Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse2_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128d           c6grid_00;
99     __m128d           c6grid_10;
100     __m128d           c6grid_20;
101     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
102     real             *vdwgridparam;
103     __m128d           one_half = _mm_set1_pd(0.5);
104     __m128d           minus_one = _mm_set1_pd(-1.0);
105     __m128i          ewitab;
106     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     real             *ewtab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128     vdwgridparam     = fr->ljpme_c6grid;
129     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
130     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
131     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
132
133     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
141     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
142     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
170
171         fix0             = _mm_setzero_pd();
172         fiy0             = _mm_setzero_pd();
173         fiz0             = _mm_setzero_pd();
174         fix1             = _mm_setzero_pd();
175         fiy1             = _mm_setzero_pd();
176         fiz1             = _mm_setzero_pd();
177         fix2             = _mm_setzero_pd();
178         fiy2             = _mm_setzero_pd();
179         fiz2             = _mm_setzero_pd();
180
181         /* Reset potential sums */
182         velecsum         = _mm_setzero_pd();
183         vvdwsum          = _mm_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_pd(ix0,jx0);
201             dy00             = _mm_sub_pd(iy0,jy0);
202             dz00             = _mm_sub_pd(iz0,jz0);
203             dx10             = _mm_sub_pd(ix1,jx0);
204             dy10             = _mm_sub_pd(iy1,jy0);
205             dz10             = _mm_sub_pd(iz1,jz0);
206             dx20             = _mm_sub_pd(ix2,jx0);
207             dy20             = _mm_sub_pd(iy2,jy0);
208             dz20             = _mm_sub_pd(iz2,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
214
215             rinv00           = sse2_invsqrt_d(rsq00);
216             rinv10           = sse2_invsqrt_d(rsq10);
217             rinv20           = sse2_invsqrt_d(rsq20);
218
219             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
220             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
221             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227
228             fjx0             = _mm_setzero_pd();
229             fjy0             = _mm_setzero_pd();
230             fjz0             = _mm_setzero_pd();
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             r00              = _mm_mul_pd(rsq00,rinv00);
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm_mul_pd(iq0,jq0);
240             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
241                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
242
243             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
244                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
245
246             /* EWALD ELECTROSTATICS */
247
248             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
249             ewrt             = _mm_mul_pd(r00,ewtabscale);
250             ewitab           = _mm_cvttpd_epi32(ewrt);
251             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
252             ewitab           = _mm_slli_epi32(ewitab,2);
253             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
254             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
255             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
256             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
257             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
258             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
259             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
260             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
261             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
262             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
263
264             /* Analytical LJ-PME */
265             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
266             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
267             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
268             exponent         = sse2_exp_d(ewcljrsq);
269             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
270             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
271             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
272             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
273             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
274             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
275             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
276             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm_add_pd(velecsum,velec);
280             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
281
282             fscal            = _mm_add_pd(felec,fvdw);
283
284             /* Calculate temporary vectorial force */
285             tx               = _mm_mul_pd(fscal,dx00);
286             ty               = _mm_mul_pd(fscal,dy00);
287             tz               = _mm_mul_pd(fscal,dz00);
288
289             /* Update vectorial force */
290             fix0             = _mm_add_pd(fix0,tx);
291             fiy0             = _mm_add_pd(fiy0,ty);
292             fiz0             = _mm_add_pd(fiz0,tz);
293
294             fjx0             = _mm_add_pd(fjx0,tx);
295             fjy0             = _mm_add_pd(fjy0,ty);
296             fjz0             = _mm_add_pd(fjz0,tz);
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             r10              = _mm_mul_pd(rsq10,rinv10);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq10             = _mm_mul_pd(iq1,jq0);
306
307             /* EWALD ELECTROSTATICS */
308
309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
310             ewrt             = _mm_mul_pd(r10,ewtabscale);
311             ewitab           = _mm_cvttpd_epi32(ewrt);
312             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
313             ewitab           = _mm_slli_epi32(ewitab,2);
314             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
315             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
316             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
317             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
318             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
319             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
320             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
321             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
322             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
323             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velecsum         = _mm_add_pd(velecsum,velec);
327
328             fscal            = felec;
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm_mul_pd(fscal,dx10);
332             ty               = _mm_mul_pd(fscal,dy10);
333             tz               = _mm_mul_pd(fscal,dz10);
334
335             /* Update vectorial force */
336             fix1             = _mm_add_pd(fix1,tx);
337             fiy1             = _mm_add_pd(fiy1,ty);
338             fiz1             = _mm_add_pd(fiz1,tz);
339
340             fjx0             = _mm_add_pd(fjx0,tx);
341             fjy0             = _mm_add_pd(fjy0,ty);
342             fjz0             = _mm_add_pd(fjz0,tz);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r20              = _mm_mul_pd(rsq20,rinv20);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _mm_mul_pd(iq2,jq0);
352
353             /* EWALD ELECTROSTATICS */
354
355             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
356             ewrt             = _mm_mul_pd(r20,ewtabscale);
357             ewitab           = _mm_cvttpd_epi32(ewrt);
358             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
359             ewitab           = _mm_slli_epi32(ewitab,2);
360             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
361             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
362             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
363             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
364             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
365             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
366             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
367             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
368             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
369             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velecsum         = _mm_add_pd(velecsum,velec);
373
374             fscal            = felec;
375
376             /* Calculate temporary vectorial force */
377             tx               = _mm_mul_pd(fscal,dx20);
378             ty               = _mm_mul_pd(fscal,dy20);
379             tz               = _mm_mul_pd(fscal,dz20);
380
381             /* Update vectorial force */
382             fix2             = _mm_add_pd(fix2,tx);
383             fiy2             = _mm_add_pd(fiy2,ty);
384             fiz2             = _mm_add_pd(fiz2,tz);
385
386             fjx0             = _mm_add_pd(fjx0,tx);
387             fjy0             = _mm_add_pd(fjy0,ty);
388             fjz0             = _mm_add_pd(fjz0,tz);
389
390             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
391
392             /* Inner loop uses 154 flops */
393         }
394
395         if(jidx<j_index_end)
396         {
397
398             jnrA             = jjnr[jidx];
399             j_coord_offsetA  = DIM*jnrA;
400
401             /* load j atom coordinates */
402             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
403                                               &jx0,&jy0,&jz0);
404
405             /* Calculate displacement vector */
406             dx00             = _mm_sub_pd(ix0,jx0);
407             dy00             = _mm_sub_pd(iy0,jy0);
408             dz00             = _mm_sub_pd(iz0,jz0);
409             dx10             = _mm_sub_pd(ix1,jx0);
410             dy10             = _mm_sub_pd(iy1,jy0);
411             dz10             = _mm_sub_pd(iz1,jz0);
412             dx20             = _mm_sub_pd(ix2,jx0);
413             dy20             = _mm_sub_pd(iy2,jy0);
414             dz20             = _mm_sub_pd(iz2,jz0);
415
416             /* Calculate squared distance and things based on it */
417             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
418             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
419             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
420
421             rinv00           = sse2_invsqrt_d(rsq00);
422             rinv10           = sse2_invsqrt_d(rsq10);
423             rinv20           = sse2_invsqrt_d(rsq20);
424
425             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
426             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
427             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
428
429             /* Load parameters for j particles */
430             jq0              = _mm_load_sd(charge+jnrA+0);
431             vdwjidx0A        = 2*vdwtype[jnrA+0];
432
433             fjx0             = _mm_setzero_pd();
434             fjy0             = _mm_setzero_pd();
435             fjz0             = _mm_setzero_pd();
436
437             /**************************
438              * CALCULATE INTERACTIONS *
439              **************************/
440
441             r00              = _mm_mul_pd(rsq00,rinv00);
442
443             /* Compute parameters for interactions between i and j atoms */
444             qq00             = _mm_mul_pd(iq0,jq0);
445             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
446
447             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
448
449             /* EWALD ELECTROSTATICS */
450
451             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
452             ewrt             = _mm_mul_pd(r00,ewtabscale);
453             ewitab           = _mm_cvttpd_epi32(ewrt);
454             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
455             ewitab           = _mm_slli_epi32(ewitab,2);
456             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
457             ewtabD           = _mm_setzero_pd();
458             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
459             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
460             ewtabFn          = _mm_setzero_pd();
461             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
462             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
463             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
464             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
465             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
466
467             /* Analytical LJ-PME */
468             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
469             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
470             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
471             exponent         = sse2_exp_d(ewcljrsq);
472             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
473             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
474             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
475             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
476             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
477             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
478             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
479             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
480
481             /* Update potential sum for this i atom from the interaction with this j atom. */
482             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
483             velecsum         = _mm_add_pd(velecsum,velec);
484             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
485             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
486
487             fscal            = _mm_add_pd(felec,fvdw);
488
489             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
490
491             /* Calculate temporary vectorial force */
492             tx               = _mm_mul_pd(fscal,dx00);
493             ty               = _mm_mul_pd(fscal,dy00);
494             tz               = _mm_mul_pd(fscal,dz00);
495
496             /* Update vectorial force */
497             fix0             = _mm_add_pd(fix0,tx);
498             fiy0             = _mm_add_pd(fiy0,ty);
499             fiz0             = _mm_add_pd(fiz0,tz);
500
501             fjx0             = _mm_add_pd(fjx0,tx);
502             fjy0             = _mm_add_pd(fjy0,ty);
503             fjz0             = _mm_add_pd(fjz0,tz);
504
505             /**************************
506              * CALCULATE INTERACTIONS *
507              **************************/
508
509             r10              = _mm_mul_pd(rsq10,rinv10);
510
511             /* Compute parameters for interactions between i and j atoms */
512             qq10             = _mm_mul_pd(iq1,jq0);
513
514             /* EWALD ELECTROSTATICS */
515
516             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
517             ewrt             = _mm_mul_pd(r10,ewtabscale);
518             ewitab           = _mm_cvttpd_epi32(ewrt);
519             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
520             ewitab           = _mm_slli_epi32(ewitab,2);
521             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
522             ewtabD           = _mm_setzero_pd();
523             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
524             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
525             ewtabFn          = _mm_setzero_pd();
526             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
527             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
528             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
529             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
530             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
531
532             /* Update potential sum for this i atom from the interaction with this j atom. */
533             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
534             velecsum         = _mm_add_pd(velecsum,velec);
535
536             fscal            = felec;
537
538             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
539
540             /* Calculate temporary vectorial force */
541             tx               = _mm_mul_pd(fscal,dx10);
542             ty               = _mm_mul_pd(fscal,dy10);
543             tz               = _mm_mul_pd(fscal,dz10);
544
545             /* Update vectorial force */
546             fix1             = _mm_add_pd(fix1,tx);
547             fiy1             = _mm_add_pd(fiy1,ty);
548             fiz1             = _mm_add_pd(fiz1,tz);
549
550             fjx0             = _mm_add_pd(fjx0,tx);
551             fjy0             = _mm_add_pd(fjy0,ty);
552             fjz0             = _mm_add_pd(fjz0,tz);
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             r20              = _mm_mul_pd(rsq20,rinv20);
559
560             /* Compute parameters for interactions between i and j atoms */
561             qq20             = _mm_mul_pd(iq2,jq0);
562
563             /* EWALD ELECTROSTATICS */
564
565             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
566             ewrt             = _mm_mul_pd(r20,ewtabscale);
567             ewitab           = _mm_cvttpd_epi32(ewrt);
568             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
569             ewitab           = _mm_slli_epi32(ewitab,2);
570             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
571             ewtabD           = _mm_setzero_pd();
572             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
573             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
574             ewtabFn          = _mm_setzero_pd();
575             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
576             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
577             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
578             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
579             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
583             velecsum         = _mm_add_pd(velecsum,velec);
584
585             fscal            = felec;
586
587             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
588
589             /* Calculate temporary vectorial force */
590             tx               = _mm_mul_pd(fscal,dx20);
591             ty               = _mm_mul_pd(fscal,dy20);
592             tz               = _mm_mul_pd(fscal,dz20);
593
594             /* Update vectorial force */
595             fix2             = _mm_add_pd(fix2,tx);
596             fiy2             = _mm_add_pd(fiy2,ty);
597             fiz2             = _mm_add_pd(fiz2,tz);
598
599             fjx0             = _mm_add_pd(fjx0,tx);
600             fjy0             = _mm_add_pd(fjy0,ty);
601             fjz0             = _mm_add_pd(fjz0,tz);
602
603             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
604
605             /* Inner loop uses 154 flops */
606         }
607
608         /* End of innermost loop */
609
610         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
611                                               f+i_coord_offset,fshift+i_shift_offset);
612
613         ggid                        = gid[iidx];
614         /* Update potential energies */
615         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
616         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
617
618         /* Increment number of inner iterations */
619         inneriter                  += j_index_end - j_index_start;
620
621         /* Outer loop uses 20 flops */
622     }
623
624     /* Increment number of outer iterations */
625     outeriter        += nri;
626
627     /* Update outer/inner flops */
628
629     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
630 }
631 /*
632  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse2_double
633  * Electrostatics interaction: Ewald
634  * VdW interaction:            LJEwald
635  * Geometry:                   Water3-Particle
636  * Calculate force/pot:        Force
637  */
638 void
639 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_sse2_double
640                     (t_nblist                    * gmx_restrict       nlist,
641                      rvec                        * gmx_restrict          xx,
642                      rvec                        * gmx_restrict          ff,
643                      struct t_forcerec           * gmx_restrict          fr,
644                      t_mdatoms                   * gmx_restrict     mdatoms,
645                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
646                      t_nrnb                      * gmx_restrict        nrnb)
647 {
648     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
649      * just 0 for non-waters.
650      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
651      * jnr indices corresponding to data put in the four positions in the SIMD register.
652      */
653     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
654     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
655     int              jnrA,jnrB;
656     int              j_coord_offsetA,j_coord_offsetB;
657     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
658     real             rcutoff_scalar;
659     real             *shiftvec,*fshift,*x,*f;
660     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
661     int              vdwioffset0;
662     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
663     int              vdwioffset1;
664     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
665     int              vdwioffset2;
666     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
667     int              vdwjidx0A,vdwjidx0B;
668     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
669     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
670     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
671     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
672     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
673     real             *charge;
674     int              nvdwtype;
675     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
676     int              *vdwtype;
677     real             *vdwparam;
678     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
679     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
680     __m128d           c6grid_00;
681     __m128d           c6grid_10;
682     __m128d           c6grid_20;
683     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
684     real             *vdwgridparam;
685     __m128d           one_half = _mm_set1_pd(0.5);
686     __m128d           minus_one = _mm_set1_pd(-1.0);
687     __m128i          ewitab;
688     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
689     real             *ewtab;
690     __m128d          dummy_mask,cutoff_mask;
691     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
692     __m128d          one     = _mm_set1_pd(1.0);
693     __m128d          two     = _mm_set1_pd(2.0);
694     x                = xx[0];
695     f                = ff[0];
696
697     nri              = nlist->nri;
698     iinr             = nlist->iinr;
699     jindex           = nlist->jindex;
700     jjnr             = nlist->jjnr;
701     shiftidx         = nlist->shift;
702     gid              = nlist->gid;
703     shiftvec         = fr->shift_vec[0];
704     fshift           = fr->fshift[0];
705     facel            = _mm_set1_pd(fr->ic->epsfac);
706     charge           = mdatoms->chargeA;
707     nvdwtype         = fr->ntype;
708     vdwparam         = fr->nbfp;
709     vdwtype          = mdatoms->typeA;
710     vdwgridparam     = fr->ljpme_c6grid;
711     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
712     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
713     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
714
715     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
716     ewtab            = fr->ic->tabq_coul_F;
717     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
718     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
719
720     /* Setup water-specific parameters */
721     inr              = nlist->iinr[0];
722     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
723     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
724     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
725     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
726
727     /* Avoid stupid compiler warnings */
728     jnrA = jnrB = 0;
729     j_coord_offsetA = 0;
730     j_coord_offsetB = 0;
731
732     outeriter        = 0;
733     inneriter        = 0;
734
735     /* Start outer loop over neighborlists */
736     for(iidx=0; iidx<nri; iidx++)
737     {
738         /* Load shift vector for this list */
739         i_shift_offset   = DIM*shiftidx[iidx];
740
741         /* Load limits for loop over neighbors */
742         j_index_start    = jindex[iidx];
743         j_index_end      = jindex[iidx+1];
744
745         /* Get outer coordinate index */
746         inr              = iinr[iidx];
747         i_coord_offset   = DIM*inr;
748
749         /* Load i particle coords and add shift vector */
750         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
751                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
752
753         fix0             = _mm_setzero_pd();
754         fiy0             = _mm_setzero_pd();
755         fiz0             = _mm_setzero_pd();
756         fix1             = _mm_setzero_pd();
757         fiy1             = _mm_setzero_pd();
758         fiz1             = _mm_setzero_pd();
759         fix2             = _mm_setzero_pd();
760         fiy2             = _mm_setzero_pd();
761         fiz2             = _mm_setzero_pd();
762
763         /* Start inner kernel loop */
764         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
765         {
766
767             /* Get j neighbor index, and coordinate index */
768             jnrA             = jjnr[jidx];
769             jnrB             = jjnr[jidx+1];
770             j_coord_offsetA  = DIM*jnrA;
771             j_coord_offsetB  = DIM*jnrB;
772
773             /* load j atom coordinates */
774             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
775                                               &jx0,&jy0,&jz0);
776
777             /* Calculate displacement vector */
778             dx00             = _mm_sub_pd(ix0,jx0);
779             dy00             = _mm_sub_pd(iy0,jy0);
780             dz00             = _mm_sub_pd(iz0,jz0);
781             dx10             = _mm_sub_pd(ix1,jx0);
782             dy10             = _mm_sub_pd(iy1,jy0);
783             dz10             = _mm_sub_pd(iz1,jz0);
784             dx20             = _mm_sub_pd(ix2,jx0);
785             dy20             = _mm_sub_pd(iy2,jy0);
786             dz20             = _mm_sub_pd(iz2,jz0);
787
788             /* Calculate squared distance and things based on it */
789             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
790             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
791             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
792
793             rinv00           = sse2_invsqrt_d(rsq00);
794             rinv10           = sse2_invsqrt_d(rsq10);
795             rinv20           = sse2_invsqrt_d(rsq20);
796
797             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
798             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
799             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
800
801             /* Load parameters for j particles */
802             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
803             vdwjidx0A        = 2*vdwtype[jnrA+0];
804             vdwjidx0B        = 2*vdwtype[jnrB+0];
805
806             fjx0             = _mm_setzero_pd();
807             fjy0             = _mm_setzero_pd();
808             fjz0             = _mm_setzero_pd();
809
810             /**************************
811              * CALCULATE INTERACTIONS *
812              **************************/
813
814             r00              = _mm_mul_pd(rsq00,rinv00);
815
816             /* Compute parameters for interactions between i and j atoms */
817             qq00             = _mm_mul_pd(iq0,jq0);
818             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
819                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
820
821             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
822                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
823
824             /* EWALD ELECTROSTATICS */
825
826             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
827             ewrt             = _mm_mul_pd(r00,ewtabscale);
828             ewitab           = _mm_cvttpd_epi32(ewrt);
829             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
830             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
831                                          &ewtabF,&ewtabFn);
832             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
833             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
834
835             /* Analytical LJ-PME */
836             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
837             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
838             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
839             exponent         = sse2_exp_d(ewcljrsq);
840             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
841             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
842             /* f6A = 6 * C6grid * (1 - poly) */
843             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
844             /* f6B = C6grid * exponent * beta^6 */
845             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
846             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
847             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
848
849             fscal            = _mm_add_pd(felec,fvdw);
850
851             /* Calculate temporary vectorial force */
852             tx               = _mm_mul_pd(fscal,dx00);
853             ty               = _mm_mul_pd(fscal,dy00);
854             tz               = _mm_mul_pd(fscal,dz00);
855
856             /* Update vectorial force */
857             fix0             = _mm_add_pd(fix0,tx);
858             fiy0             = _mm_add_pd(fiy0,ty);
859             fiz0             = _mm_add_pd(fiz0,tz);
860
861             fjx0             = _mm_add_pd(fjx0,tx);
862             fjy0             = _mm_add_pd(fjy0,ty);
863             fjz0             = _mm_add_pd(fjz0,tz);
864
865             /**************************
866              * CALCULATE INTERACTIONS *
867              **************************/
868
869             r10              = _mm_mul_pd(rsq10,rinv10);
870
871             /* Compute parameters for interactions between i and j atoms */
872             qq10             = _mm_mul_pd(iq1,jq0);
873
874             /* EWALD ELECTROSTATICS */
875
876             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
877             ewrt             = _mm_mul_pd(r10,ewtabscale);
878             ewitab           = _mm_cvttpd_epi32(ewrt);
879             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
880             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
881                                          &ewtabF,&ewtabFn);
882             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
883             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
884
885             fscal            = felec;
886
887             /* Calculate temporary vectorial force */
888             tx               = _mm_mul_pd(fscal,dx10);
889             ty               = _mm_mul_pd(fscal,dy10);
890             tz               = _mm_mul_pd(fscal,dz10);
891
892             /* Update vectorial force */
893             fix1             = _mm_add_pd(fix1,tx);
894             fiy1             = _mm_add_pd(fiy1,ty);
895             fiz1             = _mm_add_pd(fiz1,tz);
896
897             fjx0             = _mm_add_pd(fjx0,tx);
898             fjy0             = _mm_add_pd(fjy0,ty);
899             fjz0             = _mm_add_pd(fjz0,tz);
900
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             r20              = _mm_mul_pd(rsq20,rinv20);
906
907             /* Compute parameters for interactions between i and j atoms */
908             qq20             = _mm_mul_pd(iq2,jq0);
909
910             /* EWALD ELECTROSTATICS */
911
912             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
913             ewrt             = _mm_mul_pd(r20,ewtabscale);
914             ewitab           = _mm_cvttpd_epi32(ewrt);
915             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
916             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
917                                          &ewtabF,&ewtabFn);
918             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
919             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
920
921             fscal            = felec;
922
923             /* Calculate temporary vectorial force */
924             tx               = _mm_mul_pd(fscal,dx20);
925             ty               = _mm_mul_pd(fscal,dy20);
926             tz               = _mm_mul_pd(fscal,dz20);
927
928             /* Update vectorial force */
929             fix2             = _mm_add_pd(fix2,tx);
930             fiy2             = _mm_add_pd(fiy2,ty);
931             fiz2             = _mm_add_pd(fiz2,tz);
932
933             fjx0             = _mm_add_pd(fjx0,tx);
934             fjy0             = _mm_add_pd(fjy0,ty);
935             fjz0             = _mm_add_pd(fjz0,tz);
936
937             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
938
939             /* Inner loop uses 134 flops */
940         }
941
942         if(jidx<j_index_end)
943         {
944
945             jnrA             = jjnr[jidx];
946             j_coord_offsetA  = DIM*jnrA;
947
948             /* load j atom coordinates */
949             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
950                                               &jx0,&jy0,&jz0);
951
952             /* Calculate displacement vector */
953             dx00             = _mm_sub_pd(ix0,jx0);
954             dy00             = _mm_sub_pd(iy0,jy0);
955             dz00             = _mm_sub_pd(iz0,jz0);
956             dx10             = _mm_sub_pd(ix1,jx0);
957             dy10             = _mm_sub_pd(iy1,jy0);
958             dz10             = _mm_sub_pd(iz1,jz0);
959             dx20             = _mm_sub_pd(ix2,jx0);
960             dy20             = _mm_sub_pd(iy2,jy0);
961             dz20             = _mm_sub_pd(iz2,jz0);
962
963             /* Calculate squared distance and things based on it */
964             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
965             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
966             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
967
968             rinv00           = sse2_invsqrt_d(rsq00);
969             rinv10           = sse2_invsqrt_d(rsq10);
970             rinv20           = sse2_invsqrt_d(rsq20);
971
972             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
973             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
974             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
975
976             /* Load parameters for j particles */
977             jq0              = _mm_load_sd(charge+jnrA+0);
978             vdwjidx0A        = 2*vdwtype[jnrA+0];
979
980             fjx0             = _mm_setzero_pd();
981             fjy0             = _mm_setzero_pd();
982             fjz0             = _mm_setzero_pd();
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             r00              = _mm_mul_pd(rsq00,rinv00);
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq00             = _mm_mul_pd(iq0,jq0);
992             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
993
994             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
995
996             /* EWALD ELECTROSTATICS */
997
998             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
999             ewrt             = _mm_mul_pd(r00,ewtabscale);
1000             ewitab           = _mm_cvttpd_epi32(ewrt);
1001             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1002             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1003             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1004             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1005
1006             /* Analytical LJ-PME */
1007             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1008             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1009             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1010             exponent         = sse2_exp_d(ewcljrsq);
1011             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1012             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
1013             /* f6A = 6 * C6grid * (1 - poly) */
1014             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1015             /* f6B = C6grid * exponent * beta^6 */
1016             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1017             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1018             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1019
1020             fscal            = _mm_add_pd(felec,fvdw);
1021
1022             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1023
1024             /* Calculate temporary vectorial force */
1025             tx               = _mm_mul_pd(fscal,dx00);
1026             ty               = _mm_mul_pd(fscal,dy00);
1027             tz               = _mm_mul_pd(fscal,dz00);
1028
1029             /* Update vectorial force */
1030             fix0             = _mm_add_pd(fix0,tx);
1031             fiy0             = _mm_add_pd(fiy0,ty);
1032             fiz0             = _mm_add_pd(fiz0,tz);
1033
1034             fjx0             = _mm_add_pd(fjx0,tx);
1035             fjy0             = _mm_add_pd(fjy0,ty);
1036             fjz0             = _mm_add_pd(fjz0,tz);
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             r10              = _mm_mul_pd(rsq10,rinv10);
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             qq10             = _mm_mul_pd(iq1,jq0);
1046
1047             /* EWALD ELECTROSTATICS */
1048
1049             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1050             ewrt             = _mm_mul_pd(r10,ewtabscale);
1051             ewitab           = _mm_cvttpd_epi32(ewrt);
1052             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1053             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1054             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1055             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1056
1057             fscal            = felec;
1058
1059             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1060
1061             /* Calculate temporary vectorial force */
1062             tx               = _mm_mul_pd(fscal,dx10);
1063             ty               = _mm_mul_pd(fscal,dy10);
1064             tz               = _mm_mul_pd(fscal,dz10);
1065
1066             /* Update vectorial force */
1067             fix1             = _mm_add_pd(fix1,tx);
1068             fiy1             = _mm_add_pd(fiy1,ty);
1069             fiz1             = _mm_add_pd(fiz1,tz);
1070
1071             fjx0             = _mm_add_pd(fjx0,tx);
1072             fjy0             = _mm_add_pd(fjy0,ty);
1073             fjz0             = _mm_add_pd(fjz0,tz);
1074
1075             /**************************
1076              * CALCULATE INTERACTIONS *
1077              **************************/
1078
1079             r20              = _mm_mul_pd(rsq20,rinv20);
1080
1081             /* Compute parameters for interactions between i and j atoms */
1082             qq20             = _mm_mul_pd(iq2,jq0);
1083
1084             /* EWALD ELECTROSTATICS */
1085
1086             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1087             ewrt             = _mm_mul_pd(r20,ewtabscale);
1088             ewitab           = _mm_cvttpd_epi32(ewrt);
1089             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1090             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1091             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1092             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1093
1094             fscal            = felec;
1095
1096             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1097
1098             /* Calculate temporary vectorial force */
1099             tx               = _mm_mul_pd(fscal,dx20);
1100             ty               = _mm_mul_pd(fscal,dy20);
1101             tz               = _mm_mul_pd(fscal,dz20);
1102
1103             /* Update vectorial force */
1104             fix2             = _mm_add_pd(fix2,tx);
1105             fiy2             = _mm_add_pd(fiy2,ty);
1106             fiz2             = _mm_add_pd(fiz2,tz);
1107
1108             fjx0             = _mm_add_pd(fjx0,tx);
1109             fjy0             = _mm_add_pd(fjy0,ty);
1110             fjz0             = _mm_add_pd(fjz0,tz);
1111
1112             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1113
1114             /* Inner loop uses 134 flops */
1115         }
1116
1117         /* End of innermost loop */
1118
1119         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1120                                               f+i_coord_offset,fshift+i_shift_offset);
1121
1122         /* Increment number of inner iterations */
1123         inneriter                  += j_index_end - j_index_start;
1124
1125         /* Outer loop uses 18 flops */
1126     }
1127
1128     /* Increment number of outer iterations */
1129     outeriter        += nri;
1130
1131     /* Update outer/inner flops */
1132
1133     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*134);
1134 }