Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJEw_GeomW3W3_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3W3_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Water3
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW3W3_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     int              vdwjidx1A,vdwjidx1B;
89     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
90     int              vdwjidx2A,vdwjidx2B;
91     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
94     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
95     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
97     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
98     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
100     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
101     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
102     real             *charge;
103     int              nvdwtype;
104     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
105     int              *vdwtype;
106     real             *vdwparam;
107     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
108     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
109     __m128d           c6grid_00;
110     __m128d           c6grid_01;
111     __m128d           c6grid_02;
112     __m128d           c6grid_10;
113     __m128d           c6grid_11;
114     __m128d           c6grid_12;
115     __m128d           c6grid_20;
116     __m128d           c6grid_21;
117     __m128d           c6grid_22;
118     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
119     real             *vdwgridparam;
120     __m128d           one_half = _mm_set1_pd(0.5);
121     __m128d           minus_one = _mm_set1_pd(-1.0);
122     __m128i          ewitab;
123     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
124     real             *ewtab;
125     __m128d          dummy_mask,cutoff_mask;
126     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
127     __m128d          one     = _mm_set1_pd(1.0);
128     __m128d          two     = _mm_set1_pd(2.0);
129     x                = xx[0];
130     f                = ff[0];
131
132     nri              = nlist->nri;
133     iinr             = nlist->iinr;
134     jindex           = nlist->jindex;
135     jjnr             = nlist->jjnr;
136     shiftidx         = nlist->shift;
137     gid              = nlist->gid;
138     shiftvec         = fr->shift_vec[0];
139     fshift           = fr->fshift[0];
140     facel            = _mm_set1_pd(fr->epsfac);
141     charge           = mdatoms->chargeA;
142     nvdwtype         = fr->ntype;
143     vdwparam         = fr->nbfp;
144     vdwtype          = mdatoms->typeA;
145     vdwgridparam     = fr->ljpme_c6grid;
146     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
147     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
148     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
149
150     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
151     ewtab            = fr->ic->tabq_coul_FDV0;
152     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
153     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
154
155     /* Setup water-specific parameters */
156     inr              = nlist->iinr[0];
157     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
158     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
159     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
160     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162     jq0              = _mm_set1_pd(charge[inr+0]);
163     jq1              = _mm_set1_pd(charge[inr+1]);
164     jq2              = _mm_set1_pd(charge[inr+2]);
165     vdwjidx0A        = 2*vdwtype[inr+0];
166     qq00             = _mm_mul_pd(iq0,jq0);
167     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
168     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
169     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
170     qq01             = _mm_mul_pd(iq0,jq1);
171     qq02             = _mm_mul_pd(iq0,jq2);
172     qq10             = _mm_mul_pd(iq1,jq0);
173     qq11             = _mm_mul_pd(iq1,jq1);
174     qq12             = _mm_mul_pd(iq1,jq2);
175     qq20             = _mm_mul_pd(iq2,jq0);
176     qq21             = _mm_mul_pd(iq2,jq1);
177     qq22             = _mm_mul_pd(iq2,jq2);
178
179     /* Avoid stupid compiler warnings */
180     jnrA = jnrB = 0;
181     j_coord_offsetA = 0;
182     j_coord_offsetB = 0;
183
184     outeriter        = 0;
185     inneriter        = 0;
186
187     /* Start outer loop over neighborlists */
188     for(iidx=0; iidx<nri; iidx++)
189     {
190         /* Load shift vector for this list */
191         i_shift_offset   = DIM*shiftidx[iidx];
192
193         /* Load limits for loop over neighbors */
194         j_index_start    = jindex[iidx];
195         j_index_end      = jindex[iidx+1];
196
197         /* Get outer coordinate index */
198         inr              = iinr[iidx];
199         i_coord_offset   = DIM*inr;
200
201         /* Load i particle coords and add shift vector */
202         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
203                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
204
205         fix0             = _mm_setzero_pd();
206         fiy0             = _mm_setzero_pd();
207         fiz0             = _mm_setzero_pd();
208         fix1             = _mm_setzero_pd();
209         fiy1             = _mm_setzero_pd();
210         fiz1             = _mm_setzero_pd();
211         fix2             = _mm_setzero_pd();
212         fiy2             = _mm_setzero_pd();
213         fiz2             = _mm_setzero_pd();
214
215         /* Reset potential sums */
216         velecsum         = _mm_setzero_pd();
217         vvdwsum          = _mm_setzero_pd();
218
219         /* Start inner kernel loop */
220         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
221         {
222
223             /* Get j neighbor index, and coordinate index */
224             jnrA             = jjnr[jidx];
225             jnrB             = jjnr[jidx+1];
226             j_coord_offsetA  = DIM*jnrA;
227             j_coord_offsetB  = DIM*jnrB;
228
229             /* load j atom coordinates */
230             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
231                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
232
233             /* Calculate displacement vector */
234             dx00             = _mm_sub_pd(ix0,jx0);
235             dy00             = _mm_sub_pd(iy0,jy0);
236             dz00             = _mm_sub_pd(iz0,jz0);
237             dx01             = _mm_sub_pd(ix0,jx1);
238             dy01             = _mm_sub_pd(iy0,jy1);
239             dz01             = _mm_sub_pd(iz0,jz1);
240             dx02             = _mm_sub_pd(ix0,jx2);
241             dy02             = _mm_sub_pd(iy0,jy2);
242             dz02             = _mm_sub_pd(iz0,jz2);
243             dx10             = _mm_sub_pd(ix1,jx0);
244             dy10             = _mm_sub_pd(iy1,jy0);
245             dz10             = _mm_sub_pd(iz1,jz0);
246             dx11             = _mm_sub_pd(ix1,jx1);
247             dy11             = _mm_sub_pd(iy1,jy1);
248             dz11             = _mm_sub_pd(iz1,jz1);
249             dx12             = _mm_sub_pd(ix1,jx2);
250             dy12             = _mm_sub_pd(iy1,jy2);
251             dz12             = _mm_sub_pd(iz1,jz2);
252             dx20             = _mm_sub_pd(ix2,jx0);
253             dy20             = _mm_sub_pd(iy2,jy0);
254             dz20             = _mm_sub_pd(iz2,jz0);
255             dx21             = _mm_sub_pd(ix2,jx1);
256             dy21             = _mm_sub_pd(iy2,jy1);
257             dz21             = _mm_sub_pd(iz2,jz1);
258             dx22             = _mm_sub_pd(ix2,jx2);
259             dy22             = _mm_sub_pd(iy2,jy2);
260             dz22             = _mm_sub_pd(iz2,jz2);
261
262             /* Calculate squared distance and things based on it */
263             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
264             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
265             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
266             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
267             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
268             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
269             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
270             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
271             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
272
273             rinv00           = gmx_mm_invsqrt_pd(rsq00);
274             rinv01           = gmx_mm_invsqrt_pd(rsq01);
275             rinv02           = gmx_mm_invsqrt_pd(rsq02);
276             rinv10           = gmx_mm_invsqrt_pd(rsq10);
277             rinv11           = gmx_mm_invsqrt_pd(rsq11);
278             rinv12           = gmx_mm_invsqrt_pd(rsq12);
279             rinv20           = gmx_mm_invsqrt_pd(rsq20);
280             rinv21           = gmx_mm_invsqrt_pd(rsq21);
281             rinv22           = gmx_mm_invsqrt_pd(rsq22);
282
283             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
284             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
285             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
286             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
287             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
288             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
289             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
290             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
291             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
292
293             fjx0             = _mm_setzero_pd();
294             fjy0             = _mm_setzero_pd();
295             fjz0             = _mm_setzero_pd();
296             fjx1             = _mm_setzero_pd();
297             fjy1             = _mm_setzero_pd();
298             fjz1             = _mm_setzero_pd();
299             fjx2             = _mm_setzero_pd();
300             fjy2             = _mm_setzero_pd();
301             fjz2             = _mm_setzero_pd();
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             r00              = _mm_mul_pd(rsq00,rinv00);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _mm_mul_pd(r00,ewtabscale);
313             ewitab           = _mm_cvttpd_epi32(ewrt);
314             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
315             ewitab           = _mm_slli_epi32(ewitab,2);
316             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
317             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
318             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
319             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
320             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
321             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
322             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
323             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
324             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
325             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
326
327             /* Analytical LJ-PME */
328             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
329             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
330             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
331             exponent         = gmx_simd_exp_d(ewcljrsq);
332             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
333             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
334             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
335             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
336             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
337             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
338             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
339             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velecsum         = _mm_add_pd(velecsum,velec);
343             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
344
345             fscal            = _mm_add_pd(felec,fvdw);
346
347             /* Calculate temporary vectorial force */
348             tx               = _mm_mul_pd(fscal,dx00);
349             ty               = _mm_mul_pd(fscal,dy00);
350             tz               = _mm_mul_pd(fscal,dz00);
351
352             /* Update vectorial force */
353             fix0             = _mm_add_pd(fix0,tx);
354             fiy0             = _mm_add_pd(fiy0,ty);
355             fiz0             = _mm_add_pd(fiz0,tz);
356
357             fjx0             = _mm_add_pd(fjx0,tx);
358             fjy0             = _mm_add_pd(fjy0,ty);
359             fjz0             = _mm_add_pd(fjz0,tz);
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             r01              = _mm_mul_pd(rsq01,rinv01);
366
367             /* EWALD ELECTROSTATICS */
368
369             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
370             ewrt             = _mm_mul_pd(r01,ewtabscale);
371             ewitab           = _mm_cvttpd_epi32(ewrt);
372             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
373             ewitab           = _mm_slli_epi32(ewitab,2);
374             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
375             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
376             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
377             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
378             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
379             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
380             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
381             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
382             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
383             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
384
385             /* Update potential sum for this i atom from the interaction with this j atom. */
386             velecsum         = _mm_add_pd(velecsum,velec);
387
388             fscal            = felec;
389
390             /* Calculate temporary vectorial force */
391             tx               = _mm_mul_pd(fscal,dx01);
392             ty               = _mm_mul_pd(fscal,dy01);
393             tz               = _mm_mul_pd(fscal,dz01);
394
395             /* Update vectorial force */
396             fix0             = _mm_add_pd(fix0,tx);
397             fiy0             = _mm_add_pd(fiy0,ty);
398             fiz0             = _mm_add_pd(fiz0,tz);
399
400             fjx1             = _mm_add_pd(fjx1,tx);
401             fjy1             = _mm_add_pd(fjy1,ty);
402             fjz1             = _mm_add_pd(fjz1,tz);
403
404             /**************************
405              * CALCULATE INTERACTIONS *
406              **************************/
407
408             r02              = _mm_mul_pd(rsq02,rinv02);
409
410             /* EWALD ELECTROSTATICS */
411
412             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
413             ewrt             = _mm_mul_pd(r02,ewtabscale);
414             ewitab           = _mm_cvttpd_epi32(ewrt);
415             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
416             ewitab           = _mm_slli_epi32(ewitab,2);
417             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
418             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
419             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
420             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
421             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
422             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
423             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
424             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
425             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
426             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
427
428             /* Update potential sum for this i atom from the interaction with this j atom. */
429             velecsum         = _mm_add_pd(velecsum,velec);
430
431             fscal            = felec;
432
433             /* Calculate temporary vectorial force */
434             tx               = _mm_mul_pd(fscal,dx02);
435             ty               = _mm_mul_pd(fscal,dy02);
436             tz               = _mm_mul_pd(fscal,dz02);
437
438             /* Update vectorial force */
439             fix0             = _mm_add_pd(fix0,tx);
440             fiy0             = _mm_add_pd(fiy0,ty);
441             fiz0             = _mm_add_pd(fiz0,tz);
442
443             fjx2             = _mm_add_pd(fjx2,tx);
444             fjy2             = _mm_add_pd(fjy2,ty);
445             fjz2             = _mm_add_pd(fjz2,tz);
446
447             /**************************
448              * CALCULATE INTERACTIONS *
449              **************************/
450
451             r10              = _mm_mul_pd(rsq10,rinv10);
452
453             /* EWALD ELECTROSTATICS */
454
455             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
456             ewrt             = _mm_mul_pd(r10,ewtabscale);
457             ewitab           = _mm_cvttpd_epi32(ewrt);
458             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
459             ewitab           = _mm_slli_epi32(ewitab,2);
460             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
461             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
462             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
463             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
464             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
465             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
466             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
467             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
468             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
469             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
470
471             /* Update potential sum for this i atom from the interaction with this j atom. */
472             velecsum         = _mm_add_pd(velecsum,velec);
473
474             fscal            = felec;
475
476             /* Calculate temporary vectorial force */
477             tx               = _mm_mul_pd(fscal,dx10);
478             ty               = _mm_mul_pd(fscal,dy10);
479             tz               = _mm_mul_pd(fscal,dz10);
480
481             /* Update vectorial force */
482             fix1             = _mm_add_pd(fix1,tx);
483             fiy1             = _mm_add_pd(fiy1,ty);
484             fiz1             = _mm_add_pd(fiz1,tz);
485
486             fjx0             = _mm_add_pd(fjx0,tx);
487             fjy0             = _mm_add_pd(fjy0,ty);
488             fjz0             = _mm_add_pd(fjz0,tz);
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             r11              = _mm_mul_pd(rsq11,rinv11);
495
496             /* EWALD ELECTROSTATICS */
497
498             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
499             ewrt             = _mm_mul_pd(r11,ewtabscale);
500             ewitab           = _mm_cvttpd_epi32(ewrt);
501             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
502             ewitab           = _mm_slli_epi32(ewitab,2);
503             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
504             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
505             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
506             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
507             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
508             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
509             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
510             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
511             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
512             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
513
514             /* Update potential sum for this i atom from the interaction with this j atom. */
515             velecsum         = _mm_add_pd(velecsum,velec);
516
517             fscal            = felec;
518
519             /* Calculate temporary vectorial force */
520             tx               = _mm_mul_pd(fscal,dx11);
521             ty               = _mm_mul_pd(fscal,dy11);
522             tz               = _mm_mul_pd(fscal,dz11);
523
524             /* Update vectorial force */
525             fix1             = _mm_add_pd(fix1,tx);
526             fiy1             = _mm_add_pd(fiy1,ty);
527             fiz1             = _mm_add_pd(fiz1,tz);
528
529             fjx1             = _mm_add_pd(fjx1,tx);
530             fjy1             = _mm_add_pd(fjy1,ty);
531             fjz1             = _mm_add_pd(fjz1,tz);
532
533             /**************************
534              * CALCULATE INTERACTIONS *
535              **************************/
536
537             r12              = _mm_mul_pd(rsq12,rinv12);
538
539             /* EWALD ELECTROSTATICS */
540
541             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
542             ewrt             = _mm_mul_pd(r12,ewtabscale);
543             ewitab           = _mm_cvttpd_epi32(ewrt);
544             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
545             ewitab           = _mm_slli_epi32(ewitab,2);
546             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
547             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
548             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
549             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
550             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
551             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
552             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
553             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
554             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
555             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
556
557             /* Update potential sum for this i atom from the interaction with this j atom. */
558             velecsum         = _mm_add_pd(velecsum,velec);
559
560             fscal            = felec;
561
562             /* Calculate temporary vectorial force */
563             tx               = _mm_mul_pd(fscal,dx12);
564             ty               = _mm_mul_pd(fscal,dy12);
565             tz               = _mm_mul_pd(fscal,dz12);
566
567             /* Update vectorial force */
568             fix1             = _mm_add_pd(fix1,tx);
569             fiy1             = _mm_add_pd(fiy1,ty);
570             fiz1             = _mm_add_pd(fiz1,tz);
571
572             fjx2             = _mm_add_pd(fjx2,tx);
573             fjy2             = _mm_add_pd(fjy2,ty);
574             fjz2             = _mm_add_pd(fjz2,tz);
575
576             /**************************
577              * CALCULATE INTERACTIONS *
578              **************************/
579
580             r20              = _mm_mul_pd(rsq20,rinv20);
581
582             /* EWALD ELECTROSTATICS */
583
584             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
585             ewrt             = _mm_mul_pd(r20,ewtabscale);
586             ewitab           = _mm_cvttpd_epi32(ewrt);
587             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
588             ewitab           = _mm_slli_epi32(ewitab,2);
589             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
590             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
591             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
592             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
593             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
594             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
595             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
596             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
597             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
598             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             velecsum         = _mm_add_pd(velecsum,velec);
602
603             fscal            = felec;
604
605             /* Calculate temporary vectorial force */
606             tx               = _mm_mul_pd(fscal,dx20);
607             ty               = _mm_mul_pd(fscal,dy20);
608             tz               = _mm_mul_pd(fscal,dz20);
609
610             /* Update vectorial force */
611             fix2             = _mm_add_pd(fix2,tx);
612             fiy2             = _mm_add_pd(fiy2,ty);
613             fiz2             = _mm_add_pd(fiz2,tz);
614
615             fjx0             = _mm_add_pd(fjx0,tx);
616             fjy0             = _mm_add_pd(fjy0,ty);
617             fjz0             = _mm_add_pd(fjz0,tz);
618
619             /**************************
620              * CALCULATE INTERACTIONS *
621              **************************/
622
623             r21              = _mm_mul_pd(rsq21,rinv21);
624
625             /* EWALD ELECTROSTATICS */
626
627             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
628             ewrt             = _mm_mul_pd(r21,ewtabscale);
629             ewitab           = _mm_cvttpd_epi32(ewrt);
630             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
631             ewitab           = _mm_slli_epi32(ewitab,2);
632             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
633             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
634             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
635             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
636             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
637             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
638             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
639             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
640             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
641             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
642
643             /* Update potential sum for this i atom from the interaction with this j atom. */
644             velecsum         = _mm_add_pd(velecsum,velec);
645
646             fscal            = felec;
647
648             /* Calculate temporary vectorial force */
649             tx               = _mm_mul_pd(fscal,dx21);
650             ty               = _mm_mul_pd(fscal,dy21);
651             tz               = _mm_mul_pd(fscal,dz21);
652
653             /* Update vectorial force */
654             fix2             = _mm_add_pd(fix2,tx);
655             fiy2             = _mm_add_pd(fiy2,ty);
656             fiz2             = _mm_add_pd(fiz2,tz);
657
658             fjx1             = _mm_add_pd(fjx1,tx);
659             fjy1             = _mm_add_pd(fjy1,ty);
660             fjz1             = _mm_add_pd(fjz1,tz);
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             r22              = _mm_mul_pd(rsq22,rinv22);
667
668             /* EWALD ELECTROSTATICS */
669
670             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
671             ewrt             = _mm_mul_pd(r22,ewtabscale);
672             ewitab           = _mm_cvttpd_epi32(ewrt);
673             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
674             ewitab           = _mm_slli_epi32(ewitab,2);
675             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
676             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
677             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
678             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
679             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
680             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
681             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
682             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
683             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
684             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
685
686             /* Update potential sum for this i atom from the interaction with this j atom. */
687             velecsum         = _mm_add_pd(velecsum,velec);
688
689             fscal            = felec;
690
691             /* Calculate temporary vectorial force */
692             tx               = _mm_mul_pd(fscal,dx22);
693             ty               = _mm_mul_pd(fscal,dy22);
694             tz               = _mm_mul_pd(fscal,dz22);
695
696             /* Update vectorial force */
697             fix2             = _mm_add_pd(fix2,tx);
698             fiy2             = _mm_add_pd(fiy2,ty);
699             fiz2             = _mm_add_pd(fiz2,tz);
700
701             fjx2             = _mm_add_pd(fjx2,tx);
702             fjy2             = _mm_add_pd(fjy2,ty);
703             fjz2             = _mm_add_pd(fjz2,tz);
704
705             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
706
707             /* Inner loop uses 397 flops */
708         }
709
710         if(jidx<j_index_end)
711         {
712
713             jnrA             = jjnr[jidx];
714             j_coord_offsetA  = DIM*jnrA;
715
716             /* load j atom coordinates */
717             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
718                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
719
720             /* Calculate displacement vector */
721             dx00             = _mm_sub_pd(ix0,jx0);
722             dy00             = _mm_sub_pd(iy0,jy0);
723             dz00             = _mm_sub_pd(iz0,jz0);
724             dx01             = _mm_sub_pd(ix0,jx1);
725             dy01             = _mm_sub_pd(iy0,jy1);
726             dz01             = _mm_sub_pd(iz0,jz1);
727             dx02             = _mm_sub_pd(ix0,jx2);
728             dy02             = _mm_sub_pd(iy0,jy2);
729             dz02             = _mm_sub_pd(iz0,jz2);
730             dx10             = _mm_sub_pd(ix1,jx0);
731             dy10             = _mm_sub_pd(iy1,jy0);
732             dz10             = _mm_sub_pd(iz1,jz0);
733             dx11             = _mm_sub_pd(ix1,jx1);
734             dy11             = _mm_sub_pd(iy1,jy1);
735             dz11             = _mm_sub_pd(iz1,jz1);
736             dx12             = _mm_sub_pd(ix1,jx2);
737             dy12             = _mm_sub_pd(iy1,jy2);
738             dz12             = _mm_sub_pd(iz1,jz2);
739             dx20             = _mm_sub_pd(ix2,jx0);
740             dy20             = _mm_sub_pd(iy2,jy0);
741             dz20             = _mm_sub_pd(iz2,jz0);
742             dx21             = _mm_sub_pd(ix2,jx1);
743             dy21             = _mm_sub_pd(iy2,jy1);
744             dz21             = _mm_sub_pd(iz2,jz1);
745             dx22             = _mm_sub_pd(ix2,jx2);
746             dy22             = _mm_sub_pd(iy2,jy2);
747             dz22             = _mm_sub_pd(iz2,jz2);
748
749             /* Calculate squared distance and things based on it */
750             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
751             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
752             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
753             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
754             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
755             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
756             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
757             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
758             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
759
760             rinv00           = gmx_mm_invsqrt_pd(rsq00);
761             rinv01           = gmx_mm_invsqrt_pd(rsq01);
762             rinv02           = gmx_mm_invsqrt_pd(rsq02);
763             rinv10           = gmx_mm_invsqrt_pd(rsq10);
764             rinv11           = gmx_mm_invsqrt_pd(rsq11);
765             rinv12           = gmx_mm_invsqrt_pd(rsq12);
766             rinv20           = gmx_mm_invsqrt_pd(rsq20);
767             rinv21           = gmx_mm_invsqrt_pd(rsq21);
768             rinv22           = gmx_mm_invsqrt_pd(rsq22);
769
770             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
771             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
772             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
773             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
774             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
775             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
776             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
777             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
778             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
779
780             fjx0             = _mm_setzero_pd();
781             fjy0             = _mm_setzero_pd();
782             fjz0             = _mm_setzero_pd();
783             fjx1             = _mm_setzero_pd();
784             fjy1             = _mm_setzero_pd();
785             fjz1             = _mm_setzero_pd();
786             fjx2             = _mm_setzero_pd();
787             fjy2             = _mm_setzero_pd();
788             fjz2             = _mm_setzero_pd();
789
790             /**************************
791              * CALCULATE INTERACTIONS *
792              **************************/
793
794             r00              = _mm_mul_pd(rsq00,rinv00);
795
796             /* EWALD ELECTROSTATICS */
797
798             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
799             ewrt             = _mm_mul_pd(r00,ewtabscale);
800             ewitab           = _mm_cvttpd_epi32(ewrt);
801             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
802             ewitab           = _mm_slli_epi32(ewitab,2);
803             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
804             ewtabD           = _mm_setzero_pd();
805             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
806             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
807             ewtabFn          = _mm_setzero_pd();
808             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
809             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
810             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
811             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
812             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
813
814             /* Analytical LJ-PME */
815             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
816             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
817             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
818             exponent         = gmx_simd_exp_d(ewcljrsq);
819             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
820             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
821             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
822             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
823             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
824             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
825             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
826             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
827
828             /* Update potential sum for this i atom from the interaction with this j atom. */
829             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
830             velecsum         = _mm_add_pd(velecsum,velec);
831             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
832             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
833
834             fscal            = _mm_add_pd(felec,fvdw);
835
836             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
837
838             /* Calculate temporary vectorial force */
839             tx               = _mm_mul_pd(fscal,dx00);
840             ty               = _mm_mul_pd(fscal,dy00);
841             tz               = _mm_mul_pd(fscal,dz00);
842
843             /* Update vectorial force */
844             fix0             = _mm_add_pd(fix0,tx);
845             fiy0             = _mm_add_pd(fiy0,ty);
846             fiz0             = _mm_add_pd(fiz0,tz);
847
848             fjx0             = _mm_add_pd(fjx0,tx);
849             fjy0             = _mm_add_pd(fjy0,ty);
850             fjz0             = _mm_add_pd(fjz0,tz);
851
852             /**************************
853              * CALCULATE INTERACTIONS *
854              **************************/
855
856             r01              = _mm_mul_pd(rsq01,rinv01);
857
858             /* EWALD ELECTROSTATICS */
859
860             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
861             ewrt             = _mm_mul_pd(r01,ewtabscale);
862             ewitab           = _mm_cvttpd_epi32(ewrt);
863             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
864             ewitab           = _mm_slli_epi32(ewitab,2);
865             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
866             ewtabD           = _mm_setzero_pd();
867             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
868             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
869             ewtabFn          = _mm_setzero_pd();
870             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
871             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
872             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
873             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
874             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
875
876             /* Update potential sum for this i atom from the interaction with this j atom. */
877             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
878             velecsum         = _mm_add_pd(velecsum,velec);
879
880             fscal            = felec;
881
882             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
883
884             /* Calculate temporary vectorial force */
885             tx               = _mm_mul_pd(fscal,dx01);
886             ty               = _mm_mul_pd(fscal,dy01);
887             tz               = _mm_mul_pd(fscal,dz01);
888
889             /* Update vectorial force */
890             fix0             = _mm_add_pd(fix0,tx);
891             fiy0             = _mm_add_pd(fiy0,ty);
892             fiz0             = _mm_add_pd(fiz0,tz);
893
894             fjx1             = _mm_add_pd(fjx1,tx);
895             fjy1             = _mm_add_pd(fjy1,ty);
896             fjz1             = _mm_add_pd(fjz1,tz);
897
898             /**************************
899              * CALCULATE INTERACTIONS *
900              **************************/
901
902             r02              = _mm_mul_pd(rsq02,rinv02);
903
904             /* EWALD ELECTROSTATICS */
905
906             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
907             ewrt             = _mm_mul_pd(r02,ewtabscale);
908             ewitab           = _mm_cvttpd_epi32(ewrt);
909             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
910             ewitab           = _mm_slli_epi32(ewitab,2);
911             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
912             ewtabD           = _mm_setzero_pd();
913             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
914             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
915             ewtabFn          = _mm_setzero_pd();
916             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
917             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
918             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
919             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
920             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
921
922             /* Update potential sum for this i atom from the interaction with this j atom. */
923             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
924             velecsum         = _mm_add_pd(velecsum,velec);
925
926             fscal            = felec;
927
928             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
929
930             /* Calculate temporary vectorial force */
931             tx               = _mm_mul_pd(fscal,dx02);
932             ty               = _mm_mul_pd(fscal,dy02);
933             tz               = _mm_mul_pd(fscal,dz02);
934
935             /* Update vectorial force */
936             fix0             = _mm_add_pd(fix0,tx);
937             fiy0             = _mm_add_pd(fiy0,ty);
938             fiz0             = _mm_add_pd(fiz0,tz);
939
940             fjx2             = _mm_add_pd(fjx2,tx);
941             fjy2             = _mm_add_pd(fjy2,ty);
942             fjz2             = _mm_add_pd(fjz2,tz);
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             r10              = _mm_mul_pd(rsq10,rinv10);
949
950             /* EWALD ELECTROSTATICS */
951
952             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
953             ewrt             = _mm_mul_pd(r10,ewtabscale);
954             ewitab           = _mm_cvttpd_epi32(ewrt);
955             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
956             ewitab           = _mm_slli_epi32(ewitab,2);
957             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
958             ewtabD           = _mm_setzero_pd();
959             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
960             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
961             ewtabFn          = _mm_setzero_pd();
962             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
963             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
964             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
965             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
966             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
967
968             /* Update potential sum for this i atom from the interaction with this j atom. */
969             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
970             velecsum         = _mm_add_pd(velecsum,velec);
971
972             fscal            = felec;
973
974             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
975
976             /* Calculate temporary vectorial force */
977             tx               = _mm_mul_pd(fscal,dx10);
978             ty               = _mm_mul_pd(fscal,dy10);
979             tz               = _mm_mul_pd(fscal,dz10);
980
981             /* Update vectorial force */
982             fix1             = _mm_add_pd(fix1,tx);
983             fiy1             = _mm_add_pd(fiy1,ty);
984             fiz1             = _mm_add_pd(fiz1,tz);
985
986             fjx0             = _mm_add_pd(fjx0,tx);
987             fjy0             = _mm_add_pd(fjy0,ty);
988             fjz0             = _mm_add_pd(fjz0,tz);
989
990             /**************************
991              * CALCULATE INTERACTIONS *
992              **************************/
993
994             r11              = _mm_mul_pd(rsq11,rinv11);
995
996             /* EWALD ELECTROSTATICS */
997
998             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
999             ewrt             = _mm_mul_pd(r11,ewtabscale);
1000             ewitab           = _mm_cvttpd_epi32(ewrt);
1001             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1002             ewitab           = _mm_slli_epi32(ewitab,2);
1003             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1004             ewtabD           = _mm_setzero_pd();
1005             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1006             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1007             ewtabFn          = _mm_setzero_pd();
1008             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1009             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1010             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1011             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
1012             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1013
1014             /* Update potential sum for this i atom from the interaction with this j atom. */
1015             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1016             velecsum         = _mm_add_pd(velecsum,velec);
1017
1018             fscal            = felec;
1019
1020             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1021
1022             /* Calculate temporary vectorial force */
1023             tx               = _mm_mul_pd(fscal,dx11);
1024             ty               = _mm_mul_pd(fscal,dy11);
1025             tz               = _mm_mul_pd(fscal,dz11);
1026
1027             /* Update vectorial force */
1028             fix1             = _mm_add_pd(fix1,tx);
1029             fiy1             = _mm_add_pd(fiy1,ty);
1030             fiz1             = _mm_add_pd(fiz1,tz);
1031
1032             fjx1             = _mm_add_pd(fjx1,tx);
1033             fjy1             = _mm_add_pd(fjy1,ty);
1034             fjz1             = _mm_add_pd(fjz1,tz);
1035
1036             /**************************
1037              * CALCULATE INTERACTIONS *
1038              **************************/
1039
1040             r12              = _mm_mul_pd(rsq12,rinv12);
1041
1042             /* EWALD ELECTROSTATICS */
1043
1044             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1045             ewrt             = _mm_mul_pd(r12,ewtabscale);
1046             ewitab           = _mm_cvttpd_epi32(ewrt);
1047             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1048             ewitab           = _mm_slli_epi32(ewitab,2);
1049             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1050             ewtabD           = _mm_setzero_pd();
1051             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1052             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1053             ewtabFn          = _mm_setzero_pd();
1054             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1055             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1056             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1057             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
1058             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1059
1060             /* Update potential sum for this i atom from the interaction with this j atom. */
1061             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1062             velecsum         = _mm_add_pd(velecsum,velec);
1063
1064             fscal            = felec;
1065
1066             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1067
1068             /* Calculate temporary vectorial force */
1069             tx               = _mm_mul_pd(fscal,dx12);
1070             ty               = _mm_mul_pd(fscal,dy12);
1071             tz               = _mm_mul_pd(fscal,dz12);
1072
1073             /* Update vectorial force */
1074             fix1             = _mm_add_pd(fix1,tx);
1075             fiy1             = _mm_add_pd(fiy1,ty);
1076             fiz1             = _mm_add_pd(fiz1,tz);
1077
1078             fjx2             = _mm_add_pd(fjx2,tx);
1079             fjy2             = _mm_add_pd(fjy2,ty);
1080             fjz2             = _mm_add_pd(fjz2,tz);
1081
1082             /**************************
1083              * CALCULATE INTERACTIONS *
1084              **************************/
1085
1086             r20              = _mm_mul_pd(rsq20,rinv20);
1087
1088             /* EWALD ELECTROSTATICS */
1089
1090             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1091             ewrt             = _mm_mul_pd(r20,ewtabscale);
1092             ewitab           = _mm_cvttpd_epi32(ewrt);
1093             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1094             ewitab           = _mm_slli_epi32(ewitab,2);
1095             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1096             ewtabD           = _mm_setzero_pd();
1097             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1098             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1099             ewtabFn          = _mm_setzero_pd();
1100             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1101             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1102             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1103             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1104             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1105
1106             /* Update potential sum for this i atom from the interaction with this j atom. */
1107             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1108             velecsum         = _mm_add_pd(velecsum,velec);
1109
1110             fscal            = felec;
1111
1112             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1113
1114             /* Calculate temporary vectorial force */
1115             tx               = _mm_mul_pd(fscal,dx20);
1116             ty               = _mm_mul_pd(fscal,dy20);
1117             tz               = _mm_mul_pd(fscal,dz20);
1118
1119             /* Update vectorial force */
1120             fix2             = _mm_add_pd(fix2,tx);
1121             fiy2             = _mm_add_pd(fiy2,ty);
1122             fiz2             = _mm_add_pd(fiz2,tz);
1123
1124             fjx0             = _mm_add_pd(fjx0,tx);
1125             fjy0             = _mm_add_pd(fjy0,ty);
1126             fjz0             = _mm_add_pd(fjz0,tz);
1127
1128             /**************************
1129              * CALCULATE INTERACTIONS *
1130              **************************/
1131
1132             r21              = _mm_mul_pd(rsq21,rinv21);
1133
1134             /* EWALD ELECTROSTATICS */
1135
1136             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1137             ewrt             = _mm_mul_pd(r21,ewtabscale);
1138             ewitab           = _mm_cvttpd_epi32(ewrt);
1139             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1140             ewitab           = _mm_slli_epi32(ewitab,2);
1141             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1142             ewtabD           = _mm_setzero_pd();
1143             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1144             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1145             ewtabFn          = _mm_setzero_pd();
1146             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1147             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1148             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1149             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1150             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1151
1152             /* Update potential sum for this i atom from the interaction with this j atom. */
1153             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1154             velecsum         = _mm_add_pd(velecsum,velec);
1155
1156             fscal            = felec;
1157
1158             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1159
1160             /* Calculate temporary vectorial force */
1161             tx               = _mm_mul_pd(fscal,dx21);
1162             ty               = _mm_mul_pd(fscal,dy21);
1163             tz               = _mm_mul_pd(fscal,dz21);
1164
1165             /* Update vectorial force */
1166             fix2             = _mm_add_pd(fix2,tx);
1167             fiy2             = _mm_add_pd(fiy2,ty);
1168             fiz2             = _mm_add_pd(fiz2,tz);
1169
1170             fjx1             = _mm_add_pd(fjx1,tx);
1171             fjy1             = _mm_add_pd(fjy1,ty);
1172             fjz1             = _mm_add_pd(fjz1,tz);
1173
1174             /**************************
1175              * CALCULATE INTERACTIONS *
1176              **************************/
1177
1178             r22              = _mm_mul_pd(rsq22,rinv22);
1179
1180             /* EWALD ELECTROSTATICS */
1181
1182             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1183             ewrt             = _mm_mul_pd(r22,ewtabscale);
1184             ewitab           = _mm_cvttpd_epi32(ewrt);
1185             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1186             ewitab           = _mm_slli_epi32(ewitab,2);
1187             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1188             ewtabD           = _mm_setzero_pd();
1189             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1190             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1191             ewtabFn          = _mm_setzero_pd();
1192             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1193             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1194             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1195             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1196             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1197
1198             /* Update potential sum for this i atom from the interaction with this j atom. */
1199             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1200             velecsum         = _mm_add_pd(velecsum,velec);
1201
1202             fscal            = felec;
1203
1204             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1205
1206             /* Calculate temporary vectorial force */
1207             tx               = _mm_mul_pd(fscal,dx22);
1208             ty               = _mm_mul_pd(fscal,dy22);
1209             tz               = _mm_mul_pd(fscal,dz22);
1210
1211             /* Update vectorial force */
1212             fix2             = _mm_add_pd(fix2,tx);
1213             fiy2             = _mm_add_pd(fiy2,ty);
1214             fiz2             = _mm_add_pd(fiz2,tz);
1215
1216             fjx2             = _mm_add_pd(fjx2,tx);
1217             fjy2             = _mm_add_pd(fjy2,ty);
1218             fjz2             = _mm_add_pd(fjz2,tz);
1219
1220             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1221
1222             /* Inner loop uses 397 flops */
1223         }
1224
1225         /* End of innermost loop */
1226
1227         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1228                                               f+i_coord_offset,fshift+i_shift_offset);
1229
1230         ggid                        = gid[iidx];
1231         /* Update potential energies */
1232         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1233         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1234
1235         /* Increment number of inner iterations */
1236         inneriter                  += j_index_end - j_index_start;
1237
1238         /* Outer loop uses 20 flops */
1239     }
1240
1241     /* Increment number of outer iterations */
1242     outeriter        += nri;
1243
1244     /* Update outer/inner flops */
1245
1246     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*397);
1247 }
1248 /*
1249  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3W3_F_sse2_double
1250  * Electrostatics interaction: Ewald
1251  * VdW interaction:            LJEwald
1252  * Geometry:                   Water3-Water3
1253  * Calculate force/pot:        Force
1254  */
1255 void
1256 nb_kernel_ElecEw_VdwLJEw_GeomW3W3_F_sse2_double
1257                     (t_nblist                    * gmx_restrict       nlist,
1258                      rvec                        * gmx_restrict          xx,
1259                      rvec                        * gmx_restrict          ff,
1260                      t_forcerec                  * gmx_restrict          fr,
1261                      t_mdatoms                   * gmx_restrict     mdatoms,
1262                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1263                      t_nrnb                      * gmx_restrict        nrnb)
1264 {
1265     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1266      * just 0 for non-waters.
1267      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1268      * jnr indices corresponding to data put in the four positions in the SIMD register.
1269      */
1270     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1271     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1272     int              jnrA,jnrB;
1273     int              j_coord_offsetA,j_coord_offsetB;
1274     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1275     real             rcutoff_scalar;
1276     real             *shiftvec,*fshift,*x,*f;
1277     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1278     int              vdwioffset0;
1279     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1280     int              vdwioffset1;
1281     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1282     int              vdwioffset2;
1283     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1284     int              vdwjidx0A,vdwjidx0B;
1285     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1286     int              vdwjidx1A,vdwjidx1B;
1287     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1288     int              vdwjidx2A,vdwjidx2B;
1289     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1290     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1291     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1292     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1293     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1294     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1295     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1296     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1297     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1298     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1299     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1300     real             *charge;
1301     int              nvdwtype;
1302     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1303     int              *vdwtype;
1304     real             *vdwparam;
1305     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1306     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1307     __m128d           c6grid_00;
1308     __m128d           c6grid_01;
1309     __m128d           c6grid_02;
1310     __m128d           c6grid_10;
1311     __m128d           c6grid_11;
1312     __m128d           c6grid_12;
1313     __m128d           c6grid_20;
1314     __m128d           c6grid_21;
1315     __m128d           c6grid_22;
1316     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
1317     real             *vdwgridparam;
1318     __m128d           one_half = _mm_set1_pd(0.5);
1319     __m128d           minus_one = _mm_set1_pd(-1.0);
1320     __m128i          ewitab;
1321     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1322     real             *ewtab;
1323     __m128d          dummy_mask,cutoff_mask;
1324     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1325     __m128d          one     = _mm_set1_pd(1.0);
1326     __m128d          two     = _mm_set1_pd(2.0);
1327     x                = xx[0];
1328     f                = ff[0];
1329
1330     nri              = nlist->nri;
1331     iinr             = nlist->iinr;
1332     jindex           = nlist->jindex;
1333     jjnr             = nlist->jjnr;
1334     shiftidx         = nlist->shift;
1335     gid              = nlist->gid;
1336     shiftvec         = fr->shift_vec[0];
1337     fshift           = fr->fshift[0];
1338     facel            = _mm_set1_pd(fr->epsfac);
1339     charge           = mdatoms->chargeA;
1340     nvdwtype         = fr->ntype;
1341     vdwparam         = fr->nbfp;
1342     vdwtype          = mdatoms->typeA;
1343     vdwgridparam     = fr->ljpme_c6grid;
1344     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
1345     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
1346     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
1347
1348     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1349     ewtab            = fr->ic->tabq_coul_F;
1350     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1351     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1352
1353     /* Setup water-specific parameters */
1354     inr              = nlist->iinr[0];
1355     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1356     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1357     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1358     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1359
1360     jq0              = _mm_set1_pd(charge[inr+0]);
1361     jq1              = _mm_set1_pd(charge[inr+1]);
1362     jq2              = _mm_set1_pd(charge[inr+2]);
1363     vdwjidx0A        = 2*vdwtype[inr+0];
1364     qq00             = _mm_mul_pd(iq0,jq0);
1365     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1366     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1367     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
1368     qq01             = _mm_mul_pd(iq0,jq1);
1369     qq02             = _mm_mul_pd(iq0,jq2);
1370     qq10             = _mm_mul_pd(iq1,jq0);
1371     qq11             = _mm_mul_pd(iq1,jq1);
1372     qq12             = _mm_mul_pd(iq1,jq2);
1373     qq20             = _mm_mul_pd(iq2,jq0);
1374     qq21             = _mm_mul_pd(iq2,jq1);
1375     qq22             = _mm_mul_pd(iq2,jq2);
1376
1377     /* Avoid stupid compiler warnings */
1378     jnrA = jnrB = 0;
1379     j_coord_offsetA = 0;
1380     j_coord_offsetB = 0;
1381
1382     outeriter        = 0;
1383     inneriter        = 0;
1384
1385     /* Start outer loop over neighborlists */
1386     for(iidx=0; iidx<nri; iidx++)
1387     {
1388         /* Load shift vector for this list */
1389         i_shift_offset   = DIM*shiftidx[iidx];
1390
1391         /* Load limits for loop over neighbors */
1392         j_index_start    = jindex[iidx];
1393         j_index_end      = jindex[iidx+1];
1394
1395         /* Get outer coordinate index */
1396         inr              = iinr[iidx];
1397         i_coord_offset   = DIM*inr;
1398
1399         /* Load i particle coords and add shift vector */
1400         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1401                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1402
1403         fix0             = _mm_setzero_pd();
1404         fiy0             = _mm_setzero_pd();
1405         fiz0             = _mm_setzero_pd();
1406         fix1             = _mm_setzero_pd();
1407         fiy1             = _mm_setzero_pd();
1408         fiz1             = _mm_setzero_pd();
1409         fix2             = _mm_setzero_pd();
1410         fiy2             = _mm_setzero_pd();
1411         fiz2             = _mm_setzero_pd();
1412
1413         /* Start inner kernel loop */
1414         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1415         {
1416
1417             /* Get j neighbor index, and coordinate index */
1418             jnrA             = jjnr[jidx];
1419             jnrB             = jjnr[jidx+1];
1420             j_coord_offsetA  = DIM*jnrA;
1421             j_coord_offsetB  = DIM*jnrB;
1422
1423             /* load j atom coordinates */
1424             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1425                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1426
1427             /* Calculate displacement vector */
1428             dx00             = _mm_sub_pd(ix0,jx0);
1429             dy00             = _mm_sub_pd(iy0,jy0);
1430             dz00             = _mm_sub_pd(iz0,jz0);
1431             dx01             = _mm_sub_pd(ix0,jx1);
1432             dy01             = _mm_sub_pd(iy0,jy1);
1433             dz01             = _mm_sub_pd(iz0,jz1);
1434             dx02             = _mm_sub_pd(ix0,jx2);
1435             dy02             = _mm_sub_pd(iy0,jy2);
1436             dz02             = _mm_sub_pd(iz0,jz2);
1437             dx10             = _mm_sub_pd(ix1,jx0);
1438             dy10             = _mm_sub_pd(iy1,jy0);
1439             dz10             = _mm_sub_pd(iz1,jz0);
1440             dx11             = _mm_sub_pd(ix1,jx1);
1441             dy11             = _mm_sub_pd(iy1,jy1);
1442             dz11             = _mm_sub_pd(iz1,jz1);
1443             dx12             = _mm_sub_pd(ix1,jx2);
1444             dy12             = _mm_sub_pd(iy1,jy2);
1445             dz12             = _mm_sub_pd(iz1,jz2);
1446             dx20             = _mm_sub_pd(ix2,jx0);
1447             dy20             = _mm_sub_pd(iy2,jy0);
1448             dz20             = _mm_sub_pd(iz2,jz0);
1449             dx21             = _mm_sub_pd(ix2,jx1);
1450             dy21             = _mm_sub_pd(iy2,jy1);
1451             dz21             = _mm_sub_pd(iz2,jz1);
1452             dx22             = _mm_sub_pd(ix2,jx2);
1453             dy22             = _mm_sub_pd(iy2,jy2);
1454             dz22             = _mm_sub_pd(iz2,jz2);
1455
1456             /* Calculate squared distance and things based on it */
1457             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1458             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1459             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1460             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1461             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1462             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1463             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1464             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1465             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1466
1467             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1468             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1469             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1470             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1471             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1472             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1473             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1474             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1475             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1476
1477             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1478             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1479             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1480             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1481             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1482             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1483             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1484             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1485             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1486
1487             fjx0             = _mm_setzero_pd();
1488             fjy0             = _mm_setzero_pd();
1489             fjz0             = _mm_setzero_pd();
1490             fjx1             = _mm_setzero_pd();
1491             fjy1             = _mm_setzero_pd();
1492             fjz1             = _mm_setzero_pd();
1493             fjx2             = _mm_setzero_pd();
1494             fjy2             = _mm_setzero_pd();
1495             fjz2             = _mm_setzero_pd();
1496
1497             /**************************
1498              * CALCULATE INTERACTIONS *
1499              **************************/
1500
1501             r00              = _mm_mul_pd(rsq00,rinv00);
1502
1503             /* EWALD ELECTROSTATICS */
1504
1505             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1506             ewrt             = _mm_mul_pd(r00,ewtabscale);
1507             ewitab           = _mm_cvttpd_epi32(ewrt);
1508             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1509             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1510                                          &ewtabF,&ewtabFn);
1511             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1512             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1513
1514             /* Analytical LJ-PME */
1515             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1516             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1517             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1518             exponent         = gmx_simd_exp_d(ewcljrsq);
1519             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1520             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1521             /* f6A = 6 * C6grid * (1 - poly) */
1522             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1523             /* f6B = C6grid * exponent * beta^6 */
1524             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1525             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1526             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1527
1528             fscal            = _mm_add_pd(felec,fvdw);
1529
1530             /* Calculate temporary vectorial force */
1531             tx               = _mm_mul_pd(fscal,dx00);
1532             ty               = _mm_mul_pd(fscal,dy00);
1533             tz               = _mm_mul_pd(fscal,dz00);
1534
1535             /* Update vectorial force */
1536             fix0             = _mm_add_pd(fix0,tx);
1537             fiy0             = _mm_add_pd(fiy0,ty);
1538             fiz0             = _mm_add_pd(fiz0,tz);
1539
1540             fjx0             = _mm_add_pd(fjx0,tx);
1541             fjy0             = _mm_add_pd(fjy0,ty);
1542             fjz0             = _mm_add_pd(fjz0,tz);
1543
1544             /**************************
1545              * CALCULATE INTERACTIONS *
1546              **************************/
1547
1548             r01              = _mm_mul_pd(rsq01,rinv01);
1549
1550             /* EWALD ELECTROSTATICS */
1551
1552             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1553             ewrt             = _mm_mul_pd(r01,ewtabscale);
1554             ewitab           = _mm_cvttpd_epi32(ewrt);
1555             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1556             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1557                                          &ewtabF,&ewtabFn);
1558             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1559             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1560
1561             fscal            = felec;
1562
1563             /* Calculate temporary vectorial force */
1564             tx               = _mm_mul_pd(fscal,dx01);
1565             ty               = _mm_mul_pd(fscal,dy01);
1566             tz               = _mm_mul_pd(fscal,dz01);
1567
1568             /* Update vectorial force */
1569             fix0             = _mm_add_pd(fix0,tx);
1570             fiy0             = _mm_add_pd(fiy0,ty);
1571             fiz0             = _mm_add_pd(fiz0,tz);
1572
1573             fjx1             = _mm_add_pd(fjx1,tx);
1574             fjy1             = _mm_add_pd(fjy1,ty);
1575             fjz1             = _mm_add_pd(fjz1,tz);
1576
1577             /**************************
1578              * CALCULATE INTERACTIONS *
1579              **************************/
1580
1581             r02              = _mm_mul_pd(rsq02,rinv02);
1582
1583             /* EWALD ELECTROSTATICS */
1584
1585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1586             ewrt             = _mm_mul_pd(r02,ewtabscale);
1587             ewitab           = _mm_cvttpd_epi32(ewrt);
1588             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1589             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1590                                          &ewtabF,&ewtabFn);
1591             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1592             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1593
1594             fscal            = felec;
1595
1596             /* Calculate temporary vectorial force */
1597             tx               = _mm_mul_pd(fscal,dx02);
1598             ty               = _mm_mul_pd(fscal,dy02);
1599             tz               = _mm_mul_pd(fscal,dz02);
1600
1601             /* Update vectorial force */
1602             fix0             = _mm_add_pd(fix0,tx);
1603             fiy0             = _mm_add_pd(fiy0,ty);
1604             fiz0             = _mm_add_pd(fiz0,tz);
1605
1606             fjx2             = _mm_add_pd(fjx2,tx);
1607             fjy2             = _mm_add_pd(fjy2,ty);
1608             fjz2             = _mm_add_pd(fjz2,tz);
1609
1610             /**************************
1611              * CALCULATE INTERACTIONS *
1612              **************************/
1613
1614             r10              = _mm_mul_pd(rsq10,rinv10);
1615
1616             /* EWALD ELECTROSTATICS */
1617
1618             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1619             ewrt             = _mm_mul_pd(r10,ewtabscale);
1620             ewitab           = _mm_cvttpd_epi32(ewrt);
1621             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1622             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1623                                          &ewtabF,&ewtabFn);
1624             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1625             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1626
1627             fscal            = felec;
1628
1629             /* Calculate temporary vectorial force */
1630             tx               = _mm_mul_pd(fscal,dx10);
1631             ty               = _mm_mul_pd(fscal,dy10);
1632             tz               = _mm_mul_pd(fscal,dz10);
1633
1634             /* Update vectorial force */
1635             fix1             = _mm_add_pd(fix1,tx);
1636             fiy1             = _mm_add_pd(fiy1,ty);
1637             fiz1             = _mm_add_pd(fiz1,tz);
1638
1639             fjx0             = _mm_add_pd(fjx0,tx);
1640             fjy0             = _mm_add_pd(fjy0,ty);
1641             fjz0             = _mm_add_pd(fjz0,tz);
1642
1643             /**************************
1644              * CALCULATE INTERACTIONS *
1645              **************************/
1646
1647             r11              = _mm_mul_pd(rsq11,rinv11);
1648
1649             /* EWALD ELECTROSTATICS */
1650
1651             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1652             ewrt             = _mm_mul_pd(r11,ewtabscale);
1653             ewitab           = _mm_cvttpd_epi32(ewrt);
1654             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1655             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1656                                          &ewtabF,&ewtabFn);
1657             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1658             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1659
1660             fscal            = felec;
1661
1662             /* Calculate temporary vectorial force */
1663             tx               = _mm_mul_pd(fscal,dx11);
1664             ty               = _mm_mul_pd(fscal,dy11);
1665             tz               = _mm_mul_pd(fscal,dz11);
1666
1667             /* Update vectorial force */
1668             fix1             = _mm_add_pd(fix1,tx);
1669             fiy1             = _mm_add_pd(fiy1,ty);
1670             fiz1             = _mm_add_pd(fiz1,tz);
1671
1672             fjx1             = _mm_add_pd(fjx1,tx);
1673             fjy1             = _mm_add_pd(fjy1,ty);
1674             fjz1             = _mm_add_pd(fjz1,tz);
1675
1676             /**************************
1677              * CALCULATE INTERACTIONS *
1678              **************************/
1679
1680             r12              = _mm_mul_pd(rsq12,rinv12);
1681
1682             /* EWALD ELECTROSTATICS */
1683
1684             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1685             ewrt             = _mm_mul_pd(r12,ewtabscale);
1686             ewitab           = _mm_cvttpd_epi32(ewrt);
1687             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1688             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1689                                          &ewtabF,&ewtabFn);
1690             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1691             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1692
1693             fscal            = felec;
1694
1695             /* Calculate temporary vectorial force */
1696             tx               = _mm_mul_pd(fscal,dx12);
1697             ty               = _mm_mul_pd(fscal,dy12);
1698             tz               = _mm_mul_pd(fscal,dz12);
1699
1700             /* Update vectorial force */
1701             fix1             = _mm_add_pd(fix1,tx);
1702             fiy1             = _mm_add_pd(fiy1,ty);
1703             fiz1             = _mm_add_pd(fiz1,tz);
1704
1705             fjx2             = _mm_add_pd(fjx2,tx);
1706             fjy2             = _mm_add_pd(fjy2,ty);
1707             fjz2             = _mm_add_pd(fjz2,tz);
1708
1709             /**************************
1710              * CALCULATE INTERACTIONS *
1711              **************************/
1712
1713             r20              = _mm_mul_pd(rsq20,rinv20);
1714
1715             /* EWALD ELECTROSTATICS */
1716
1717             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1718             ewrt             = _mm_mul_pd(r20,ewtabscale);
1719             ewitab           = _mm_cvttpd_epi32(ewrt);
1720             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1721             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1722                                          &ewtabF,&ewtabFn);
1723             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1724             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1725
1726             fscal            = felec;
1727
1728             /* Calculate temporary vectorial force */
1729             tx               = _mm_mul_pd(fscal,dx20);
1730             ty               = _mm_mul_pd(fscal,dy20);
1731             tz               = _mm_mul_pd(fscal,dz20);
1732
1733             /* Update vectorial force */
1734             fix2             = _mm_add_pd(fix2,tx);
1735             fiy2             = _mm_add_pd(fiy2,ty);
1736             fiz2             = _mm_add_pd(fiz2,tz);
1737
1738             fjx0             = _mm_add_pd(fjx0,tx);
1739             fjy0             = _mm_add_pd(fjy0,ty);
1740             fjz0             = _mm_add_pd(fjz0,tz);
1741
1742             /**************************
1743              * CALCULATE INTERACTIONS *
1744              **************************/
1745
1746             r21              = _mm_mul_pd(rsq21,rinv21);
1747
1748             /* EWALD ELECTROSTATICS */
1749
1750             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1751             ewrt             = _mm_mul_pd(r21,ewtabscale);
1752             ewitab           = _mm_cvttpd_epi32(ewrt);
1753             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1754             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1755                                          &ewtabF,&ewtabFn);
1756             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1757             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1758
1759             fscal            = felec;
1760
1761             /* Calculate temporary vectorial force */
1762             tx               = _mm_mul_pd(fscal,dx21);
1763             ty               = _mm_mul_pd(fscal,dy21);
1764             tz               = _mm_mul_pd(fscal,dz21);
1765
1766             /* Update vectorial force */
1767             fix2             = _mm_add_pd(fix2,tx);
1768             fiy2             = _mm_add_pd(fiy2,ty);
1769             fiz2             = _mm_add_pd(fiz2,tz);
1770
1771             fjx1             = _mm_add_pd(fjx1,tx);
1772             fjy1             = _mm_add_pd(fjy1,ty);
1773             fjz1             = _mm_add_pd(fjz1,tz);
1774
1775             /**************************
1776              * CALCULATE INTERACTIONS *
1777              **************************/
1778
1779             r22              = _mm_mul_pd(rsq22,rinv22);
1780
1781             /* EWALD ELECTROSTATICS */
1782
1783             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1784             ewrt             = _mm_mul_pd(r22,ewtabscale);
1785             ewitab           = _mm_cvttpd_epi32(ewrt);
1786             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1787             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1788                                          &ewtabF,&ewtabFn);
1789             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1790             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1791
1792             fscal            = felec;
1793
1794             /* Calculate temporary vectorial force */
1795             tx               = _mm_mul_pd(fscal,dx22);
1796             ty               = _mm_mul_pd(fscal,dy22);
1797             tz               = _mm_mul_pd(fscal,dz22);
1798
1799             /* Update vectorial force */
1800             fix2             = _mm_add_pd(fix2,tx);
1801             fiy2             = _mm_add_pd(fiy2,ty);
1802             fiz2             = _mm_add_pd(fiz2,tz);
1803
1804             fjx2             = _mm_add_pd(fjx2,tx);
1805             fjy2             = _mm_add_pd(fjy2,ty);
1806             fjz2             = _mm_add_pd(fjz2,tz);
1807
1808             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1809
1810             /* Inner loop uses 347 flops */
1811         }
1812
1813         if(jidx<j_index_end)
1814         {
1815
1816             jnrA             = jjnr[jidx];
1817             j_coord_offsetA  = DIM*jnrA;
1818
1819             /* load j atom coordinates */
1820             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1821                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1822
1823             /* Calculate displacement vector */
1824             dx00             = _mm_sub_pd(ix0,jx0);
1825             dy00             = _mm_sub_pd(iy0,jy0);
1826             dz00             = _mm_sub_pd(iz0,jz0);
1827             dx01             = _mm_sub_pd(ix0,jx1);
1828             dy01             = _mm_sub_pd(iy0,jy1);
1829             dz01             = _mm_sub_pd(iz0,jz1);
1830             dx02             = _mm_sub_pd(ix0,jx2);
1831             dy02             = _mm_sub_pd(iy0,jy2);
1832             dz02             = _mm_sub_pd(iz0,jz2);
1833             dx10             = _mm_sub_pd(ix1,jx0);
1834             dy10             = _mm_sub_pd(iy1,jy0);
1835             dz10             = _mm_sub_pd(iz1,jz0);
1836             dx11             = _mm_sub_pd(ix1,jx1);
1837             dy11             = _mm_sub_pd(iy1,jy1);
1838             dz11             = _mm_sub_pd(iz1,jz1);
1839             dx12             = _mm_sub_pd(ix1,jx2);
1840             dy12             = _mm_sub_pd(iy1,jy2);
1841             dz12             = _mm_sub_pd(iz1,jz2);
1842             dx20             = _mm_sub_pd(ix2,jx0);
1843             dy20             = _mm_sub_pd(iy2,jy0);
1844             dz20             = _mm_sub_pd(iz2,jz0);
1845             dx21             = _mm_sub_pd(ix2,jx1);
1846             dy21             = _mm_sub_pd(iy2,jy1);
1847             dz21             = _mm_sub_pd(iz2,jz1);
1848             dx22             = _mm_sub_pd(ix2,jx2);
1849             dy22             = _mm_sub_pd(iy2,jy2);
1850             dz22             = _mm_sub_pd(iz2,jz2);
1851
1852             /* Calculate squared distance and things based on it */
1853             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1854             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1855             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1856             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1857             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1858             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1859             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1860             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1861             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1862
1863             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1864             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1865             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1866             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1867             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1868             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1869             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1870             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1871             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1872
1873             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1874             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1875             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1876             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1877             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1878             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1879             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1880             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1881             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1882
1883             fjx0             = _mm_setzero_pd();
1884             fjy0             = _mm_setzero_pd();
1885             fjz0             = _mm_setzero_pd();
1886             fjx1             = _mm_setzero_pd();
1887             fjy1             = _mm_setzero_pd();
1888             fjz1             = _mm_setzero_pd();
1889             fjx2             = _mm_setzero_pd();
1890             fjy2             = _mm_setzero_pd();
1891             fjz2             = _mm_setzero_pd();
1892
1893             /**************************
1894              * CALCULATE INTERACTIONS *
1895              **************************/
1896
1897             r00              = _mm_mul_pd(rsq00,rinv00);
1898
1899             /* EWALD ELECTROSTATICS */
1900
1901             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1902             ewrt             = _mm_mul_pd(r00,ewtabscale);
1903             ewitab           = _mm_cvttpd_epi32(ewrt);
1904             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1905             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1906             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1907             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1908
1909             /* Analytical LJ-PME */
1910             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1911             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1912             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1913             exponent         = gmx_simd_exp_d(ewcljrsq);
1914             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1915             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1916             /* f6A = 6 * C6grid * (1 - poly) */
1917             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1918             /* f6B = C6grid * exponent * beta^6 */
1919             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1920             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1921             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1922
1923             fscal            = _mm_add_pd(felec,fvdw);
1924
1925             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1926
1927             /* Calculate temporary vectorial force */
1928             tx               = _mm_mul_pd(fscal,dx00);
1929             ty               = _mm_mul_pd(fscal,dy00);
1930             tz               = _mm_mul_pd(fscal,dz00);
1931
1932             /* Update vectorial force */
1933             fix0             = _mm_add_pd(fix0,tx);
1934             fiy0             = _mm_add_pd(fiy0,ty);
1935             fiz0             = _mm_add_pd(fiz0,tz);
1936
1937             fjx0             = _mm_add_pd(fjx0,tx);
1938             fjy0             = _mm_add_pd(fjy0,ty);
1939             fjz0             = _mm_add_pd(fjz0,tz);
1940
1941             /**************************
1942              * CALCULATE INTERACTIONS *
1943              **************************/
1944
1945             r01              = _mm_mul_pd(rsq01,rinv01);
1946
1947             /* EWALD ELECTROSTATICS */
1948
1949             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1950             ewrt             = _mm_mul_pd(r01,ewtabscale);
1951             ewitab           = _mm_cvttpd_epi32(ewrt);
1952             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1953             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1954             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1955             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1956
1957             fscal            = felec;
1958
1959             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1960
1961             /* Calculate temporary vectorial force */
1962             tx               = _mm_mul_pd(fscal,dx01);
1963             ty               = _mm_mul_pd(fscal,dy01);
1964             tz               = _mm_mul_pd(fscal,dz01);
1965
1966             /* Update vectorial force */
1967             fix0             = _mm_add_pd(fix0,tx);
1968             fiy0             = _mm_add_pd(fiy0,ty);
1969             fiz0             = _mm_add_pd(fiz0,tz);
1970
1971             fjx1             = _mm_add_pd(fjx1,tx);
1972             fjy1             = _mm_add_pd(fjy1,ty);
1973             fjz1             = _mm_add_pd(fjz1,tz);
1974
1975             /**************************
1976              * CALCULATE INTERACTIONS *
1977              **************************/
1978
1979             r02              = _mm_mul_pd(rsq02,rinv02);
1980
1981             /* EWALD ELECTROSTATICS */
1982
1983             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1984             ewrt             = _mm_mul_pd(r02,ewtabscale);
1985             ewitab           = _mm_cvttpd_epi32(ewrt);
1986             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1987             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1988             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1989             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1990
1991             fscal            = felec;
1992
1993             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1994
1995             /* Calculate temporary vectorial force */
1996             tx               = _mm_mul_pd(fscal,dx02);
1997             ty               = _mm_mul_pd(fscal,dy02);
1998             tz               = _mm_mul_pd(fscal,dz02);
1999
2000             /* Update vectorial force */
2001             fix0             = _mm_add_pd(fix0,tx);
2002             fiy0             = _mm_add_pd(fiy0,ty);
2003             fiz0             = _mm_add_pd(fiz0,tz);
2004
2005             fjx2             = _mm_add_pd(fjx2,tx);
2006             fjy2             = _mm_add_pd(fjy2,ty);
2007             fjz2             = _mm_add_pd(fjz2,tz);
2008
2009             /**************************
2010              * CALCULATE INTERACTIONS *
2011              **************************/
2012
2013             r10              = _mm_mul_pd(rsq10,rinv10);
2014
2015             /* EWALD ELECTROSTATICS */
2016
2017             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2018             ewrt             = _mm_mul_pd(r10,ewtabscale);
2019             ewitab           = _mm_cvttpd_epi32(ewrt);
2020             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2021             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2022             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2023             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2024
2025             fscal            = felec;
2026
2027             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2028
2029             /* Calculate temporary vectorial force */
2030             tx               = _mm_mul_pd(fscal,dx10);
2031             ty               = _mm_mul_pd(fscal,dy10);
2032             tz               = _mm_mul_pd(fscal,dz10);
2033
2034             /* Update vectorial force */
2035             fix1             = _mm_add_pd(fix1,tx);
2036             fiy1             = _mm_add_pd(fiy1,ty);
2037             fiz1             = _mm_add_pd(fiz1,tz);
2038
2039             fjx0             = _mm_add_pd(fjx0,tx);
2040             fjy0             = _mm_add_pd(fjy0,ty);
2041             fjz0             = _mm_add_pd(fjz0,tz);
2042
2043             /**************************
2044              * CALCULATE INTERACTIONS *
2045              **************************/
2046
2047             r11              = _mm_mul_pd(rsq11,rinv11);
2048
2049             /* EWALD ELECTROSTATICS */
2050
2051             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2052             ewrt             = _mm_mul_pd(r11,ewtabscale);
2053             ewitab           = _mm_cvttpd_epi32(ewrt);
2054             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2055             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2056             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2057             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2058
2059             fscal            = felec;
2060
2061             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2062
2063             /* Calculate temporary vectorial force */
2064             tx               = _mm_mul_pd(fscal,dx11);
2065             ty               = _mm_mul_pd(fscal,dy11);
2066             tz               = _mm_mul_pd(fscal,dz11);
2067
2068             /* Update vectorial force */
2069             fix1             = _mm_add_pd(fix1,tx);
2070             fiy1             = _mm_add_pd(fiy1,ty);
2071             fiz1             = _mm_add_pd(fiz1,tz);
2072
2073             fjx1             = _mm_add_pd(fjx1,tx);
2074             fjy1             = _mm_add_pd(fjy1,ty);
2075             fjz1             = _mm_add_pd(fjz1,tz);
2076
2077             /**************************
2078              * CALCULATE INTERACTIONS *
2079              **************************/
2080
2081             r12              = _mm_mul_pd(rsq12,rinv12);
2082
2083             /* EWALD ELECTROSTATICS */
2084
2085             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2086             ewrt             = _mm_mul_pd(r12,ewtabscale);
2087             ewitab           = _mm_cvttpd_epi32(ewrt);
2088             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2089             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2090             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2091             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2092
2093             fscal            = felec;
2094
2095             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2096
2097             /* Calculate temporary vectorial force */
2098             tx               = _mm_mul_pd(fscal,dx12);
2099             ty               = _mm_mul_pd(fscal,dy12);
2100             tz               = _mm_mul_pd(fscal,dz12);
2101
2102             /* Update vectorial force */
2103             fix1             = _mm_add_pd(fix1,tx);
2104             fiy1             = _mm_add_pd(fiy1,ty);
2105             fiz1             = _mm_add_pd(fiz1,tz);
2106
2107             fjx2             = _mm_add_pd(fjx2,tx);
2108             fjy2             = _mm_add_pd(fjy2,ty);
2109             fjz2             = _mm_add_pd(fjz2,tz);
2110
2111             /**************************
2112              * CALCULATE INTERACTIONS *
2113              **************************/
2114
2115             r20              = _mm_mul_pd(rsq20,rinv20);
2116
2117             /* EWALD ELECTROSTATICS */
2118
2119             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2120             ewrt             = _mm_mul_pd(r20,ewtabscale);
2121             ewitab           = _mm_cvttpd_epi32(ewrt);
2122             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2123             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2124             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2125             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2126
2127             fscal            = felec;
2128
2129             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2130
2131             /* Calculate temporary vectorial force */
2132             tx               = _mm_mul_pd(fscal,dx20);
2133             ty               = _mm_mul_pd(fscal,dy20);
2134             tz               = _mm_mul_pd(fscal,dz20);
2135
2136             /* Update vectorial force */
2137             fix2             = _mm_add_pd(fix2,tx);
2138             fiy2             = _mm_add_pd(fiy2,ty);
2139             fiz2             = _mm_add_pd(fiz2,tz);
2140
2141             fjx0             = _mm_add_pd(fjx0,tx);
2142             fjy0             = _mm_add_pd(fjy0,ty);
2143             fjz0             = _mm_add_pd(fjz0,tz);
2144
2145             /**************************
2146              * CALCULATE INTERACTIONS *
2147              **************************/
2148
2149             r21              = _mm_mul_pd(rsq21,rinv21);
2150
2151             /* EWALD ELECTROSTATICS */
2152
2153             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2154             ewrt             = _mm_mul_pd(r21,ewtabscale);
2155             ewitab           = _mm_cvttpd_epi32(ewrt);
2156             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2157             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2158             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2159             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2160
2161             fscal            = felec;
2162
2163             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2164
2165             /* Calculate temporary vectorial force */
2166             tx               = _mm_mul_pd(fscal,dx21);
2167             ty               = _mm_mul_pd(fscal,dy21);
2168             tz               = _mm_mul_pd(fscal,dz21);
2169
2170             /* Update vectorial force */
2171             fix2             = _mm_add_pd(fix2,tx);
2172             fiy2             = _mm_add_pd(fiy2,ty);
2173             fiz2             = _mm_add_pd(fiz2,tz);
2174
2175             fjx1             = _mm_add_pd(fjx1,tx);
2176             fjy1             = _mm_add_pd(fjy1,ty);
2177             fjz1             = _mm_add_pd(fjz1,tz);
2178
2179             /**************************
2180              * CALCULATE INTERACTIONS *
2181              **************************/
2182
2183             r22              = _mm_mul_pd(rsq22,rinv22);
2184
2185             /* EWALD ELECTROSTATICS */
2186
2187             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2188             ewrt             = _mm_mul_pd(r22,ewtabscale);
2189             ewitab           = _mm_cvttpd_epi32(ewrt);
2190             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2191             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2192             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2193             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2194
2195             fscal            = felec;
2196
2197             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2198
2199             /* Calculate temporary vectorial force */
2200             tx               = _mm_mul_pd(fscal,dx22);
2201             ty               = _mm_mul_pd(fscal,dy22);
2202             tz               = _mm_mul_pd(fscal,dz22);
2203
2204             /* Update vectorial force */
2205             fix2             = _mm_add_pd(fix2,tx);
2206             fiy2             = _mm_add_pd(fiy2,ty);
2207             fiz2             = _mm_add_pd(fiz2,tz);
2208
2209             fjx2             = _mm_add_pd(fjx2,tx);
2210             fjy2             = _mm_add_pd(fjy2,ty);
2211             fjz2             = _mm_add_pd(fjz2,tz);
2212
2213             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2214
2215             /* Inner loop uses 347 flops */
2216         }
2217
2218         /* End of innermost loop */
2219
2220         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2221                                               f+i_coord_offset,fshift+i_shift_offset);
2222
2223         /* Increment number of inner iterations */
2224         inneriter                  += j_index_end - j_index_start;
2225
2226         /* Outer loop uses 18 flops */
2227     }
2228
2229     /* Increment number of outer iterations */
2230     outeriter        += nri;
2231
2232     /* Update outer/inner flops */
2233
2234     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*347);
2235 }