiy0,ty);
848             fiz0             = _mm_add_pd(fiz0,tz);
849
850             fjx0             = _mm_add_pd(fjx0,tx);
851             fjy0             = _mm_add_pd(fjy0,ty);
852             fjz0             = _mm_add_pd(fjz0,tz);
853
854             /**************************
855              * CALCULATE INTERACTIONS *
856              **************************/
857
858             r01              = _mm_mul_pd(rsq01,rinv01);
859
860             /* EWALD ELECTROSTATICS */
861
862             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
863             ewrt             = _mm_mul_pd(r01,ewtabscale);
864             ewitab           = _mm_cvttpd_epi32(ewrt);
865             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
866             ewitab           = _mm_slli_epi32(ewitab,2);
867             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
868             ewtabD           = _mm_setzero_pd();
869             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
870             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
871             ewtabFn          = _mm_setzero_pd();
872             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
873             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
874             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
875             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
876             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
877
878             /* Update potential sum for this i atom from the interaction with this j atom. */
879             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
880             velecsum         = _mm_add_pd(velecsum,velec);
881
882             fscal            = felec;
883
884             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
885
886             /* Calculate temporary vectorial force */
887             tx               = _mm_mul_pd(fscal,dx01);
888             ty               = _mm_mul_pd(fscal,dy01);
889             tz               = _mm_mul_pd(fscal,dz01);
890
891             /* Update vectorial force */
892             fix0             = _mm_add_pd(fix0,tx);
893             fiy0             = _mm_add_pd(fiy0,ty);
894             fiz0             = _mm_add_pd(fiz0,tz);
895
896             fjx1             = _mm_add_pd(fjx1,tx);
897             fjy1             = _mm_add_pd(fjy1,ty);
898             fjz1             = _mm_add_pd(fjz1,tz);
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             r02              = _mm_mul_pd(rsq02,rinv02);
905
906             /* EWALD ELECTROSTATICS */
907
908             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
909             ewrt             = _mm_mul_pd(r02,ewtabscale);
910             ewitab           = _mm_cvttpd_epi32(ewrt);
911             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
912             ewitab           = _mm_slli_epi32(ewitab,2);
913             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
914             ewtabD           = _mm_setzero_pd();
915             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
916             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
917             ewtabFn          = _mm_setzero_pd();
918             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
919             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
920             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
921             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
922             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
923
924             /* Update potential sum for this i atom from the interaction with this j atom. */
925             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
926             velecsum         = _mm_add_pd(velecsum,velec);
927
928             fscal            = felec;
929
930             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
931
932             /* Calculate temporary vectorial force */
933             tx               = _mm_mul_pd(fscal,dx02);
934             ty               = _mm_mul_pd(fscal,dy02);
935             tz               = _mm_mul_pd(fscal,dz02);
936
937             /* Update vectorial force */
938             fix0             = _mm_add_pd(fix0,tx);
939             fiy0             = _mm_add_pd(fiy0,ty);
940             fiz0             = _mm_add_pd(fiz0,tz);
941
942             fjx2             = _mm_add_pd(fjx2,tx);
943             fjy2             = _mm_add_pd(fjy2,ty);
944             fjz2             = _mm_add_pd(fjz2,tz);
945
946             /**************************
947              * CALCULATE INTERACTIONS *
948              **************************/
949
950             r10              = _mm_mul_pd(rsq10,rinv10);
951
952             /* EWALD ELECTROSTATICS */
953
954             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
955             ewrt             = _mm_mul_pd(r10,ewtabscale);
956             ewitab           = _mm_cvttpd_epi32(ewrt);
957             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
958             ewitab           = _mm_slli_epi32(ewitab,2);
959             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
960             ewtabD           = _mm_setzero_pd();
961             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
962             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
963             ewtabFn          = _mm_setzero_pd();
964             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
965             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
966             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
967             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
968             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
969
970             /* Update potential sum for this i atom from the interaction with this j atom. */
971             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
972             velecsum         = _mm_add_pd(velecsum,velec);
973
974             fscal            = felec;
975
976             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
977
978             /* Calculate temporary vectorial force */
979             tx               = _mm_mul_pd(fscal,dx10);
980             ty               = _mm_mul_pd(fscal,dy10);
981             tz               = _mm_mul_pd(fscal,dz10);
982
983             /* Update vectorial force */
984             fix1             = _mm_add_pd(fix1,tx);
985             fiy1             = _mm_add_pd(fiy1,ty);
986             fiz1             = _mm_add_pd(fiz1,tz);
987
988             fjx0             = _mm_add_pd(fjx0,tx);
989             fjy0             = _mm_add_pd(fjy0,ty);
990             fjz0             = _mm_add_pd(fjz0,tz);
991
992             /**************************
993              * CALCULATE INTERACTIONS *
994              **************************/
995
996             r11              = _mm_mul_pd(rsq11,rinv11);
997
998             /* EWALD ELECTROSTATICS */
999
1000             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1001             ewrt             = _mm_mul_pd(r11,ewtabscale);
1002             ewitab           = _mm_cvttpd_epi32(ewrt);
1003             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1004             ewitab           = _mm_slli_epi32(ewitab,2);
1005             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1006             ewtabD           = _mm_setzero_pd();
1007             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1008             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1009             ewtabFn          = _mm_setzero_pd();
1010             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1011             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1012             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1013             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
1014             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1015
1016             /* Update potential sum for this i atom from the interaction with this j atom. */
1017             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1018             velecsum         = _mm_add_pd(velecsum,velec);
1019
1020             fscal            = felec;
1021
1022             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1023
1024             /* Calculate temporary vectorial force */
1025             tx               = _mm_mul_pd(fscal,dx11);
1026             ty               = _mm_mul_pd(fscal,dy11);
1027             tz               = _mm_mul_pd(fscal,dz11);
1028
1029             /* Update vectorial force */
1030             fix1             = _mm_add_pd(fix1,tx);
1031             fiy1             = _mm_add_pd(fiy1,ty);
1032             fiz1             = _mm_add_pd(fiz1,tz);
1033
1034             fjx1             = _mm_add_pd(fjx1,tx);
1035             fjy1             = _mm_add_pd(fjy1,ty);
1036             fjz1             = _mm_add_pd(fjz1,tz);
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             r12              = _mm_mul_pd(rsq12,rinv12);
1043
1044             /* EWALD ELECTROSTATICS */
1045
1046             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1047             ewrt             = _mm_mul_pd(r12,ewtabscale);
1048             ewitab           = _mm_cvttpd_epi32(ewrt);
1049             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1050             ewitab           = _mm_slli_epi32(ewitab,2);
1051             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1052             ewtabD           = _mm_setzero_pd();
1053             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1054             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1055             ewtabFn          = _mm_setzero_pd();
1056             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1057             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1058             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1059             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
1060             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1061
1062             /* Update potential sum for this i atom from the interaction with this j atom. */
1063             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1064             velecsum         = _mm_add_pd(velecsum,velec);
1065
1066             fscal            = felec;
1067
1068             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1069
1070             /* Calculate temporary vectorial force */
1071             tx               = _mm_mul_pd(fscal,dx12);
1072             ty               = _mm_mul_pd(fscal,dy12);
1073             tz               = _mm_mul_pd(fscal,dz12);
1074
1075             /* Update vectorial force */
1076             fix1             = _mm_add_pd(fix1,tx);
1077             fiy1             = _mm_add_pd(fiy1,ty);
1078             fiz1             = _mm_add_pd(fiz1,tz);
1079
1080             fjx2             = _mm_add_pd(fjx2,tx);
1081             fjy2             = _mm_add_pd(fjy2,ty);
1082             fjz2             = _mm_add_pd(fjz2,tz);
1083
1084             /**************************
1085              * CALCULATE INTERACTIONS *
1086              **************************/
1087
1088             r20              = _mm_mul_pd(rsq20,rinv20);
1089
1090             /* EWALD ELECTROSTATICS */
1091
1092             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1093             ewrt             = _mm_mul_pd(r20,ewtabscale);
1094             ewitab           = _mm_cvttpd_epi32(ewrt);
1095             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1096             ewitab           = _mm_slli_epi32(ewitab,2);
1097             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1098             ewtabD           = _mm_setzero_pd();
1099             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1100             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1101             ewtabFn          = _mm_setzero_pd();
1102             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1103             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1104             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1105             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1106             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1107
1108             /* Update potential sum for this i atom from the interaction with this j atom. */
1109             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1110             velecsum         = _mm_add_pd(velecsum,velec);
1111
1112             fscal            = felec;
1113
1114             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1115
1116             /* Calculate temporary vectorial force */
1117             tx               = _mm_mul_pd(fscal,dx20);
1118             ty               = _mm_mul_pd(fscal,dy20);
1119             tz               = _mm_mul_pd(fscal,dz20);
1120
1121             /* Update vectorial force */
1122             fix2             = _mm_add_pd(fix2,tx);
1123             fiy2             = _mm_add_pd(fiy2,ty);
1124             fiz2             = _mm_add_pd(fiz2,tz);
1125
1126             fjx0             = _mm_add_pd(fjx0,tx);
1127             fjy0             = _mm_add_pd(fjy0,ty);
1128             fjz0             = _mm_add_pd(fjz0,tz);
1129
1130             /**************************
1131              * CALCULATE INTERACTIONS *
1132              **************************/
1133
1134             r21              = _mm_mul_pd(rsq21,rinv21);
1135
1136             /* EWALD ELECTROSTATICS */
1137
1138             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1139             ewrt             = _mm_mul_pd(r21,ewtabscale);
1140             ewitab           = _mm_cvttpd_epi32(ewrt);
1141             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1142             ewitab           = _mm_slli_epi32(ewitab,2);
1143             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1144             ewtabD           = _mm_setzero_pd();
1145             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1146             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1147             ewtabFn          = _mm_setzero_pd();
1148             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1149             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1150             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1151             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1152             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1153
1154             /* Update potential sum for this i atom from the interaction with this j atom. */
1155             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1156             velecsum         = _mm_add_pd(velecsum,velec);
1157
1158             fscal            = felec;
1159
1160             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1161
1162             /* Calculate temporary vectorial force */
1163             tx               = _mm_mul_pd(fscal,dx21);
1164             ty               = _mm_mul_pd(fscal,dy21);
1165             tz               = _mm_mul_pd(fscal,dz21);
1166
1167             /* Update vectorial force */
1168             fix2             = _mm_add_pd(fix2,tx);
1169             fiy2             = _mm_add_pd(fiy2,ty);
1170             fiz2             = _mm_add_pd(fiz2,tz);
1171
1172             fjx1             = _mm_add_pd(fjx1,tx);
1173             fjy1             = _mm_add_pd(fjy1,ty);
1174             fjz1             = _mm_add_pd(fjz1,tz);
1175
1176             /**************************
1177              * CALCULATE INTERACTIONS *
1178              **************************/
1179
1180             r22              = _mm_mul_pd(rsq22,rinv22);
1181
1182             /* EWALD ELECTROSTATICS */
1183
1184             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1185             ewrt             = _mm_mul_pd(r22,ewtabscale);
1186             ewitab           = _mm_cvttpd_epi32(ewrt);
1187             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1188             ewitab           = _mm_slli_epi32(ewitab,2);
1189             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1190             ewtabD           = _mm_setzero_pd();
1191             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1192             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1193             ewtabFn          = _mm_setzero_pd();
1194             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1195             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1196             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1197             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1198             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1199
1200             /* Update potential sum for this i atom from the interaction with this j atom. */
1201             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1202             velecsum         = _mm_add_pd(velecsum,velec);
1203
1204             fscal            = felec;
1205
1206             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1207
1208             /* Calculate temporary vectorial force */
1209             tx               = _mm_mul_pd(fscal,dx22);
1210             ty               = _mm_mul_pd(fscal,dy22);
1211             tz               = _mm_mul_pd(fscal,dz22);
1212
1213             /* Update vectorial force */
1214             fix2             = _mm_add_pd(fix2,tx);
1215             fiy2             = _mm_add_pd(fiy2,ty);
1216             fiz2             = _mm_add_pd(fiz2,tz);
1217
1218             fjx2             = _mm_add_pd(fjx2,tx);
1219             fjy2             = _mm_add_pd(fjy2,ty);
1220             fjz2             = _mm_add_pd(fjz2,tz);
1221
1222             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1223
1224             /* Inner loop uses 397 flops */
1225         }
1226
1227         /* End of innermost loop */
1228
1229         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1230                                               f+i_coord_offset,fshift+i_shift_offset);
1231
1232         ggid                        = gid[iidx];
1233         /* Update potential energies */
1234         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1235         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1236
1237         /* Increment number of inner iterations */
1238         inneriter                  += j_index_end - j_index_start;
1239
1240         /* Outer loop uses 20 flops */
1241     }
1242
1243     /* Increment number of outer iterations */
1244     outeriter        += nri;
1245
1246     /* Update outer/inner flops */
1247
1248     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*397);
1249 }
1250 /*
1251  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3W3_F_sse2_double
1252  * Electrostatics interaction: Ewald
1253  * VdW interaction:            LJEwald
1254  * Geometry:                   Water3-Water3
1255  * Calculate force/pot:        Force
1256  */
1257 void
1258 nb_kernel_ElecEw_VdwLJEw_GeomW3W3_F_sse2_double
1259                     (t_nblist                    * gmx_restrict       nlist,
1260                      rvec                        * gmx_restrict          xx,
1261                      rvec                        * gmx_restrict          ff,
1262                      t_forcerec                  * gmx_restrict          fr,
1263                      t_mdatoms                   * gmx_restrict     mdatoms,
1264                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1265                      t_nrnb                      * gmx_restrict        nrnb)
1266 {
1267     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1268      * just 0 for non-waters.
1269      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1270      * jnr indices corresponding to data put in the four positions in the SIMD register.
1271      */
1272     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1273     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1274     int              jnrA,jnrB;
1275     int              j_coord_offsetA,j_coord_offsetB;
1276     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1277     real             rcutoff_scalar;
1278     real             *shiftvec,*fshift,*x,*f;
1279     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1280     int              vdwioffset0;
1281     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1282     int              vdwioffset1;
1283     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1284     int              vdwioffset2;
1285     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1286     int              vdwjidx0A,vdwjidx0B;
1287     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1288     int              vdwjidx1A,vdwjidx1B;
1289     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1290     int              vdwjidx2A,vdwjidx2B;
1291     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1292     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1293     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1294     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1295     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1296     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1297     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1298     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1299     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1300     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1301     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1302     real             *charge;
1303     int              nvdwtype;
1304     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1305     int              *vdwtype;
1306     real             *vdwparam;
1307     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1308     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1309     __m128d           c6grid_00;
1310     __m128d           c6grid_01;
1311     __m128d           c6grid_02;
1312     __m128d           c6grid_10;
1313     __m128d           c6grid_11;
1314     __m128d           c6grid_12;
1315     __m128d           c6grid_20;
1316     __m128d           c6grid_21;
1317     __m128d           c6grid_22;
1318     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
1319     real             *vdwgridparam;
1320     __m128d           one_half = _mm_set1_pd(0.5);
1321     __m128d           minus_one = _mm_set1_pd(-1.0);
1322     __m128i          ewitab;
1323     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1324     real             *ewtab;
1325     __m128d          dummy_mask,cutoff_mask;
1326     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1327     __m128d          one     = _mm_set1_pd(1.0);
1328     __m128d          two     = _mm_set1_pd(2.0);
1329     x                = xx[0];
1330     f                = ff[0];
1331
1332     nri              = nlist->nri;
1333     iinr             = nlist->iinr;
1334     jindex           = nlist->jindex;
1335     jjnr             = nlist->jjnr;
1336     shiftidx         = nlist->shift;
1337     gid              = nlist->gid;
1338     shiftvec         = fr->shift_vec[0];
1339     fshift           = fr->fshift[0];
1340     facel            = _mm_set1_pd(fr->epsfac);
1341     charge           = mdatoms->chargeA;
1342     nvdwtype         = fr->ntype;
1343     vdwparam         = fr->nbfp;
1344     vdwtype          = mdatoms->typeA;
1345     vdwgridparam     = fr->ljpme_c6grid;
1346     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
1347     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
1348     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
1349
1350     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1351     ewtab            = fr->ic->tabq_coul_F;
1352     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1353     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1354
1355     /* Setup water-specific parameters */
1356     inr              = nlist->iinr[0];
1357     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1358     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1359     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1360     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1361
1362     jq0              = _mm_set1_pd(charge[inr+0]);
1363     jq1              = _mm_set1_pd(charge[inr+1]);
1364     jq2              = _mm_set1_pd(charge[inr+2]);
1365     vdwjidx0A        = 2*vdwtype[inr+0];
1366     qq00             = _mm_mul_pd(iq0,jq0);
1367     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1368     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1369     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
1370     qq01             = _mm_mul_pd(iq0,jq1);
1371     qq02             = _mm_mul_pd(iq0,jq2);
1372     qq10             = _mm_mul_pd(iq1,jq0);
1373     qq11             = _mm_mul_pd(iq1,jq1);
1374     qq12             = _mm_mul_pd(iq1,jq2);
1375     qq20             = _mm_mul_pd(iq2,jq0);
1376     qq21             = _mm_mul_pd(iq2,jq1);
1377     qq22             = _mm_mul_pd(iq2,jq2);
1378
1379     /* Avoid stupid compiler warnings */
1380     jnrA = jnrB = 0;
1381     j_coord_offsetA = 0;
1382     j_coord_offsetB = 0;
1383
1384     outeriter        = 0;
1385     inneriter        = 0;
1386
1387     /* Start outer loop over neighborlists */
1388     for(iidx=0; iidx<nri; iidx++)
1389     {
1390         /* Load shift vector for this list */
1391         i_shift_offset   = DIM*shiftidx[iidx];
1392
1393         /* Load limits for loop over neighbors */
1394         j_index_start    = jindex[iidx];
1395         j_index_end      = jindex[iidx+1];
1396
1397         /* Get outer coordinate index */
1398         inr              = iinr[iidx];
1399         i_coord_offset   = DIM*inr;
1400
1401         /* Load i particle coords and add shift vector */
1402         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1403                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1404
1405         fix0             = _mm_setzero_pd();
1406         fiy0             = _mm_setzero_pd();
1407         fiz0             = _mm_setzero_pd();
1408         fix1             = _mm_setzero_pd();
1409         fiy1             = _mm_setzero_pd();
1410         fiz1             = _mm_setzero_pd();
1411         fix2             = _mm_setzero_pd();
1412         fiy2             = _mm_setzero_pd();
1413         fiz2             = _mm_setzero_pd();
1414
1415         /* Start inner kernel loop */
1416         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1417         {
1418
1419             /* Get j neighbor index, and coordinate index */
1420             jnrA             = jjnr[jidx];
1421             jnrB             = jjnr[jidx+1];
1422             j_coord_offsetA  = DIM*jnrA;
1423             j_coord_offsetB  = DIM*jnrB;
1424
1425             /* load j atom coordinates */
1426             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1427                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1428
1429             /* Calculate displacement vector */
1430             dx00             = _mm_sub_pd(ix0,jx0);
1431             dy00             = _mm_sub_pd(iy0,jy0);
1432             dz00             = _mm_sub_pd(iz0,jz0);
1433             dx01             = _mm_sub_pd(ix0,jx1);
1434             dy01             = _mm_sub_pd(iy0,jy1);
1435             dz01             = _mm_sub_pd(iz0,jz1);
1436             dx02             = _mm_sub_pd(ix0,jx2);
1437             dy02             = _mm_sub_pd(iy0,jy2);
1438             dz02             = _mm_sub_pd(iz0,jz2);
1439             dx10             = _mm_sub_pd(ix1,jx0);
1440             dy10             = _mm_sub_pd(iy1,jy0);
1441             dz10             = _mm_sub_pd(iz1,jz0);
1442             dx11             = _mm_sub_pd(ix1,jx1);
1443             dy11             = _mm_sub_pd(iy1,jy1);
1444             dz11             = _mm_sub_pd(iz1,jz1);
1445             dx12             = _mm_sub_pd(ix1,jx2);
1446             dy12             = _mm_sub_pd(iy1,jy2);
1447             dz12             = _mm_sub_pd(iz1,jz2);
1448             dx20             = _mm_sub_pd(ix2,jx0);
1449             dy20             = _mm_sub_pd(iy2,jy0);
1450             dz20             = _mm_sub_pd(iz2,jz0);
1451             dx21             = _mm_sub_pd(ix2,jx1);
1452             dy21             = _mm_sub_pd(iy2,jy1);
1453             dz21             = _mm_sub_pd(iz2,jz1);
1454             dx22             = _mm_sub_pd(ix2,jx2);
1455             dy22             = _mm_sub_pd(iy2,jy2);
1456             dz22             = _mm_sub_pd(iz2,jz2);
1457
1458             /* Calculate squared distance and things based on it */
1459             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1460             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1461             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1462             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1463             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1464             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1465             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1466             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1467             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1468
1469             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1470             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1471             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1472             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1473             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1474             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1475             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1476             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1477             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1478
1479             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1480             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1481             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1482             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1483             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1484             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1485             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1486             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1487             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1488
1489             fjx0             = _mm_setzero_pd();
1490             fjy0             = _mm_setzero_pd();
1491             fjz0             = _mm_setzero_pd();
1492             fjx1             = _mm_setzero_pd();
1493             fjy1             = _mm_setzero_pd();
1494             fjz1             = _mm_setzero_pd();
1495             fjx2             = _mm_setzero_pd();
1496             fjy2             = _mm_setzero_pd();
1497             fjz2             = _mm_setzero_pd();
1498
1499             /**************************
1500              * CALCULATE INTERACTIONS *
1501              **************************/
1502
1503             r00              = _mm_mul_pd(rsq00,rinv00);
1504
1505             /* EWALD ELECTROSTATICS */
1506
1507             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1508             ewrt             = _mm_mul_pd(r00,ewtabscale);
1509             ewitab           = _mm_cvttpd_epi32(ewrt);
1510             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1511             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1512                                          &ewtabF,&ewtabFn);
1513             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1514             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1515
1516             /* Analytical LJ-PME */
1517             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1518             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1519             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1520             exponent         = gmx_simd_exp_d(ewcljrsq);
1521             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1522             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1523             /* f6A = 6 * C6grid * (1 - poly) */
1524             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1525             /* f6B = C6grid * exponent * beta^6 */
1526             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1527             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1528             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1529
1530             fscal            = _mm_add_pd(felec,fvdw);
1531
1532             /* Calculate temporary vectorial force */
1533             tx               = _mm_mul_pd(fscal,dx00);
1534             ty               = _mm_mul_pd(fscal,dy00);
1535             tz               = _mm_mul_pd(fscal,dz00);
1536
1537             /* Update vectorial force */
1538             fix0             = _mm_add_pd(fix0,tx);
1539             fiy0             = _mm_add_pd(fiy0,ty);
1540             fiz0             = _mm_add_pd(fiz0,tz);
1541
1542             fjx0             = _mm_add_pd(fjx0,tx);
1543             fjy0             = _mm_add_pd(fjy0,ty);
1544             fjz0             = _mm_add_pd(fjz0,tz);
1545
1546             /**************************
1547              * CALCULATE INTERACTIONS *
1548              **************************/
1549
1550             r01              = _mm_mul_pd(rsq01,rinv01);
1551
1552             /* EWALD ELECTROSTATICS */
1553
1554             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1555             ewrt             = _mm_mul_pd(r01,ewtabscale);
1556             ewitab           = _mm_cvttpd_epi32(ewrt);
1557             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1558             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1559                                          &ewtabF,&ewtabFn);
1560             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1561             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1562
1563             fscal            = felec;
1564
1565             /* Calculate temporary vectorial force */
1566             tx               = _mm_mul_pd(fscal,dx01);
1567             ty               = _mm_mul_pd(fscal,dy01);
1568             tz               = _mm_mul_pd(fscal,dz01);
1569
1570             /* Update vectorial force */
1571             fix0             = _mm_add_pd(fix0,tx);
1572             fiy0             = _mm_add_pd(fiy0,ty);
1573             fiz0             = _mm_add_pd(fiz0,tz);
1574
1575             fjx1             = _mm_add_pd(fjx1,tx);
1576             fjy1             = _mm_add_pd(fjy1,ty);
1577             fjz1             = _mm_add_pd(fjz1,tz);
1578
1579             /**************************
1580              * CALCULATE INTERACTIONS *
1581              **************************/
1582
1583             r02              = _mm_mul_pd(rsq02,rinv02);
1584
1585             /* EWALD ELECTROSTATICS */
1586
1587             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1588             ewrt             = _mm_mul_pd(r02,ewtabscale);
1589             ewitab           = _mm_cvttpd_epi32(ewrt);
1590             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1591             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1592                                          &ewtabF,&ewtabFn);
1593             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1594             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1595
1596             fscal            = felec;
1597
1598             /* Calculate temporary vectorial force */
1599             tx               = _mm_mul_pd(fscal,dx02);
1600             ty               = _mm_mul_pd(fscal,dy02);
1601             tz               = _mm_mul_pd(fscal,dz02);
1602
1603             /* Update vectorial force */
1604             fix0             = _mm_add_pd(fix0,tx);
1605             fiy0             = _mm_add_pd(fiy0,ty);
1606             fiz0             = _mm_add_pd(fiz0,tz);
1607
1608             fjx2             = _mm_add_pd(fjx2,tx);
1609             fjy2             = _mm_add_pd(fjy2,ty);
1610             fjz2             = _mm_add_pd(fjz2,tz);
1611
1612             /**************************
1613              * CALCULATE INTERACTIONS *
1614              **************************/
1615
1616             r10              = _mm_mul_pd(rsq10,rinv10);
1617
1618             /* EWALD ELECTROSTATICS */
1619
1620             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1621             ewrt             = _mm_mul_pd(r10,ewtabscale);
1622             ewitab           = _mm_cvttpd_epi32(ewrt);
1623             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1624             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1625                                          &ewtabF,&ewtabFn);
1626             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1627             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1628
1629             fscal            = felec;
1630
1631             /* Calculate temporary vectorial force */
1632             tx               = _mm_mul_pd(fscal,dx10);
1633             ty               = _mm_mul_pd(fscal,dy10);
1634             tz               = _mm_mul_pd(fscal,dz10);
1635
1636             /* Update vectorial force */
1637             fix1             = _mm_add_pd(fix1,tx);
1638             fiy1             = _mm_add_pd(fiy1,ty);
1639             fiz1             = _mm_add_pd(fiz1,tz);
1640
1641             fjx0             = _mm_add_pd(fjx0,tx);
1642             fjy0             = _mm_add_pd(fjy0,ty);
1643             fjz0             = _mm_add_pd(fjz0,tz);
1644
1645             /**************************
1646              * CALCULATE INTERACTIONS *
1647              **************************/
1648
1649             r11              = _mm_mul_pd(rsq11,rinv11);
1650
1651             /* EWALD ELECTROSTATICS */
1652
1653             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1654             ewrt             = _mm_mul_pd(r11,ewtabscale);
1655             ewitab           = _mm_cvttpd_epi32(ewrt);
1656             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1657             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1658                                          &ewtabF,&ewtabFn);
1659             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1660             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1661
1662             fscal            = felec;
1663
1664             /* Calculate temporary vectorial force */
1665             tx               = _mm_mul_pd(fscal,dx11);
1666             ty               = _mm_mul_pd(fscal,dy11);
1667             tz               = _mm_mul_pd(fscal,dz11);
1668
1669             /* Update vectorial force */
1670             fix1             = _mm_add_pd(fix1,tx);
1671             fiy1             = _mm_add_pd(fiy1,ty);
1672             fiz1             = _mm_add_pd(fiz1,tz);
1673
1674             fjx1             = _mm_add_pd(fjx1,tx);
1675             fjy1             = _mm_add_pd(fjy1,ty);
1676             fjz1             = _mm_add_pd(fjz1,tz);
1677
1678             /**************************
1679              * CALCULATE INTERACTIONS *
1680              **************************/
1681
1682             r12              = _mm_mul_pd(rsq12,rinv12);
1683
1684             /* EWALD ELECTROSTATICS */
1685
1686             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1687             ewrt             = _mm_mul_pd(r12,ewtabscale);
1688             ewitab           = _mm_cvttpd_epi32(ewrt);
1689             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1690             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1691                                          &ewtabF,&ewtabFn);
1692             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1693             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1694
1695             fscal            = felec;
1696
1697             /* Calculate temporary vectorial force */
1698             tx               = _mm_mul_pd(fscal,dx12);
1699             ty               = _mm_mul_pd(fscal,dy12);
1700             tz               = _mm_mul_pd(fscal,dz12);
1701
1702             /* Update vectorial force */
1703             fix1             = _mm_add_pd(fix1,tx);
1704             fiy1             = _mm_add_pd(fiy1,ty);
1705             fiz1             = _mm_add_pd(fiz1,tz);
1706
1707             fjx2             = _mm_add_pd(fjx2,tx);
1708             fjy2             = _mm_add_pd(fjy2,ty);
1709             fjz2             = _mm_add_pd(fjz2,tz);
1710
1711             /**************************
1712              * CALCULATE INTERACTIONS *
1713              **************************/
1714
1715             r20              = _mm_mul_pd(rsq20,rinv20);
1716
1717             /* EWALD ELECTROSTATICS */
1718
1719             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1720             ewrt             = _mm_mul_pd(r20,ewtabscale);
1721             ewitab           = _mm_cvttpd_epi32(ewrt);
1722             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1723             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1724                                          &ewtabF,&ewtabFn);
1725             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1726             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1727
1728             fscal            = felec;
1729
1730             /* Calculate temporary vectorial force */
1731             tx               = _mm_mul_pd(fscal,dx20);
1732             ty               = _mm_mul_pd(fscal,dy20);
1733             tz               = _mm_mul_pd(fscal,dz20);
1734
1735             /* Update vectorial force */
1736             fix2             = _mm_add_pd(fix2,tx);
1737             fiy2             = _mm_add_pd(fiy2,ty);
1738             fiz2             = _mm_add_pd(fiz2,tz);
1739
1740             fjx0             = _mm_add_pd(fjx0,tx);
1741             fjy0             = _mm_add_pd(fjy0,ty);
1742             fjz0             = _mm_add_pd(fjz0,tz);
1743
1744             /**************************
1745              * CALCULATE INTERACTIONS *
1746              **************************/
1747
1748             r21              = _mm_mul_pd(rsq21,rinv21);
1749
1750             /* EWALD ELECTROSTATICS */
1751
1752             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1753             ewrt             = _mm_mul_pd(r21,ewtabscale);
1754             ewitab           = _mm_cvttpd_epi32(ewrt);
1755             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1756             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1757                                          &ewtabF,&ewtabFn);
1758             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1759             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1760
1761             fscal            = felec;
1762
1763             /* Calculate temporary vectorial force */
1764             tx               = _mm_mul_pd(fscal,dx21);
1765             ty               = _mm_mul_pd(fscal,dy21);
1766             tz               = _mm_mul_pd(fscal,dz21);
1767
1768             /* Update vectorial force */
1769             fix2             = _mm_add_pd(fix2,tx);
1770             fiy2             = _mm_add_pd(fiy2,ty);
1771             fiz2             = _mm_add_pd(fiz2,tz);
1772
1773             fjx1             = _mm_add_pd(fjx1,tx);
1774             fjy1             = _mm_add_pd(fjy1,ty);
1775             fjz1             = _mm_add_pd(fjz1,tz);
1776
1777             /**************************
1778              * CALCULATE INTERACTIONS *
1779              **************************/
1780
1781             r22              = _mm_mul_pd(rsq22,rinv22);
1782
1783             /* EWALD ELECTROSTATICS */
1784
1785             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1786             ewrt             = _mm_mul_pd(r22,ewtabscale);
1787             ewitab           = _mm_cvttpd_epi32(ewrt);
1788             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1789             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1790                                          &ewtabF,&ewtabFn);
1791             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1792             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1793
1794             fscal            = felec;
1795
1796             /* Calculate temporary vectorial force */
1797             tx               = _mm_mul_pd(fscal,dx22);
1798             ty               = _mm_mul_pd(fscal,dy22);
1799             tz               = _mm_mul_pd(fscal,dz22);
1800
1801             /* Update vectorial force */
1802             fix2             = _mm_add_pd(fix2,tx);
1803             fiy2             = _mm_add_pd(fiy2,ty);
1804             fiz2             = _mm_add_pd(fiz2,tz);
1805
1806             fjx2             = _mm_add_pd(fjx2,tx);
1807             fjy2             = _mm_add_pd(fjy2,ty);
1808             fjz2             = _mm_add_pd(fjz2,tz);
1809
1810             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1811
1812             /* Inner loop uses 347 flops */
1813         }
1814
1815         if(jidx<j_index_end)
1816         {
1817
1818             jnrA             = jjnr[jidx];
1819             j_coord_offsetA  = DIM*jnrA;
1820
1821             /* load j atom coordinates */
1822             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1823                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1824
1825             /* Calculate displacement vector */
1826             dx00             = _mm_sub_pd(ix0,jx0);
1827             dy00             = _mm_sub_pd(iy0,jy0);
1828             dz00             = _mm_sub_pd(iz0,jz0);
1829             dx01             = _mm_sub_pd(ix0,jx1);
1830             dy01             = _mm_sub_pd(iy0,jy1);
1831             dz01             = _mm_sub_pd(iz0,jz1);
1832             dx02             = _mm_sub_pd(ix0,jx2);
1833             dy02             = _mm_sub_pd(iy0,jy2);
1834             dz02             = _mm_sub_pd(iz0,jz2);
1835             dx10             = _mm_sub_pd(ix1,jx0);
1836             dy10             = _mm_sub_pd(iy1,jy0);
1837             dz10             = _mm_sub_pd(iz1,jz0);
1838             dx11             = _mm_sub_pd(ix1,jx1);
1839             dy11             = _mm_sub_pd(iy1,jy1);
1840             dz11             = _mm_sub_pd(iz1,jz1);
1841             dx12             = _mm_sub_pd(ix1,jx2);
1842             dy12             = _mm_sub_pd(iy1,jy2);
1843             dz12             = _mm_sub_pd(iz1,jz2);
1844             dx20             = _mm_sub_pd(ix2,jx0);
1845             dy20             = _mm_sub_pd(iy2,jy0);
1846             dz20             = _mm_sub_pd(iz2,jz0);
1847             dx21             = _mm_sub_pd(ix2,jx1);
1848             dy21             = _mm_sub_pd(iy2,jy1);
1849             dz21             = _mm_sub_pd(iz2,jz1);
1850             dx22             = _mm_sub_pd(ix2,jx2);
1851             dy22             = _mm_sub_pd(iy2,jy2);
1852             dz22             = _mm_sub_pd(iz2,jz2);
1853
1854             /* Calculate squared distance and things based on it */
1855             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1856             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1857             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1858             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1859             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1860             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1861             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1862             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1863             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1864
1865             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1866             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1867             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1868             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1869             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1870             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1871             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1872             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1873             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1874
1875             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1876             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1877             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1878             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1879             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1880             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1881             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1882             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1883             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1884
1885             fjx0             = _mm_setzero_pd();
1886             fjy0             = _mm_setzero_pd();
1887             fjz0             = _mm_setzero_pd();
1888             fjx1             = _mm_setzero_pd();
1889             fjy1             = _mm_setzero_pd();
1890             fjz1             = _mm_setzero_pd();
1891             fjx2             = _mm_setzero_pd();
1892             fjy2             = _mm_setzero_pd();
1893             fjz2             = _mm_setzero_pd();
1894
1895             /**************************
1896              * CALCULATE INTERACTIONS *
1897              **************************/
1898
1899             r00              = _mm_mul_pd(rsq00,rinv00);
1900
1901             /* EWALD ELECTROSTATICS */
1902
1903             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1904             ewrt             = _mm_mul_pd(r00,ewtabscale);
1905             ewitab           = _mm_cvttpd_epi32(ewrt);
1906             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1907             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1908             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1909             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1910
1911             /* Analytical LJ-PME */
1912             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1913             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1914             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1915             exponent         = gmx_simd_exp_d(ewcljrsq);
1916             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1917             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1918             /* f6A = 6 * C6grid * (1 - poly) */
1919             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1920             /* f6B = C6grid * exponent * beta^6 */
1921             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1922             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1923             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1924
1925             fscal            = _mm_add_pd(felec,fvdw);
1926
1927             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1928
1929             /* Calculate temporary vectorial force */
1930             tx               = _mm_mul_pd(fscal,dx00);
1931             ty               = _mm_mul_pd(fscal,dy00);
1932             tz               = _mm_mul_pd(fscal,dz00);
1933
1934             /* Update vectorial force */
1935             fix0             = _mm_add_pd(fix0,tx);
1936             fiy0             = _mm_add_pd(fiy0,ty);
1937             fiz0             = _mm_add_pd(fiz0,tz);
1938
1939             fjx0             = _mm_add_pd(fjx0,tx);
1940             fjy0             = _mm_add_pd(fjy0,ty);
1941             fjz0             = _mm_add_pd(fjz0,tz);
1942
1943             /**************************
1944              * CALCULATE INTERACTIONS *
1945              **************************/
1946
1947             r01              = _mm_mul_pd(rsq01,rinv01);
1948
1949             /* EWALD ELECTROSTATICS */
1950
1951             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1952             ewrt             = _mm_mul_pd(r01,ewtabscale);
1953             ewitab           = _mm_cvttpd_epi32(ewrt);
1954             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1955             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1956             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1957             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1958
1959             fscal            = felec;
1960
1961             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1962
1963             /* Calculate temporary vectorial force */
1964             tx               = _mm_mul_pd(fscal,dx01);
1965             ty               = _mm_mul_pd(fscal,dy01);
1966             tz               = _mm_mul_pd(fscal,dz01);
1967
1968             /* Update vectorial force */
1969             fix0             = _mm_add_pd(fix0,tx);
1970             fiy0             = _mm_add_pd(fiy0,ty);
1971             fiz0             = _mm_add_pd(fiz0,tz);
1972
1973             fjx1             = _mm_add_pd(fjx1,tx);
1974             fjy1             = _mm_add_pd(fjy1,ty);
1975             fjz1             = _mm_add_pd(fjz1,tz);
1976
1977             /**************************
1978              * CALCULATE INTERACTIONS *
1979              **************************/
1980
1981             r02              = _mm_mul_pd(rsq02,rinv02);
1982
1983             /* EWALD ELECTROSTATICS */
1984
1985             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1986             ewrt             = _mm_mul_pd(r02,ewtabscale);
1987             ewitab           = _mm_cvttpd_epi32(ewrt);
1988             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1989             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1990             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1991             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1992
1993             fscal            = felec;
1994
1995             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1996
1997             /* Calculate temporary vectorial force */
1998             tx               = _mm_mul_pd(fscal,dx02);
1999             ty               = _mm_mul_pd(fscal,dy02);
2000             tz               = _mm_mul_pd(fscal,dz02);
2001
2002             /* Update vectorial force */
2003             fix0             = _mm_add_pd(fix0,tx);
2004             fiy0             = _mm_add_pd(fiy0,ty);
2005             fiz0             = _mm_add_pd(fiz0,tz);
2006
2007             fjx2             = _mm_add_pd(fjx2,tx);
2008             fjy2             = _mm_add_pd(fjy2,ty);
2009             fjz2             = _mm_add_pd(fjz2,tz);
2010
2011             /**************************
2012              * CALCULATE INTERACTIONS *
2013              **************************/
2014
2015             r10              = _mm_mul_pd(rsq10,rinv10);
2016
2017             /* EWALD ELECTROSTATICS */
2018
2019             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2020             ewrt             = _mm_mul_pd(r10,ewtabscale);
2021             ewitab           = _mm_cvttpd_epi32(ewrt);
2022             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2023             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2024             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2025             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2026
2027             fscal            = felec;
2028
2029             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2030
2031             /* Calculate temporary vectorial force */
2032             tx               = _mm_mul_pd(fscal,dx10);
2033             ty               = _mm_mul_pd(fscal,dy10);
2034             tz               = _mm_mul_pd(fscal,dz10);
2035
2036             /* Update vectorial force */
2037             fix1             = _mm_add_pd(fix1,tx);
2038             fiy1             = _mm_add_pd(fiy1,ty);
2039             fiz1             = _mm_add_pd(fiz1,tz);
2040
2041             fjx0             = _mm_add_pd(fjx0,tx);
2042             fjy0             = _mm_add_pd(fjy0,ty);
2043             fjz0             = _mm_add_pd(fjz0,tz);
2044
2045             /**************************
2046              * CALCULATE INTERACTIONS *
2047              **************************/
2048
2049             r11              = _mm_mul_pd(rsq11,rinv11);
2050
2051             /* EWALD ELECTROSTATICS */
2052
2053             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2054             ewrt             = _mm_mul_pd(r11,ewtabscale);
2055             ewitab           = _mm_cvttpd_epi32(ewrt);
2056             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2057             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2058             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2059             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2060
2061             fscal            = felec;
2062
2063             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2064
2065             /* Calculate temporary vectorial force */
2066             tx               = _mm_mul_pd(fscal,dx11);
2067             ty               = _mm_mul_pd(fscal,dy11);
2068             tz               = _mm_mul_pd(fscal,dz11);
2069
2070             /* Update vectorial force */
2071             fix1             = _mm_add_pd(fix1,tx);
2072             fiy1             = _mm_add_pd(fiy1,ty);
2073             fiz1             = _mm_add_pd(fiz1,tz);
2074
2075             fjx1             = _mm_add_pd(fjx1,tx);
2076             fjy1             = _mm_add_pd(fjy1,ty);
2077             fjz1             = _mm_add_pd(fjz1,tz);
2078
2079             /**************************
2080              * CALCULATE INTERACTIONS *
2081              **************************/
2082
2083             r12              = _mm_mul_pd(rsq12,rinv12);
2084
2085             /* EWALD ELECTROSTATICS */
2086
2087             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2088             ewrt             = _mm_mul_pd(r12,ewtabscale);
2089             ewitab           = _mm_cvttpd_epi32(ewrt);
2090             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2091             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2092             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2093             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2094
2095             fscal            = felec;
2096
2097             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2098
2099             /* Calculate temporary vectorial force */
2100             tx               = _mm_mul_pd(fscal,dx12);
2101             ty               = _mm_mul_pd(fscal,dy12);
2102             tz               = _mm_mul_pd(fscal,dz12);
2103
2104             /* Update vectorial force */
2105             fix1             = _mm_add_pd(fix1,tx);
2106             fiy1             = _mm_add_pd(fiy1,ty);
2107             fiz1             = _mm_add_pd(fiz1,tz);
2108
2109             fjx2             = _mm_add_pd(fjx2,tx);
2110             fjy2             = _mm_add_pd(fjy2,ty);
2111             fjz2             = _mm_add_pd(fjz2,tz);
2112
2113             /**************************
2114              * CALCULATE INTERACTIONS *
2115              **************************/
2116
2117             r20              = _mm_mul_pd(rsq20,rinv20);
2118
2119             /* EWALD ELECTROSTATICS */
2120
2121             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2122             ewrt             = _mm_mul_pd(r20,ewtabscale);
2123             ewitab           = _mm_cvttpd_epi32(ewrt);
2124             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2125             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2126             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2127             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2128
2129             fscal            = felec;
2130
2131             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2132
2133             /* Calculate temporary vectorial force */
2134             tx               = _mm_mul_pd(fscal,dx20);
2135             ty               = _mm_mul_pd(fscal,dy20);
2136             tz               = _mm_mul_pd(fscal,dz20);
2137
2138             /* Update vectorial force */
2139             fix2             = _mm_add_pd(fix2,tx);
2140             fiy2             = _mm_add_pd(fiy2,ty);
2141             fiz2             = _mm_add_pd(fiz2,tz);
2142
2143             fjx0             = _mm_add_pd(fjx0,tx);
2144             fjy0             = _mm_add_pd(fjy0,ty);
2145             fjz0             = _mm_add_pd(fjz0,tz);
2146
2147             /**************************
2148              * CALCULATE INTERACTIONS *
2149              **************************/
2150
2151             r21              = _mm_mul_pd(rsq21,rinv21);
2152
2153             /* EWALD ELECTROSTATICS */
2154
2155             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2156             ewrt             = _mm_mul_pd(r21,ewtabscale);
2157             ewitab           = _mm_cvttpd_epi32(ewrt);
2158             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2159             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2160             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2161             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2162
2163             fscal            = felec;
2164
2165             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2166
2167             /* Calculate temporary vectorial force */
2168             tx               = _mm_mul_pd(fscal,dx21);
2169             ty               = _mm_mul_pd(fscal,dy21);
2170             tz               = _mm_mul_pd(fscal,dz21);
2171
2172             /* Update vectorial force */
2173             fix2             = _mm_add_pd(fix2,tx);
2174             fiy2             = _mm_add_pd(fiy2,ty);
2175             fiz2             = _mm_add_pd(fiz2,tz);
2176
2177             fjx1             = _mm_add_pd(fjx1,tx);
2178             fjy1             = _mm_add_pd(fjy1,ty);
2179             fjz1             = _mm_add_pd(fjz1,tz);
2180
2181             /**************************
2182              * CALCULATE INTERACTIONS *
2183              **************************/
2184
2185             r22              = _mm_mul_pd(rsq22,rinv22);
2186
2187             /* EWALD ELECTROSTATICS */
2188
2189             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2190             ewrt             = _mm_mul_pd(r22,ewtabscale);
2191             ewitab           = _mm_cvttpd_epi32(ewrt);
2192             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2193             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2194             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2195             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2196
2197             fscal            = felec;
2198
2199             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2200
2201             /* Calculate temporary vectorial force */
2202             tx               = _mm_mul_pd(fscal,dx22);
2203             ty               = _mm_mul_pd(fscal,dy22);
2204             tz               = _mm_mul_pd(fscal,dz22);
2205
2206             /* Update vectorial force */
2207             fix2             = _mm_add_pd(fix2,tx);
2208             fiy2             = _mm_add_pd(fiy2,ty);
2209             fiz2             = _mm_add_pd(fiz2,tz);
2210
2211             fjx2             = _mm_add_pd(fjx2,tx);
2212             fjy2             = _mm_add_pd(fjy2,ty);
2213             fjz2             = _mm_add_pd(fjz2,tz);
2214
2215             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2216
2217             /* Inner loop uses 347 flops */
2218         }
2219
2220         /* End of innermost loop */
2221
2222         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2223                                               f+i_coord_offset,fshift+i_shift_offset);
2224
2225         /* Increment number of inner iterations */
2226         inneriter                  += j_index_end - j_index_start;
2227
2228         /* Outer loop uses 18 flops */
2229     }
2230
2231     /* Increment number of outer iterations */
2232     outeriter        += nri;
2233
2234     /* Update outer/inner flops */
2235
2236     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*347);
2237 }