950612c18d84d0fd718d8716b8f16532d224e607
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128d           c6grid_00;
100     __m128d           c6grid_10;
101     __m128d           c6grid_20;
102     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
103     real             *vdwgridparam;
104     __m128d           one_half = _mm_set1_pd(0.5);
105     __m128d           minus_one = _mm_set1_pd(-1.0);
106     __m128i          ewitab;
107     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     real             *ewtab;
109     __m128d          dummy_mask,cutoff_mask;
110     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
111     __m128d          one     = _mm_set1_pd(1.0);
112     __m128d          two     = _mm_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129     vdwgridparam     = fr->ljpme_c6grid;
130     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
131     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
132     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
133
134     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
135     ewtab            = fr->ic->tabq_coul_FDV0;
136     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
137     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
142     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
143     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
144     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm_setzero_pd();
173         fiy0             = _mm_setzero_pd();
174         fiz0             = _mm_setzero_pd();
175         fix1             = _mm_setzero_pd();
176         fiy1             = _mm_setzero_pd();
177         fiz1             = _mm_setzero_pd();
178         fix2             = _mm_setzero_pd();
179         fiy2             = _mm_setzero_pd();
180         fiz2             = _mm_setzero_pd();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_pd();
184         vvdwsum          = _mm_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195
196             /* load j atom coordinates */
197             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm_sub_pd(ix0,jx0);
202             dy00             = _mm_sub_pd(iy0,jy0);
203             dz00             = _mm_sub_pd(iz0,jz0);
204             dx10             = _mm_sub_pd(ix1,jx0);
205             dy10             = _mm_sub_pd(iy1,jy0);
206             dz10             = _mm_sub_pd(iz1,jz0);
207             dx20             = _mm_sub_pd(ix2,jx0);
208             dy20             = _mm_sub_pd(iy2,jy0);
209             dz20             = _mm_sub_pd(iz2,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
213             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
214             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
215
216             rinv00           = gmx_mm_invsqrt_pd(rsq00);
217             rinv10           = gmx_mm_invsqrt_pd(rsq10);
218             rinv20           = gmx_mm_invsqrt_pd(rsq20);
219
220             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
221             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
222             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
226             vdwjidx0A        = 2*vdwtype[jnrA+0];
227             vdwjidx0B        = 2*vdwtype[jnrB+0];
228
229             fjx0             = _mm_setzero_pd();
230             fjy0             = _mm_setzero_pd();
231             fjz0             = _mm_setzero_pd();
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             r00              = _mm_mul_pd(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm_mul_pd(iq0,jq0);
241             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
242                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
243
244             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
245                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
246
247             /* EWALD ELECTROSTATICS */
248
249             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
250             ewrt             = _mm_mul_pd(r00,ewtabscale);
251             ewitab           = _mm_cvttpd_epi32(ewrt);
252             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
253             ewitab           = _mm_slli_epi32(ewitab,2);
254             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
255             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
256             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
257             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
258             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
259             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
260             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
261             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
262             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
263             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
264
265             /* Analytical LJ-PME */
266             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
267             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
268             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
269             exponent         = gmx_simd_exp_d(ewcljrsq);
270             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
271             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
272             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
273             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
274             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
275             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
276             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
277             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             velecsum         = _mm_add_pd(velecsum,velec);
281             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
282
283             fscal            = _mm_add_pd(felec,fvdw);
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm_mul_pd(fscal,dx00);
287             ty               = _mm_mul_pd(fscal,dy00);
288             tz               = _mm_mul_pd(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm_add_pd(fix0,tx);
292             fiy0             = _mm_add_pd(fiy0,ty);
293             fiz0             = _mm_add_pd(fiz0,tz);
294
295             fjx0             = _mm_add_pd(fjx0,tx);
296             fjy0             = _mm_add_pd(fjy0,ty);
297             fjz0             = _mm_add_pd(fjz0,tz);
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             r10              = _mm_mul_pd(rsq10,rinv10);
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm_mul_pd(iq1,jq0);
307
308             /* EWALD ELECTROSTATICS */
309
310             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
311             ewrt             = _mm_mul_pd(r10,ewtabscale);
312             ewitab           = _mm_cvttpd_epi32(ewrt);
313             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
314             ewitab           = _mm_slli_epi32(ewitab,2);
315             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
316             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
317             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
318             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
319             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
320             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
321             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
322             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
323             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
324             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velecsum         = _mm_add_pd(velecsum,velec);
328
329             fscal            = felec;
330
331             /* Calculate temporary vectorial force */
332             tx               = _mm_mul_pd(fscal,dx10);
333             ty               = _mm_mul_pd(fscal,dy10);
334             tz               = _mm_mul_pd(fscal,dz10);
335
336             /* Update vectorial force */
337             fix1             = _mm_add_pd(fix1,tx);
338             fiy1             = _mm_add_pd(fiy1,ty);
339             fiz1             = _mm_add_pd(fiz1,tz);
340
341             fjx0             = _mm_add_pd(fjx0,tx);
342             fjy0             = _mm_add_pd(fjy0,ty);
343             fjz0             = _mm_add_pd(fjz0,tz);
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             r20              = _mm_mul_pd(rsq20,rinv20);
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq20             = _mm_mul_pd(iq2,jq0);
353
354             /* EWALD ELECTROSTATICS */
355
356             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
357             ewrt             = _mm_mul_pd(r20,ewtabscale);
358             ewitab           = _mm_cvttpd_epi32(ewrt);
359             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
360             ewitab           = _mm_slli_epi32(ewitab,2);
361             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
362             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
363             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
364             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
365             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
366             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
367             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
368             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
369             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
370             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
371
372             /* Update potential sum for this i atom from the interaction with this j atom. */
373             velecsum         = _mm_add_pd(velecsum,velec);
374
375             fscal            = felec;
376
377             /* Calculate temporary vectorial force */
378             tx               = _mm_mul_pd(fscal,dx20);
379             ty               = _mm_mul_pd(fscal,dy20);
380             tz               = _mm_mul_pd(fscal,dz20);
381
382             /* Update vectorial force */
383             fix2             = _mm_add_pd(fix2,tx);
384             fiy2             = _mm_add_pd(fiy2,ty);
385             fiz2             = _mm_add_pd(fiz2,tz);
386
387             fjx0             = _mm_add_pd(fjx0,tx);
388             fjy0             = _mm_add_pd(fjy0,ty);
389             fjz0             = _mm_add_pd(fjz0,tz);
390
391             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
392
393             /* Inner loop uses 154 flops */
394         }
395
396         if(jidx<j_index_end)
397         {
398
399             jnrA             = jjnr[jidx];
400             j_coord_offsetA  = DIM*jnrA;
401
402             /* load j atom coordinates */
403             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
404                                               &jx0,&jy0,&jz0);
405
406             /* Calculate displacement vector */
407             dx00             = _mm_sub_pd(ix0,jx0);
408             dy00             = _mm_sub_pd(iy0,jy0);
409             dz00             = _mm_sub_pd(iz0,jz0);
410             dx10             = _mm_sub_pd(ix1,jx0);
411             dy10             = _mm_sub_pd(iy1,jy0);
412             dz10             = _mm_sub_pd(iz1,jz0);
413             dx20             = _mm_sub_pd(ix2,jx0);
414             dy20             = _mm_sub_pd(iy2,jy0);
415             dz20             = _mm_sub_pd(iz2,jz0);
416
417             /* Calculate squared distance and things based on it */
418             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
419             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
420             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
421
422             rinv00           = gmx_mm_invsqrt_pd(rsq00);
423             rinv10           = gmx_mm_invsqrt_pd(rsq10);
424             rinv20           = gmx_mm_invsqrt_pd(rsq20);
425
426             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
427             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
428             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
429
430             /* Load parameters for j particles */
431             jq0              = _mm_load_sd(charge+jnrA+0);
432             vdwjidx0A        = 2*vdwtype[jnrA+0];
433
434             fjx0             = _mm_setzero_pd();
435             fjy0             = _mm_setzero_pd();
436             fjz0             = _mm_setzero_pd();
437
438             /**************************
439              * CALCULATE INTERACTIONS *
440              **************************/
441
442             r00              = _mm_mul_pd(rsq00,rinv00);
443
444             /* Compute parameters for interactions between i and j atoms */
445             qq00             = _mm_mul_pd(iq0,jq0);
446             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
447
448             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
449
450             /* EWALD ELECTROSTATICS */
451
452             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
453             ewrt             = _mm_mul_pd(r00,ewtabscale);
454             ewitab           = _mm_cvttpd_epi32(ewrt);
455             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
456             ewitab           = _mm_slli_epi32(ewitab,2);
457             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
458             ewtabD           = _mm_setzero_pd();
459             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
460             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
461             ewtabFn          = _mm_setzero_pd();
462             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
463             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
464             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
465             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
466             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
467
468             /* Analytical LJ-PME */
469             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
470             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
471             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
472             exponent         = gmx_simd_exp_d(ewcljrsq);
473             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
474             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
475             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
476             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
477             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
478             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
479             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
480             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
481
482             /* Update potential sum for this i atom from the interaction with this j atom. */
483             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
484             velecsum         = _mm_add_pd(velecsum,velec);
485             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
486             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
487
488             fscal            = _mm_add_pd(felec,fvdw);
489
490             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
491
492             /* Calculate temporary vectorial force */
493             tx               = _mm_mul_pd(fscal,dx00);
494             ty               = _mm_mul_pd(fscal,dy00);
495             tz               = _mm_mul_pd(fscal,dz00);
496
497             /* Update vectorial force */
498             fix0             = _mm_add_pd(fix0,tx);
499             fiy0             = _mm_add_pd(fiy0,ty);
500             fiz0             = _mm_add_pd(fiz0,tz);
501
502             fjx0             = _mm_add_pd(fjx0,tx);
503             fjy0             = _mm_add_pd(fjy0,ty);
504             fjz0             = _mm_add_pd(fjz0,tz);
505
506             /**************************
507              * CALCULATE INTERACTIONS *
508              **************************/
509
510             r10              = _mm_mul_pd(rsq10,rinv10);
511
512             /* Compute parameters for interactions between i and j atoms */
513             qq10             = _mm_mul_pd(iq1,jq0);
514
515             /* EWALD ELECTROSTATICS */
516
517             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
518             ewrt             = _mm_mul_pd(r10,ewtabscale);
519             ewitab           = _mm_cvttpd_epi32(ewrt);
520             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
521             ewitab           = _mm_slli_epi32(ewitab,2);
522             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
523             ewtabD           = _mm_setzero_pd();
524             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
525             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
526             ewtabFn          = _mm_setzero_pd();
527             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
528             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
529             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
530             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
531             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
532
533             /* Update potential sum for this i atom from the interaction with this j atom. */
534             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
535             velecsum         = _mm_add_pd(velecsum,velec);
536
537             fscal            = felec;
538
539             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
540
541             /* Calculate temporary vectorial force */
542             tx               = _mm_mul_pd(fscal,dx10);
543             ty               = _mm_mul_pd(fscal,dy10);
544             tz               = _mm_mul_pd(fscal,dz10);
545
546             /* Update vectorial force */
547             fix1             = _mm_add_pd(fix1,tx);
548             fiy1             = _mm_add_pd(fiy1,ty);
549             fiz1             = _mm_add_pd(fiz1,tz);
550
551             fjx0             = _mm_add_pd(fjx0,tx);
552             fjy0             = _mm_add_pd(fjy0,ty);
553             fjz0             = _mm_add_pd(fjz0,tz);
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             r20              = _mm_mul_pd(rsq20,rinv20);
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq20             = _mm_mul_pd(iq2,jq0);
563
564             /* EWALD ELECTROSTATICS */
565
566             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
567             ewrt             = _mm_mul_pd(r20,ewtabscale);
568             ewitab           = _mm_cvttpd_epi32(ewrt);
569             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
570             ewitab           = _mm_slli_epi32(ewitab,2);
571             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
572             ewtabD           = _mm_setzero_pd();
573             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
574             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
575             ewtabFn          = _mm_setzero_pd();
576             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
577             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
578             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
579             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
580             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
581
582             /* Update potential sum for this i atom from the interaction with this j atom. */
583             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
584             velecsum         = _mm_add_pd(velecsum,velec);
585
586             fscal            = felec;
587
588             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
589
590             /* Calculate temporary vectorial force */
591             tx               = _mm_mul_pd(fscal,dx20);
592             ty               = _mm_mul_pd(fscal,dy20);
593             tz               = _mm_mul_pd(fscal,dz20);
594
595             /* Update vectorial force */
596             fix2             = _mm_add_pd(fix2,tx);
597             fiy2             = _mm_add_pd(fiy2,ty);
598             fiz2             = _mm_add_pd(fiz2,tz);
599
600             fjx0             = _mm_add_pd(fjx0,tx);
601             fjy0             = _mm_add_pd(fjy0,ty);
602             fjz0             = _mm_add_pd(fjz0,tz);
603
604             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
605
606             /* Inner loop uses 154 flops */
607         }
608
609         /* End of innermost loop */
610
611         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
612                                               f+i_coord_offset,fshift+i_shift_offset);
613
614         ggid                        = gid[iidx];
615         /* Update potential energies */
616         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
617         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
618
619         /* Increment number of inner iterations */
620         inneriter                  += j_index_end - j_index_start;
621
622         /* Outer loop uses 20 flops */
623     }
624
625     /* Increment number of outer iterations */
626     outeriter        += nri;
627
628     /* Update outer/inner flops */
629
630     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
631 }
632 /*
633  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse2_double
634  * Electrostatics interaction: Ewald
635  * VdW interaction:            LJEwald
636  * Geometry:                   Water3-Particle
637  * Calculate force/pot:        Force
638  */
639 void
640 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse2_double
641                     (t_nblist                    * gmx_restrict       nlist,
642                      rvec                        * gmx_restrict          xx,
643                      rvec                        * gmx_restrict          ff,
644                      t_forcerec                  * gmx_restrict          fr,
645                      t_mdatoms                   * gmx_restrict     mdatoms,
646                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
647                      t_nrnb                      * gmx_restrict        nrnb)
648 {
649     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
650      * just 0 for non-waters.
651      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
652      * jnr indices corresponding to data put in the four positions in the SIMD register.
653      */
654     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
655     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
656     int              jnrA,jnrB;
657     int              j_coord_offsetA,j_coord_offsetB;
658     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
659     real             rcutoff_scalar;
660     real             *shiftvec,*fshift,*x,*f;
661     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
662     int              vdwioffset0;
663     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
664     int              vdwioffset1;
665     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
666     int              vdwioffset2;
667     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
668     int              vdwjidx0A,vdwjidx0B;
669     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
670     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
671     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
672     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
673     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
674     real             *charge;
675     int              nvdwtype;
676     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
677     int              *vdwtype;
678     real             *vdwparam;
679     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
680     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
681     __m128d           c6grid_00;
682     __m128d           c6grid_10;
683     __m128d           c6grid_20;
684     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
685     real             *vdwgridparam;
686     __m128d           one_half = _mm_set1_pd(0.5);
687     __m128d           minus_one = _mm_set1_pd(-1.0);
688     __m128i          ewitab;
689     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
690     real             *ewtab;
691     __m128d          dummy_mask,cutoff_mask;
692     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
693     __m128d          one     = _mm_set1_pd(1.0);
694     __m128d          two     = _mm_set1_pd(2.0);
695     x                = xx[0];
696     f                = ff[0];
697
698     nri              = nlist->nri;
699     iinr             = nlist->iinr;
700     jindex           = nlist->jindex;
701     jjnr             = nlist->jjnr;
702     shiftidx         = nlist->shift;
703     gid              = nlist->gid;
704     shiftvec         = fr->shift_vec[0];
705     fshift           = fr->fshift[0];
706     facel            = _mm_set1_pd(fr->epsfac);
707     charge           = mdatoms->chargeA;
708     nvdwtype         = fr->ntype;
709     vdwparam         = fr->nbfp;
710     vdwtype          = mdatoms->typeA;
711     vdwgridparam     = fr->ljpme_c6grid;
712     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
713     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
714     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
715
716     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
717     ewtab            = fr->ic->tabq_coul_F;
718     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
719     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
720
721     /* Setup water-specific parameters */
722     inr              = nlist->iinr[0];
723     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
724     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
725     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
726     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
727
728     /* Avoid stupid compiler warnings */
729     jnrA = jnrB = 0;
730     j_coord_offsetA = 0;
731     j_coord_offsetB = 0;
732
733     outeriter        = 0;
734     inneriter        = 0;
735
736     /* Start outer loop over neighborlists */
737     for(iidx=0; iidx<nri; iidx++)
738     {
739         /* Load shift vector for this list */
740         i_shift_offset   = DIM*shiftidx[iidx];
741
742         /* Load limits for loop over neighbors */
743         j_index_start    = jindex[iidx];
744         j_index_end      = jindex[iidx+1];
745
746         /* Get outer coordinate index */
747         inr              = iinr[iidx];
748         i_coord_offset   = DIM*inr;
749
750         /* Load i particle coords and add shift vector */
751         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
752                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
753
754         fix0             = _mm_setzero_pd();
755         fiy0             = _mm_setzero_pd();
756         fiz0             = _mm_setzero_pd();
757         fix1             = _mm_setzero_pd();
758         fiy1             = _mm_setzero_pd();
759         fiz1             = _mm_setzero_pd();
760         fix2             = _mm_setzero_pd();
761         fiy2             = _mm_setzero_pd();
762         fiz2             = _mm_setzero_pd();
763
764         /* Start inner kernel loop */
765         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
766         {
767
768             /* Get j neighbor index, and coordinate index */
769             jnrA             = jjnr[jidx];
770             jnrB             = jjnr[jidx+1];
771             j_coord_offsetA  = DIM*jnrA;
772             j_coord_offsetB  = DIM*jnrB;
773
774             /* load j atom coordinates */
775             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
776                                               &jx0,&jy0,&jz0);
777
778             /* Calculate displacement vector */
779             dx00             = _mm_sub_pd(ix0,jx0);
780             dy00             = _mm_sub_pd(iy0,jy0);
781             dz00             = _mm_sub_pd(iz0,jz0);
782             dx10             = _mm_sub_pd(ix1,jx0);
783             dy10             = _mm_sub_pd(iy1,jy0);
784             dz10             = _mm_sub_pd(iz1,jz0);
785             dx20             = _mm_sub_pd(ix2,jx0);
786             dy20             = _mm_sub_pd(iy2,jy0);
787             dz20             = _mm_sub_pd(iz2,jz0);
788
789             /* Calculate squared distance and things based on it */
790             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
791             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
792             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
793
794             rinv00           = gmx_mm_invsqrt_pd(rsq00);
795             rinv10           = gmx_mm_invsqrt_pd(rsq10);
796             rinv20           = gmx_mm_invsqrt_pd(rsq20);
797
798             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
799             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
800             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
801
802             /* Load parameters for j particles */
803             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
804             vdwjidx0A        = 2*vdwtype[jnrA+0];
805             vdwjidx0B        = 2*vdwtype[jnrB+0];
806
807             fjx0             = _mm_setzero_pd();
808             fjy0             = _mm_setzero_pd();
809             fjz0             = _mm_setzero_pd();
810
811             /**************************
812              * CALCULATE INTERACTIONS *
813              **************************/
814
815             r00              = _mm_mul_pd(rsq00,rinv00);
816
817             /* Compute parameters for interactions between i and j atoms */
818             qq00             = _mm_mul_pd(iq0,jq0);
819             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
820                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
821
822             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
823                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
824
825             /* EWALD ELECTROSTATICS */
826
827             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
828             ewrt             = _mm_mul_pd(r00,ewtabscale);
829             ewitab           = _mm_cvttpd_epi32(ewrt);
830             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
831             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
832                                          &ewtabF,&ewtabFn);
833             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
834             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
835
836             /* Analytical LJ-PME */
837             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
838             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
839             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
840             exponent         = gmx_simd_exp_d(ewcljrsq);
841             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
842             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
843             /* f6A = 6 * C6grid * (1 - poly) */
844             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
845             /* f6B = C6grid * exponent * beta^6 */
846             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
847             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
848             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
849
850             fscal            = _mm_add_pd(felec,fvdw);
851
852             /* Calculate temporary vectorial force */
853             tx               = _mm_mul_pd(fscal,dx00);
854             ty               = _mm_mul_pd(fscal,dy00);
855             tz               = _mm_mul_pd(fscal,dz00);
856
857             /* Update vectorial force */
858             fix0             = _mm_add_pd(fix0,tx);
859             fiy0             = _mm_add_pd(fiy0,ty);
860             fiz0             = _mm_add_pd(fiz0,tz);
861
862             fjx0             = _mm_add_pd(fjx0,tx);
863             fjy0             = _mm_add_pd(fjy0,ty);
864             fjz0             = _mm_add_pd(fjz0,tz);
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             r10              = _mm_mul_pd(rsq10,rinv10);
871
872             /* Compute parameters for interactions between i and j atoms */
873             qq10             = _mm_mul_pd(iq1,jq0);
874
875             /* EWALD ELECTROSTATICS */
876
877             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
878             ewrt             = _mm_mul_pd(r10,ewtabscale);
879             ewitab           = _mm_cvttpd_epi32(ewrt);
880             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
881             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
882                                          &ewtabF,&ewtabFn);
883             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
884             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
885
886             fscal            = felec;
887
888             /* Calculate temporary vectorial force */
889             tx               = _mm_mul_pd(fscal,dx10);
890             ty               = _mm_mul_pd(fscal,dy10);
891             tz               = _mm_mul_pd(fscal,dz10);
892
893             /* Update vectorial force */
894             fix1             = _mm_add_pd(fix1,tx);
895             fiy1             = _mm_add_pd(fiy1,ty);
896             fiz1             = _mm_add_pd(fiz1,tz);
897
898             fjx0             = _mm_add_pd(fjx0,tx);
899             fjy0             = _mm_add_pd(fjy0,ty);
900             fjz0             = _mm_add_pd(fjz0,tz);
901
902             /**************************
903              * CALCULATE INTERACTIONS *
904              **************************/
905
906             r20              = _mm_mul_pd(rsq20,rinv20);
907
908             /* Compute parameters for interactions between i and j atoms */
909             qq20             = _mm_mul_pd(iq2,jq0);
910
911             /* EWALD ELECTROSTATICS */
912
913             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
914             ewrt             = _mm_mul_pd(r20,ewtabscale);
915             ewitab           = _mm_cvttpd_epi32(ewrt);
916             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
917             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
918                                          &ewtabF,&ewtabFn);
919             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
920             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
921
922             fscal            = felec;
923
924             /* Calculate temporary vectorial force */
925             tx               = _mm_mul_pd(fscal,dx20);
926             ty               = _mm_mul_pd(fscal,dy20);
927             tz               = _mm_mul_pd(fscal,dz20);
928
929             /* Update vectorial force */
930             fix2             = _mm_add_pd(fix2,tx);
931             fiy2             = _mm_add_pd(fiy2,ty);
932             fiz2             = _mm_add_pd(fiz2,tz);
933
934             fjx0             = _mm_add_pd(fjx0,tx);
935             fjy0             = _mm_add_pd(fjy0,ty);
936             fjz0             = _mm_add_pd(fjz0,tz);
937
938             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
939
940             /* Inner loop uses 134 flops */
941         }
942
943         if(jidx<j_index_end)
944         {
945
946             jnrA             = jjnr[jidx];
947             j_coord_offsetA  = DIM*jnrA;
948
949             /* load j atom coordinates */
950             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
951                                               &jx0,&jy0,&jz0);
952
953             /* Calculate displacement vector */
954             dx00             = _mm_sub_pd(ix0,jx0);
955             dy00             = _mm_sub_pd(iy0,jy0);
956             dz00             = _mm_sub_pd(iz0,jz0);
957             dx10             = _mm_sub_pd(ix1,jx0);
958             dy10             = _mm_sub_pd(iy1,jy0);
959             dz10             = _mm_sub_pd(iz1,jz0);
960             dx20             = _mm_sub_pd(ix2,jx0);
961             dy20             = _mm_sub_pd(iy2,jy0);
962             dz20             = _mm_sub_pd(iz2,jz0);
963
964             /* Calculate squared distance and things based on it */
965             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
966             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
967             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
968
969             rinv00           = gmx_mm_invsqrt_pd(rsq00);
970             rinv10           = gmx_mm_invsqrt_pd(rsq10);
971             rinv20           = gmx_mm_invsqrt_pd(rsq20);
972
973             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
974             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
975             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
976
977             /* Load parameters for j particles */
978             jq0              = _mm_load_sd(charge+jnrA+0);
979             vdwjidx0A        = 2*vdwtype[jnrA+0];
980
981             fjx0             = _mm_setzero_pd();
982             fjy0             = _mm_setzero_pd();
983             fjz0             = _mm_setzero_pd();
984
985             /**************************
986              * CALCULATE INTERACTIONS *
987              **************************/
988
989             r00              = _mm_mul_pd(rsq00,rinv00);
990
991             /* Compute parameters for interactions between i and j atoms */
992             qq00             = _mm_mul_pd(iq0,jq0);
993             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
994
995             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
996
997             /* EWALD ELECTROSTATICS */
998
999             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1000             ewrt             = _mm_mul_pd(r00,ewtabscale);
1001             ewitab           = _mm_cvttpd_epi32(ewrt);
1002             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1003             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1004             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1005             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1006
1007             /* Analytical LJ-PME */
1008             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1009             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1010             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1011             exponent         = gmx_simd_exp_d(ewcljrsq);
1012             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1013             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1014             /* f6A = 6 * C6grid * (1 - poly) */
1015             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1016             /* f6B = C6grid * exponent * beta^6 */
1017             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1018             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1019             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1020
1021             fscal            = _mm_add_pd(felec,fvdw);
1022
1023             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1024
1025             /* Calculate temporary vectorial force */
1026             tx               = _mm_mul_pd(fscal,dx00);
1027             ty               = _mm_mul_pd(fscal,dy00);
1028             tz               = _mm_mul_pd(fscal,dz00);
1029
1030             /* Update vectorial force */
1031             fix0             = _mm_add_pd(fix0,tx);
1032             fiy0             = _mm_add_pd(fiy0,ty);
1033             fiz0             = _mm_add_pd(fiz0,tz);
1034
1035             fjx0             = _mm_add_pd(fjx0,tx);
1036             fjy0             = _mm_add_pd(fjy0,ty);
1037             fjz0             = _mm_add_pd(fjz0,tz);
1038
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             r10              = _mm_mul_pd(rsq10,rinv10);
1044
1045             /* Compute parameters for interactions between i and j atoms */
1046             qq10             = _mm_mul_pd(iq1,jq0);
1047
1048             /* EWALD ELECTROSTATICS */
1049
1050             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1051             ewrt             = _mm_mul_pd(r10,ewtabscale);
1052             ewitab           = _mm_cvttpd_epi32(ewrt);
1053             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1054             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1055             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1056             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1057
1058             fscal            = felec;
1059
1060             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1061
1062             /* Calculate temporary vectorial force */
1063             tx               = _mm_mul_pd(fscal,dx10);
1064             ty               = _mm_mul_pd(fscal,dy10);
1065             tz               = _mm_mul_pd(fscal,dz10);
1066
1067             /* Update vectorial force */
1068             fix1             = _mm_add_pd(fix1,tx);
1069             fiy1             = _mm_add_pd(fiy1,ty);
1070             fiz1             = _mm_add_pd(fiz1,tz);
1071
1072             fjx0             = _mm_add_pd(fjx0,tx);
1073             fjy0             = _mm_add_pd(fjy0,ty);
1074             fjz0             = _mm_add_pd(fjz0,tz);
1075
1076             /**************************
1077              * CALCULATE INTERACTIONS *
1078              **************************/
1079
1080             r20              = _mm_mul_pd(rsq20,rinv20);
1081
1082             /* Compute parameters for interactions between i and j atoms */
1083             qq20             = _mm_mul_pd(iq2,jq0);
1084
1085             /* EWALD ELECTROSTATICS */
1086
1087             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1088             ewrt             = _mm_mul_pd(r20,ewtabscale);
1089             ewitab           = _mm_cvttpd_epi32(ewrt);
1090             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1091             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1092             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1093             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1094
1095             fscal            = felec;
1096
1097             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1098
1099             /* Calculate temporary vectorial force */
1100             tx               = _mm_mul_pd(fscal,dx20);
1101             ty               = _mm_mul_pd(fscal,dy20);
1102             tz               = _mm_mul_pd(fscal,dz20);
1103
1104             /* Update vectorial force */
1105             fix2             = _mm_add_pd(fix2,tx);
1106             fiy2             = _mm_add_pd(fiy2,ty);
1107             fiz2             = _mm_add_pd(fiz2,tz);
1108
1109             fjx0             = _mm_add_pd(fjx0,tx);
1110             fjy0             = _mm_add_pd(fjy0,ty);
1111             fjz0             = _mm_add_pd(fjz0,tz);
1112
1113             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1114
1115             /* Inner loop uses 134 flops */
1116         }
1117
1118         /* End of innermost loop */
1119
1120         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1121                                               f+i_coord_offset,fshift+i_shift_offset);
1122
1123         /* Increment number of inner iterations */
1124         inneriter                  += j_index_end - j_index_start;
1125
1126         /* Outer loop uses 18 flops */
1127     }
1128
1129     /* Increment number of outer iterations */
1130     outeriter        += nri;
1131
1132     /* Update outer/inner flops */
1133
1134     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*134);
1135 }