Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_sse2_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse2_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128d           c6grid_00;
93     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
94     real             *vdwgridparam;
95     __m128d           one_half = _mm_set1_pd(0.5);
96     __m128d           minus_one = _mm_set1_pd(-1.0);
97     __m128i          ewitab;
98     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     real             *ewtab;
100     __m128d          dummy_mask,cutoff_mask;
101     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102     __m128d          one     = _mm_set1_pd(1.0);
103     __m128d          two     = _mm_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_pd(fr->ic->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120     vdwgridparam     = fr->ljpme_c6grid;
121     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
122     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
123     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
124
125     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
128     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155         fix0             = _mm_setzero_pd();
156         fiy0             = _mm_setzero_pd();
157         fiz0             = _mm_setzero_pd();
158
159         /* Load parameters for i particles */
160         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
161         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         velecsum         = _mm_setzero_pd();
165         vvdwsum          = _mm_setzero_pd();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176
177             /* load j atom coordinates */
178             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_pd(ix0,jx0);
183             dy00             = _mm_sub_pd(iy0,jy0);
184             dz00             = _mm_sub_pd(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
188
189             rinv00           = sse2_invsqrt_d(rsq00);
190
191             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
195             vdwjidx0A        = 2*vdwtype[jnrA+0];
196             vdwjidx0B        = 2*vdwtype[jnrB+0];
197
198             /**************************
199              * CALCULATE INTERACTIONS *
200              **************************/
201
202             r00              = _mm_mul_pd(rsq00,rinv00);
203
204             /* Compute parameters for interactions between i and j atoms */
205             qq00             = _mm_mul_pd(iq0,jq0);
206             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
207                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
208
209             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
210                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
211
212             /* EWALD ELECTROSTATICS */
213
214             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
215             ewrt             = _mm_mul_pd(r00,ewtabscale);
216             ewitab           = _mm_cvttpd_epi32(ewrt);
217             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
218             ewitab           = _mm_slli_epi32(ewitab,2);
219             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
220             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
221             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
222             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
223             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
224             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
225             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
226             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
227             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
228             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
229
230             /* Analytical LJ-PME */
231             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
232             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
233             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
234             exponent         = sse2_exp_d(ewcljrsq);
235             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
236             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
237             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
238             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
239             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
240             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
241             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
242             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             velecsum         = _mm_add_pd(velecsum,velec);
246             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
247
248             fscal            = _mm_add_pd(felec,fvdw);
249
250             /* Calculate temporary vectorial force */
251             tx               = _mm_mul_pd(fscal,dx00);
252             ty               = _mm_mul_pd(fscal,dy00);
253             tz               = _mm_mul_pd(fscal,dz00);
254
255             /* Update vectorial force */
256             fix0             = _mm_add_pd(fix0,tx);
257             fiy0             = _mm_add_pd(fiy0,ty);
258             fiz0             = _mm_add_pd(fiz0,tz);
259
260             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
261
262             /* Inner loop uses 69 flops */
263         }
264
265         if(jidx<j_index_end)
266         {
267
268             jnrA             = jjnr[jidx];
269             j_coord_offsetA  = DIM*jnrA;
270
271             /* load j atom coordinates */
272             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
273                                               &jx0,&jy0,&jz0);
274
275             /* Calculate displacement vector */
276             dx00             = _mm_sub_pd(ix0,jx0);
277             dy00             = _mm_sub_pd(iy0,jy0);
278             dz00             = _mm_sub_pd(iz0,jz0);
279
280             /* Calculate squared distance and things based on it */
281             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
282
283             rinv00           = sse2_invsqrt_d(rsq00);
284
285             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
286
287             /* Load parameters for j particles */
288             jq0              = _mm_load_sd(charge+jnrA+0);
289             vdwjidx0A        = 2*vdwtype[jnrA+0];
290
291             /**************************
292              * CALCULATE INTERACTIONS *
293              **************************/
294
295             r00              = _mm_mul_pd(rsq00,rinv00);
296
297             /* Compute parameters for interactions between i and j atoms */
298             qq00             = _mm_mul_pd(iq0,jq0);
299             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
300
301             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
302
303             /* EWALD ELECTROSTATICS */
304
305             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
306             ewrt             = _mm_mul_pd(r00,ewtabscale);
307             ewitab           = _mm_cvttpd_epi32(ewrt);
308             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
309             ewitab           = _mm_slli_epi32(ewitab,2);
310             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
311             ewtabD           = _mm_setzero_pd();
312             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
313             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
314             ewtabFn          = _mm_setzero_pd();
315             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
316             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
317             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
318             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
319             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
320
321             /* Analytical LJ-PME */
322             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
323             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
324             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
325             exponent         = sse2_exp_d(ewcljrsq);
326             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
327             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
328             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
329             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
330             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
331             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
332             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
333             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
337             velecsum         = _mm_add_pd(velecsum,velec);
338             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
339             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
340
341             fscal            = _mm_add_pd(felec,fvdw);
342
343             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm_mul_pd(fscal,dx00);
347             ty               = _mm_mul_pd(fscal,dy00);
348             tz               = _mm_mul_pd(fscal,dz00);
349
350             /* Update vectorial force */
351             fix0             = _mm_add_pd(fix0,tx);
352             fiy0             = _mm_add_pd(fiy0,ty);
353             fiz0             = _mm_add_pd(fiz0,tz);
354
355             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
356
357             /* Inner loop uses 69 flops */
358         }
359
360         /* End of innermost loop */
361
362         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
363                                               f+i_coord_offset,fshift+i_shift_offset);
364
365         ggid                        = gid[iidx];
366         /* Update potential energies */
367         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
368         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
369
370         /* Increment number of inner iterations */
371         inneriter                  += j_index_end - j_index_start;
372
373         /* Outer loop uses 9 flops */
374     }
375
376     /* Increment number of outer iterations */
377     outeriter        += nri;
378
379     /* Update outer/inner flops */
380
381     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*69);
382 }
383 /*
384  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse2_double
385  * Electrostatics interaction: Ewald
386  * VdW interaction:            LJEwald
387  * Geometry:                   Particle-Particle
388  * Calculate force/pot:        Force
389  */
390 void
391 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse2_double
392                     (t_nblist                    * gmx_restrict       nlist,
393                      rvec                        * gmx_restrict          xx,
394                      rvec                        * gmx_restrict          ff,
395                      struct t_forcerec           * gmx_restrict          fr,
396                      t_mdatoms                   * gmx_restrict     mdatoms,
397                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
398                      t_nrnb                      * gmx_restrict        nrnb)
399 {
400     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
401      * just 0 for non-waters.
402      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
403      * jnr indices corresponding to data put in the four positions in the SIMD register.
404      */
405     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
406     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
407     int              jnrA,jnrB;
408     int              j_coord_offsetA,j_coord_offsetB;
409     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
410     real             rcutoff_scalar;
411     real             *shiftvec,*fshift,*x,*f;
412     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
413     int              vdwioffset0;
414     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
415     int              vdwjidx0A,vdwjidx0B;
416     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
417     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
418     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
419     real             *charge;
420     int              nvdwtype;
421     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
422     int              *vdwtype;
423     real             *vdwparam;
424     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
425     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
426     __m128d           c6grid_00;
427     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
428     real             *vdwgridparam;
429     __m128d           one_half = _mm_set1_pd(0.5);
430     __m128d           minus_one = _mm_set1_pd(-1.0);
431     __m128i          ewitab;
432     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
433     real             *ewtab;
434     __m128d          dummy_mask,cutoff_mask;
435     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
436     __m128d          one     = _mm_set1_pd(1.0);
437     __m128d          two     = _mm_set1_pd(2.0);
438     x                = xx[0];
439     f                = ff[0];
440
441     nri              = nlist->nri;
442     iinr             = nlist->iinr;
443     jindex           = nlist->jindex;
444     jjnr             = nlist->jjnr;
445     shiftidx         = nlist->shift;
446     gid              = nlist->gid;
447     shiftvec         = fr->shift_vec[0];
448     fshift           = fr->fshift[0];
449     facel            = _mm_set1_pd(fr->ic->epsfac);
450     charge           = mdatoms->chargeA;
451     nvdwtype         = fr->ntype;
452     vdwparam         = fr->nbfp;
453     vdwtype          = mdatoms->typeA;
454     vdwgridparam     = fr->ljpme_c6grid;
455     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
456     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
457     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
458
459     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
460     ewtab            = fr->ic->tabq_coul_F;
461     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
462     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
463
464     /* Avoid stupid compiler warnings */
465     jnrA = jnrB = 0;
466     j_coord_offsetA = 0;
467     j_coord_offsetB = 0;
468
469     outeriter        = 0;
470     inneriter        = 0;
471
472     /* Start outer loop over neighborlists */
473     for(iidx=0; iidx<nri; iidx++)
474     {
475         /* Load shift vector for this list */
476         i_shift_offset   = DIM*shiftidx[iidx];
477
478         /* Load limits for loop over neighbors */
479         j_index_start    = jindex[iidx];
480         j_index_end      = jindex[iidx+1];
481
482         /* Get outer coordinate index */
483         inr              = iinr[iidx];
484         i_coord_offset   = DIM*inr;
485
486         /* Load i particle coords and add shift vector */
487         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
488
489         fix0             = _mm_setzero_pd();
490         fiy0             = _mm_setzero_pd();
491         fiz0             = _mm_setzero_pd();
492
493         /* Load parameters for i particles */
494         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
495         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
496
497         /* Start inner kernel loop */
498         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
499         {
500
501             /* Get j neighbor index, and coordinate index */
502             jnrA             = jjnr[jidx];
503             jnrB             = jjnr[jidx+1];
504             j_coord_offsetA  = DIM*jnrA;
505             j_coord_offsetB  = DIM*jnrB;
506
507             /* load j atom coordinates */
508             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
509                                               &jx0,&jy0,&jz0);
510
511             /* Calculate displacement vector */
512             dx00             = _mm_sub_pd(ix0,jx0);
513             dy00             = _mm_sub_pd(iy0,jy0);
514             dz00             = _mm_sub_pd(iz0,jz0);
515
516             /* Calculate squared distance and things based on it */
517             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
518
519             rinv00           = sse2_invsqrt_d(rsq00);
520
521             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
522
523             /* Load parameters for j particles */
524             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
525             vdwjidx0A        = 2*vdwtype[jnrA+0];
526             vdwjidx0B        = 2*vdwtype[jnrB+0];
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             r00              = _mm_mul_pd(rsq00,rinv00);
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq00             = _mm_mul_pd(iq0,jq0);
536             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
537                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
538
539             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
540                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
541
542             /* EWALD ELECTROSTATICS */
543
544             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
545             ewrt             = _mm_mul_pd(r00,ewtabscale);
546             ewitab           = _mm_cvttpd_epi32(ewrt);
547             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
548             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
549                                          &ewtabF,&ewtabFn);
550             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
551             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
552
553             /* Analytical LJ-PME */
554             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
555             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
556             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
557             exponent         = sse2_exp_d(ewcljrsq);
558             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
559             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
560             /* f6A = 6 * C6grid * (1 - poly) */
561             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
562             /* f6B = C6grid * exponent * beta^6 */
563             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
564             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
565             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
566
567             fscal            = _mm_add_pd(felec,fvdw);
568
569             /* Calculate temporary vectorial force */
570             tx               = _mm_mul_pd(fscal,dx00);
571             ty               = _mm_mul_pd(fscal,dy00);
572             tz               = _mm_mul_pd(fscal,dz00);
573
574             /* Update vectorial force */
575             fix0             = _mm_add_pd(fix0,tx);
576             fiy0             = _mm_add_pd(fiy0,ty);
577             fiz0             = _mm_add_pd(fiz0,tz);
578
579             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
580
581             /* Inner loop uses 59 flops */
582         }
583
584         if(jidx<j_index_end)
585         {
586
587             jnrA             = jjnr[jidx];
588             j_coord_offsetA  = DIM*jnrA;
589
590             /* load j atom coordinates */
591             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
592                                               &jx0,&jy0,&jz0);
593
594             /* Calculate displacement vector */
595             dx00             = _mm_sub_pd(ix0,jx0);
596             dy00             = _mm_sub_pd(iy0,jy0);
597             dz00             = _mm_sub_pd(iz0,jz0);
598
599             /* Calculate squared distance and things based on it */
600             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
601
602             rinv00           = sse2_invsqrt_d(rsq00);
603
604             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
605
606             /* Load parameters for j particles */
607             jq0              = _mm_load_sd(charge+jnrA+0);
608             vdwjidx0A        = 2*vdwtype[jnrA+0];
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             r00              = _mm_mul_pd(rsq00,rinv00);
615
616             /* Compute parameters for interactions between i and j atoms */
617             qq00             = _mm_mul_pd(iq0,jq0);
618             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
619
620             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
621
622             /* EWALD ELECTROSTATICS */
623
624             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
625             ewrt             = _mm_mul_pd(r00,ewtabscale);
626             ewitab           = _mm_cvttpd_epi32(ewrt);
627             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
628             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
629             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
630             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
631
632             /* Analytical LJ-PME */
633             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
634             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
635             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
636             exponent         = sse2_exp_d(ewcljrsq);
637             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
638             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
639             /* f6A = 6 * C6grid * (1 - poly) */
640             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
641             /* f6B = C6grid * exponent * beta^6 */
642             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
643             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
644             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
645
646             fscal            = _mm_add_pd(felec,fvdw);
647
648             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm_mul_pd(fscal,dx00);
652             ty               = _mm_mul_pd(fscal,dy00);
653             tz               = _mm_mul_pd(fscal,dz00);
654
655             /* Update vectorial force */
656             fix0             = _mm_add_pd(fix0,tx);
657             fiy0             = _mm_add_pd(fiy0,ty);
658             fiz0             = _mm_add_pd(fiz0,tz);
659
660             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
661
662             /* Inner loop uses 59 flops */
663         }
664
665         /* End of innermost loop */
666
667         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
668                                               f+i_coord_offset,fshift+i_shift_offset);
669
670         /* Increment number of inner iterations */
671         inneriter                  += j_index_end - j_index_start;
672
673         /* Outer loop uses 7 flops */
674     }
675
676     /* Increment number of outer iterations */
677     outeriter        += nri;
678
679     /* Update outer/inner flops */
680
681     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*59);
682 }