Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse2_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d           c6grid_00;
102     __m128d           c6grid_10;
103     __m128d           c6grid_20;
104     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
105     real             *vdwgridparam;
106     __m128d           one_half = _mm_set1_pd(0.5);
107     __m128d           minus_one = _mm_set1_pd(-1.0);
108     __m128i          ewitab;
109     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     __m128d          dummy_mask,cutoff_mask;
112     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
113     __m128d          one     = _mm_set1_pd(1.0);
114     __m128d          two     = _mm_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131     vdwgridparam     = fr->ljpme_c6grid;
132     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
133     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
134     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
135
136     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
144     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
145     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
173
174         fix0             = _mm_setzero_pd();
175         fiy0             = _mm_setzero_pd();
176         fiz0             = _mm_setzero_pd();
177         fix1             = _mm_setzero_pd();
178         fiy1             = _mm_setzero_pd();
179         fiz1             = _mm_setzero_pd();
180         fix2             = _mm_setzero_pd();
181         fiy2             = _mm_setzero_pd();
182         fiz2             = _mm_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_pd();
186         vvdwsum          = _mm_setzero_pd();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_pd(ix0,jx0);
204             dy00             = _mm_sub_pd(iy0,jy0);
205             dz00             = _mm_sub_pd(iz0,jz0);
206             dx10             = _mm_sub_pd(ix1,jx0);
207             dy10             = _mm_sub_pd(iy1,jy0);
208             dz10             = _mm_sub_pd(iz1,jz0);
209             dx20             = _mm_sub_pd(ix2,jx0);
210             dy20             = _mm_sub_pd(iy2,jy0);
211             dz20             = _mm_sub_pd(iz2,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
215             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
216             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
217
218             rinv00           = gmx_mm_invsqrt_pd(rsq00);
219             rinv10           = gmx_mm_invsqrt_pd(rsq10);
220             rinv20           = gmx_mm_invsqrt_pd(rsq20);
221
222             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
223             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
224             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230
231             fjx0             = _mm_setzero_pd();
232             fjy0             = _mm_setzero_pd();
233             fjz0             = _mm_setzero_pd();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             r00              = _mm_mul_pd(rsq00,rinv00);
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _mm_mul_pd(iq0,jq0);
243             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
245
246             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
247                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
248
249             /* EWALD ELECTROSTATICS */
250
251             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
252             ewrt             = _mm_mul_pd(r00,ewtabscale);
253             ewitab           = _mm_cvttpd_epi32(ewrt);
254             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
255             ewitab           = _mm_slli_epi32(ewitab,2);
256             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
257             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
258             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
259             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
260             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
261             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
262             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
263             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
264             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
265             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
266
267             /* Analytical LJ-PME */
268             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
269             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
270             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
271             exponent         = gmx_simd_exp_d(ewcljrsq);
272             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
273             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
274             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
275             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
276             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
277             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
278             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
279             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
280
281             /* Update potential sum for this i atom from the interaction with this j atom. */
282             velecsum         = _mm_add_pd(velecsum,velec);
283             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
284
285             fscal            = _mm_add_pd(felec,fvdw);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm_mul_pd(fscal,dx00);
289             ty               = _mm_mul_pd(fscal,dy00);
290             tz               = _mm_mul_pd(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm_add_pd(fix0,tx);
294             fiy0             = _mm_add_pd(fiy0,ty);
295             fiz0             = _mm_add_pd(fiz0,tz);
296
297             fjx0             = _mm_add_pd(fjx0,tx);
298             fjy0             = _mm_add_pd(fjy0,ty);
299             fjz0             = _mm_add_pd(fjz0,tz);
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             r10              = _mm_mul_pd(rsq10,rinv10);
306
307             /* Compute parameters for interactions between i and j atoms */
308             qq10             = _mm_mul_pd(iq1,jq0);
309
310             /* EWALD ELECTROSTATICS */
311
312             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
313             ewrt             = _mm_mul_pd(r10,ewtabscale);
314             ewitab           = _mm_cvttpd_epi32(ewrt);
315             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
316             ewitab           = _mm_slli_epi32(ewitab,2);
317             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
318             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
319             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
320             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
321             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
322             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
323             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
324             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
325             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
326             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velecsum         = _mm_add_pd(velecsum,velec);
330
331             fscal            = felec;
332
333             /* Calculate temporary vectorial force */
334             tx               = _mm_mul_pd(fscal,dx10);
335             ty               = _mm_mul_pd(fscal,dy10);
336             tz               = _mm_mul_pd(fscal,dz10);
337
338             /* Update vectorial force */
339             fix1             = _mm_add_pd(fix1,tx);
340             fiy1             = _mm_add_pd(fiy1,ty);
341             fiz1             = _mm_add_pd(fiz1,tz);
342
343             fjx0             = _mm_add_pd(fjx0,tx);
344             fjy0             = _mm_add_pd(fjy0,ty);
345             fjz0             = _mm_add_pd(fjz0,tz);
346
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             r20              = _mm_mul_pd(rsq20,rinv20);
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq20             = _mm_mul_pd(iq2,jq0);
355
356             /* EWALD ELECTROSTATICS */
357
358             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
359             ewrt             = _mm_mul_pd(r20,ewtabscale);
360             ewitab           = _mm_cvttpd_epi32(ewrt);
361             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
362             ewitab           = _mm_slli_epi32(ewitab,2);
363             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
364             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
365             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
366             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
367             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
368             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
369             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
370             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
371             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
372             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velecsum         = _mm_add_pd(velecsum,velec);
376
377             fscal            = felec;
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm_mul_pd(fscal,dx20);
381             ty               = _mm_mul_pd(fscal,dy20);
382             tz               = _mm_mul_pd(fscal,dz20);
383
384             /* Update vectorial force */
385             fix2             = _mm_add_pd(fix2,tx);
386             fiy2             = _mm_add_pd(fiy2,ty);
387             fiz2             = _mm_add_pd(fiz2,tz);
388
389             fjx0             = _mm_add_pd(fjx0,tx);
390             fjy0             = _mm_add_pd(fjy0,ty);
391             fjz0             = _mm_add_pd(fjz0,tz);
392
393             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
394
395             /* Inner loop uses 154 flops */
396         }
397
398         if(jidx<j_index_end)
399         {
400
401             jnrA             = jjnr[jidx];
402             j_coord_offsetA  = DIM*jnrA;
403
404             /* load j atom coordinates */
405             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
406                                               &jx0,&jy0,&jz0);
407
408             /* Calculate displacement vector */
409             dx00             = _mm_sub_pd(ix0,jx0);
410             dy00             = _mm_sub_pd(iy0,jy0);
411             dz00             = _mm_sub_pd(iz0,jz0);
412             dx10             = _mm_sub_pd(ix1,jx0);
413             dy10             = _mm_sub_pd(iy1,jy0);
414             dz10             = _mm_sub_pd(iz1,jz0);
415             dx20             = _mm_sub_pd(ix2,jx0);
416             dy20             = _mm_sub_pd(iy2,jy0);
417             dz20             = _mm_sub_pd(iz2,jz0);
418
419             /* Calculate squared distance and things based on it */
420             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
421             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
422             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
423
424             rinv00           = gmx_mm_invsqrt_pd(rsq00);
425             rinv10           = gmx_mm_invsqrt_pd(rsq10);
426             rinv20           = gmx_mm_invsqrt_pd(rsq20);
427
428             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
429             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
430             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
431
432             /* Load parameters for j particles */
433             jq0              = _mm_load_sd(charge+jnrA+0);
434             vdwjidx0A        = 2*vdwtype[jnrA+0];
435
436             fjx0             = _mm_setzero_pd();
437             fjy0             = _mm_setzero_pd();
438             fjz0             = _mm_setzero_pd();
439
440             /**************************
441              * CALCULATE INTERACTIONS *
442              **************************/
443
444             r00              = _mm_mul_pd(rsq00,rinv00);
445
446             /* Compute parameters for interactions between i and j atoms */
447             qq00             = _mm_mul_pd(iq0,jq0);
448             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
449
450             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
451
452             /* EWALD ELECTROSTATICS */
453
454             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
455             ewrt             = _mm_mul_pd(r00,ewtabscale);
456             ewitab           = _mm_cvttpd_epi32(ewrt);
457             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
458             ewitab           = _mm_slli_epi32(ewitab,2);
459             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
460             ewtabD           = _mm_setzero_pd();
461             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
462             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
463             ewtabFn          = _mm_setzero_pd();
464             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
465             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
466             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
467             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
468             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
469
470             /* Analytical LJ-PME */
471             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
472             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
473             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
474             exponent         = gmx_simd_exp_d(ewcljrsq);
475             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
476             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
477             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
478             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
479             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
480             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
481             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
482             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
483
484             /* Update potential sum for this i atom from the interaction with this j atom. */
485             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
486             velecsum         = _mm_add_pd(velecsum,velec);
487             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
488             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
489
490             fscal            = _mm_add_pd(felec,fvdw);
491
492             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
493
494             /* Calculate temporary vectorial force */
495             tx               = _mm_mul_pd(fscal,dx00);
496             ty               = _mm_mul_pd(fscal,dy00);
497             tz               = _mm_mul_pd(fscal,dz00);
498
499             /* Update vectorial force */
500             fix0             = _mm_add_pd(fix0,tx);
501             fiy0             = _mm_add_pd(fiy0,ty);
502             fiz0             = _mm_add_pd(fiz0,tz);
503
504             fjx0             = _mm_add_pd(fjx0,tx);
505             fjy0             = _mm_add_pd(fjy0,ty);
506             fjz0             = _mm_add_pd(fjz0,tz);
507
508             /**************************
509              * CALCULATE INTERACTIONS *
510              **************************/
511
512             r10              = _mm_mul_pd(rsq10,rinv10);
513
514             /* Compute parameters for interactions between i and j atoms */
515             qq10             = _mm_mul_pd(iq1,jq0);
516
517             /* EWALD ELECTROSTATICS */
518
519             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
520             ewrt             = _mm_mul_pd(r10,ewtabscale);
521             ewitab           = _mm_cvttpd_epi32(ewrt);
522             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
523             ewitab           = _mm_slli_epi32(ewitab,2);
524             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
525             ewtabD           = _mm_setzero_pd();
526             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
527             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
528             ewtabFn          = _mm_setzero_pd();
529             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
530             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
531             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
532             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
533             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
534
535             /* Update potential sum for this i atom from the interaction with this j atom. */
536             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
537             velecsum         = _mm_add_pd(velecsum,velec);
538
539             fscal            = felec;
540
541             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
542
543             /* Calculate temporary vectorial force */
544             tx               = _mm_mul_pd(fscal,dx10);
545             ty               = _mm_mul_pd(fscal,dy10);
546             tz               = _mm_mul_pd(fscal,dz10);
547
548             /* Update vectorial force */
549             fix1             = _mm_add_pd(fix1,tx);
550             fiy1             = _mm_add_pd(fiy1,ty);
551             fiz1             = _mm_add_pd(fiz1,tz);
552
553             fjx0             = _mm_add_pd(fjx0,tx);
554             fjy0             = _mm_add_pd(fjy0,ty);
555             fjz0             = _mm_add_pd(fjz0,tz);
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             r20              = _mm_mul_pd(rsq20,rinv20);
562
563             /* Compute parameters for interactions between i and j atoms */
564             qq20             = _mm_mul_pd(iq2,jq0);
565
566             /* EWALD ELECTROSTATICS */
567
568             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
569             ewrt             = _mm_mul_pd(r20,ewtabscale);
570             ewitab           = _mm_cvttpd_epi32(ewrt);
571             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
572             ewitab           = _mm_slli_epi32(ewitab,2);
573             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
574             ewtabD           = _mm_setzero_pd();
575             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
576             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
577             ewtabFn          = _mm_setzero_pd();
578             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
579             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
580             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
581             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
582             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
586             velecsum         = _mm_add_pd(velecsum,velec);
587
588             fscal            = felec;
589
590             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
591
592             /* Calculate temporary vectorial force */
593             tx               = _mm_mul_pd(fscal,dx20);
594             ty               = _mm_mul_pd(fscal,dy20);
595             tz               = _mm_mul_pd(fscal,dz20);
596
597             /* Update vectorial force */
598             fix2             = _mm_add_pd(fix2,tx);
599             fiy2             = _mm_add_pd(fiy2,ty);
600             fiz2             = _mm_add_pd(fiz2,tz);
601
602             fjx0             = _mm_add_pd(fjx0,tx);
603             fjy0             = _mm_add_pd(fjy0,ty);
604             fjz0             = _mm_add_pd(fjz0,tz);
605
606             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
607
608             /* Inner loop uses 154 flops */
609         }
610
611         /* End of innermost loop */
612
613         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
614                                               f+i_coord_offset,fshift+i_shift_offset);
615
616         ggid                        = gid[iidx];
617         /* Update potential energies */
618         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
619         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
620
621         /* Increment number of inner iterations */
622         inneriter                  += j_index_end - j_index_start;
623
624         /* Outer loop uses 20 flops */
625     }
626
627     /* Increment number of outer iterations */
628     outeriter        += nri;
629
630     /* Update outer/inner flops */
631
632     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
633 }
634 /*
635  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse2_double
636  * Electrostatics interaction: Ewald
637  * VdW interaction:            LJEwald
638  * Geometry:                   Water3-Particle
639  * Calculate force/pot:        Force
640  */
641 void
642 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse2_double
643                     (t_nblist                    * gmx_restrict       nlist,
644                      rvec                        * gmx_restrict          xx,
645                      rvec                        * gmx_restrict          ff,
646                      t_forcerec                  * gmx_restrict          fr,
647                      t_mdatoms                   * gmx_restrict     mdatoms,
648                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
649                      t_nrnb                      * gmx_restrict        nrnb)
650 {
651     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
652      * just 0 for non-waters.
653      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
654      * jnr indices corresponding to data put in the four positions in the SIMD register.
655      */
656     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
657     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
658     int              jnrA,jnrB;
659     int              j_coord_offsetA,j_coord_offsetB;
660     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
661     real             rcutoff_scalar;
662     real             *shiftvec,*fshift,*x,*f;
663     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
664     int              vdwioffset0;
665     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
666     int              vdwioffset1;
667     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
668     int              vdwioffset2;
669     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
670     int              vdwjidx0A,vdwjidx0B;
671     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
672     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
673     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
674     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
675     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
676     real             *charge;
677     int              nvdwtype;
678     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
679     int              *vdwtype;
680     real             *vdwparam;
681     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
682     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
683     __m128d           c6grid_00;
684     __m128d           c6grid_10;
685     __m128d           c6grid_20;
686     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
687     real             *vdwgridparam;
688     __m128d           one_half = _mm_set1_pd(0.5);
689     __m128d           minus_one = _mm_set1_pd(-1.0);
690     __m128i          ewitab;
691     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
692     real             *ewtab;
693     __m128d          dummy_mask,cutoff_mask;
694     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
695     __m128d          one     = _mm_set1_pd(1.0);
696     __m128d          two     = _mm_set1_pd(2.0);
697     x                = xx[0];
698     f                = ff[0];
699
700     nri              = nlist->nri;
701     iinr             = nlist->iinr;
702     jindex           = nlist->jindex;
703     jjnr             = nlist->jjnr;
704     shiftidx         = nlist->shift;
705     gid              = nlist->gid;
706     shiftvec         = fr->shift_vec[0];
707     fshift           = fr->fshift[0];
708     facel            = _mm_set1_pd(fr->epsfac);
709     charge           = mdatoms->chargeA;
710     nvdwtype         = fr->ntype;
711     vdwparam         = fr->nbfp;
712     vdwtype          = mdatoms->typeA;
713     vdwgridparam     = fr->ljpme_c6grid;
714     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
715     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
716     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
717
718     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
719     ewtab            = fr->ic->tabq_coul_F;
720     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
721     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
722
723     /* Setup water-specific parameters */
724     inr              = nlist->iinr[0];
725     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
726     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
727     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
728     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
729
730     /* Avoid stupid compiler warnings */
731     jnrA = jnrB = 0;
732     j_coord_offsetA = 0;
733     j_coord_offsetB = 0;
734
735     outeriter        = 0;
736     inneriter        = 0;
737
738     /* Start outer loop over neighborlists */
739     for(iidx=0; iidx<nri; iidx++)
740     {
741         /* Load shift vector for this list */
742         i_shift_offset   = DIM*shiftidx[iidx];
743
744         /* Load limits for loop over neighbors */
745         j_index_start    = jindex[iidx];
746         j_index_end      = jindex[iidx+1];
747
748         /* Get outer coordinate index */
749         inr              = iinr[iidx];
750         i_coord_offset   = DIM*inr;
751
752         /* Load i particle coords and add shift vector */
753         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
754                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
755
756         fix0             = _mm_setzero_pd();
757         fiy0             = _mm_setzero_pd();
758         fiz0             = _mm_setzero_pd();
759         fix1             = _mm_setzero_pd();
760         fiy1             = _mm_setzero_pd();
761         fiz1             = _mm_setzero_pd();
762         fix2             = _mm_setzero_pd();
763         fiy2             = _mm_setzero_pd();
764         fiz2             = _mm_setzero_pd();
765
766         /* Start inner kernel loop */
767         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
768         {
769
770             /* Get j neighbor index, and coordinate index */
771             jnrA             = jjnr[jidx];
772             jnrB             = jjnr[jidx+1];
773             j_coord_offsetA  = DIM*jnrA;
774             j_coord_offsetB  = DIM*jnrB;
775
776             /* load j atom coordinates */
777             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
778                                               &jx0,&jy0,&jz0);
779
780             /* Calculate displacement vector */
781             dx00             = _mm_sub_pd(ix0,jx0);
782             dy00             = _mm_sub_pd(iy0,jy0);
783             dz00             = _mm_sub_pd(iz0,jz0);
784             dx10             = _mm_sub_pd(ix1,jx0);
785             dy10             = _mm_sub_pd(iy1,jy0);
786             dz10             = _mm_sub_pd(iz1,jz0);
787             dx20             = _mm_sub_pd(ix2,jx0);
788             dy20             = _mm_sub_pd(iy2,jy0);
789             dz20             = _mm_sub_pd(iz2,jz0);
790
791             /* Calculate squared distance and things based on it */
792             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
793             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
794             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
795
796             rinv00           = gmx_mm_invsqrt_pd(rsq00);
797             rinv10           = gmx_mm_invsqrt_pd(rsq10);
798             rinv20           = gmx_mm_invsqrt_pd(rsq20);
799
800             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
801             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
802             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
803
804             /* Load parameters for j particles */
805             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
806             vdwjidx0A        = 2*vdwtype[jnrA+0];
807             vdwjidx0B        = 2*vdwtype[jnrB+0];
808
809             fjx0             = _mm_setzero_pd();
810             fjy0             = _mm_setzero_pd();
811             fjz0             = _mm_setzero_pd();
812
813             /**************************
814              * CALCULATE INTERACTIONS *
815              **************************/
816
817             r00              = _mm_mul_pd(rsq00,rinv00);
818
819             /* Compute parameters for interactions between i and j atoms */
820             qq00             = _mm_mul_pd(iq0,jq0);
821             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
822                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
823
824             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
825                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
826
827             /* EWALD ELECTROSTATICS */
828
829             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
830             ewrt             = _mm_mul_pd(r00,ewtabscale);
831             ewitab           = _mm_cvttpd_epi32(ewrt);
832             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
833             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
834                                          &ewtabF,&ewtabFn);
835             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
836             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
837
838             /* Analytical LJ-PME */
839             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
840             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
841             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
842             exponent         = gmx_simd_exp_d(ewcljrsq);
843             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
844             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
845             /* f6A = 6 * C6grid * (1 - poly) */
846             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
847             /* f6B = C6grid * exponent * beta^6 */
848             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
849             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
850             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
851
852             fscal            = _mm_add_pd(felec,fvdw);
853
854             /* Calculate temporary vectorial force */
855             tx               = _mm_mul_pd(fscal,dx00);
856             ty               = _mm_mul_pd(fscal,dy00);
857             tz               = _mm_mul_pd(fscal,dz00);
858
859             /* Update vectorial force */
860             fix0             = _mm_add_pd(fix0,tx);
861             fiy0             = _mm_add_pd(fiy0,ty);
862             fiz0             = _mm_add_pd(fiz0,tz);
863
864             fjx0             = _mm_add_pd(fjx0,tx);
865             fjy0             = _mm_add_pd(fjy0,ty);
866             fjz0             = _mm_add_pd(fjz0,tz);
867
868             /**************************
869              * CALCULATE INTERACTIONS *
870              **************************/
871
872             r10              = _mm_mul_pd(rsq10,rinv10);
873
874             /* Compute parameters for interactions between i and j atoms */
875             qq10             = _mm_mul_pd(iq1,jq0);
876
877             /* EWALD ELECTROSTATICS */
878
879             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
880             ewrt             = _mm_mul_pd(r10,ewtabscale);
881             ewitab           = _mm_cvttpd_epi32(ewrt);
882             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
883             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
884                                          &ewtabF,&ewtabFn);
885             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
886             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
887
888             fscal            = felec;
889
890             /* Calculate temporary vectorial force */
891             tx               = _mm_mul_pd(fscal,dx10);
892             ty               = _mm_mul_pd(fscal,dy10);
893             tz               = _mm_mul_pd(fscal,dz10);
894
895             /* Update vectorial force */
896             fix1             = _mm_add_pd(fix1,tx);
897             fiy1             = _mm_add_pd(fiy1,ty);
898             fiz1             = _mm_add_pd(fiz1,tz);
899
900             fjx0             = _mm_add_pd(fjx0,tx);
901             fjy0             = _mm_add_pd(fjy0,ty);
902             fjz0             = _mm_add_pd(fjz0,tz);
903
904             /**************************
905              * CALCULATE INTERACTIONS *
906              **************************/
907
908             r20              = _mm_mul_pd(rsq20,rinv20);
909
910             /* Compute parameters for interactions between i and j atoms */
911             qq20             = _mm_mul_pd(iq2,jq0);
912
913             /* EWALD ELECTROSTATICS */
914
915             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
916             ewrt             = _mm_mul_pd(r20,ewtabscale);
917             ewitab           = _mm_cvttpd_epi32(ewrt);
918             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
919             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
920                                          &ewtabF,&ewtabFn);
921             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
922             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
923
924             fscal            = felec;
925
926             /* Calculate temporary vectorial force */
927             tx               = _mm_mul_pd(fscal,dx20);
928             ty               = _mm_mul_pd(fscal,dy20);
929             tz               = _mm_mul_pd(fscal,dz20);
930
931             /* Update vectorial force */
932             fix2             = _mm_add_pd(fix2,tx);
933             fiy2             = _mm_add_pd(fiy2,ty);
934             fiz2             = _mm_add_pd(fiz2,tz);
935
936             fjx0             = _mm_add_pd(fjx0,tx);
937             fjy0             = _mm_add_pd(fjy0,ty);
938             fjz0             = _mm_add_pd(fjz0,tz);
939
940             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
941
942             /* Inner loop uses 134 flops */
943         }
944
945         if(jidx<j_index_end)
946         {
947
948             jnrA             = jjnr[jidx];
949             j_coord_offsetA  = DIM*jnrA;
950
951             /* load j atom coordinates */
952             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
953                                               &jx0,&jy0,&jz0);
954
955             /* Calculate displacement vector */
956             dx00             = _mm_sub_pd(ix0,jx0);
957             dy00             = _mm_sub_pd(iy0,jy0);
958             dz00             = _mm_sub_pd(iz0,jz0);
959             dx10             = _mm_sub_pd(ix1,jx0);
960             dy10             = _mm_sub_pd(iy1,jy0);
961             dz10             = _mm_sub_pd(iz1,jz0);
962             dx20             = _mm_sub_pd(ix2,jx0);
963             dy20             = _mm_sub_pd(iy2,jy0);
964             dz20             = _mm_sub_pd(iz2,jz0);
965
966             /* Calculate squared distance and things based on it */
967             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
968             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
969             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
970
971             rinv00           = gmx_mm_invsqrt_pd(rsq00);
972             rinv10           = gmx_mm_invsqrt_pd(rsq10);
973             rinv20           = gmx_mm_invsqrt_pd(rsq20);
974
975             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
976             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
977             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
978
979             /* Load parameters for j particles */
980             jq0              = _mm_load_sd(charge+jnrA+0);
981             vdwjidx0A        = 2*vdwtype[jnrA+0];
982
983             fjx0             = _mm_setzero_pd();
984             fjy0             = _mm_setzero_pd();
985             fjz0             = _mm_setzero_pd();
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             r00              = _mm_mul_pd(rsq00,rinv00);
992
993             /* Compute parameters for interactions between i and j atoms */
994             qq00             = _mm_mul_pd(iq0,jq0);
995             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
996
997             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
998
999             /* EWALD ELECTROSTATICS */
1000
1001             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1002             ewrt             = _mm_mul_pd(r00,ewtabscale);
1003             ewitab           = _mm_cvttpd_epi32(ewrt);
1004             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1005             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1006             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1007             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1008
1009             /* Analytical LJ-PME */
1010             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1011             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1012             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1013             exponent         = gmx_simd_exp_d(ewcljrsq);
1014             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1015             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1016             /* f6A = 6 * C6grid * (1 - poly) */
1017             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1018             /* f6B = C6grid * exponent * beta^6 */
1019             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1020             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1021             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1022
1023             fscal            = _mm_add_pd(felec,fvdw);
1024
1025             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1026
1027             /* Calculate temporary vectorial force */
1028             tx               = _mm_mul_pd(fscal,dx00);
1029             ty               = _mm_mul_pd(fscal,dy00);
1030             tz               = _mm_mul_pd(fscal,dz00);
1031
1032             /* Update vectorial force */
1033             fix0             = _mm_add_pd(fix0,tx);
1034             fiy0             = _mm_add_pd(fiy0,ty);
1035             fiz0             = _mm_add_pd(fiz0,tz);
1036
1037             fjx0             = _mm_add_pd(fjx0,tx);
1038             fjy0             = _mm_add_pd(fjy0,ty);
1039             fjz0             = _mm_add_pd(fjz0,tz);
1040
1041             /**************************
1042              * CALCULATE INTERACTIONS *
1043              **************************/
1044
1045             r10              = _mm_mul_pd(rsq10,rinv10);
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             qq10             = _mm_mul_pd(iq1,jq0);
1049
1050             /* EWALD ELECTROSTATICS */
1051
1052             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1053             ewrt             = _mm_mul_pd(r10,ewtabscale);
1054             ewitab           = _mm_cvttpd_epi32(ewrt);
1055             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1056             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1057             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1058             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1059
1060             fscal            = felec;
1061
1062             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1063
1064             /* Calculate temporary vectorial force */
1065             tx               = _mm_mul_pd(fscal,dx10);
1066             ty               = _mm_mul_pd(fscal,dy10);
1067             tz               = _mm_mul_pd(fscal,dz10);
1068
1069             /* Update vectorial force */
1070             fix1             = _mm_add_pd(fix1,tx);
1071             fiy1             = _mm_add_pd(fiy1,ty);
1072             fiz1             = _mm_add_pd(fiz1,tz);
1073
1074             fjx0             = _mm_add_pd(fjx0,tx);
1075             fjy0             = _mm_add_pd(fjy0,ty);
1076             fjz0             = _mm_add_pd(fjz0,tz);
1077
1078             /**************************
1079              * CALCULATE INTERACTIONS *
1080              **************************/
1081
1082             r20              = _mm_mul_pd(rsq20,rinv20);
1083
1084             /* Compute parameters for interactions between i and j atoms */
1085             qq20             = _mm_mul_pd(iq2,jq0);
1086
1087             /* EWALD ELECTROSTATICS */
1088
1089             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1090             ewrt             = _mm_mul_pd(r20,ewtabscale);
1091             ewitab           = _mm_cvttpd_epi32(ewrt);
1092             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1093             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1094             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1095             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1096
1097             fscal            = felec;
1098
1099             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1100
1101             /* Calculate temporary vectorial force */
1102             tx               = _mm_mul_pd(fscal,dx20);
1103             ty               = _mm_mul_pd(fscal,dy20);
1104             tz               = _mm_mul_pd(fscal,dz20);
1105
1106             /* Update vectorial force */
1107             fix2             = _mm_add_pd(fix2,tx);
1108             fiy2             = _mm_add_pd(fiy2,ty);
1109             fiz2             = _mm_add_pd(fiz2,tz);
1110
1111             fjx0             = _mm_add_pd(fjx0,tx);
1112             fjy0             = _mm_add_pd(fjy0,ty);
1113             fjz0             = _mm_add_pd(fjz0,tz);
1114
1115             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1116
1117             /* Inner loop uses 134 flops */
1118         }
1119
1120         /* End of innermost loop */
1121
1122         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1123                                               f+i_coord_offset,fshift+i_shift_offset);
1124
1125         /* Increment number of inner iterations */
1126         inneriter                  += j_index_end - j_index_start;
1127
1128         /* Outer loop uses 18 flops */
1129     }
1130
1131     /* Increment number of outer iterations */
1132     outeriter        += nri;
1133
1134     /* Update outer/inner flops */
1135
1136     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*134);
1137 }