Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_sse2_double.h"
50 #include "kernelutil_x86_sse2_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse2_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse2_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128d           c6grid_00;
96     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
97     real             *vdwgridparam;
98     __m128d           one_half = _mm_set1_pd(0.5);
99     __m128d           minus_one = _mm_set1_pd(-1.0);
100     __m128i          ewitab;
101     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     real             *ewtab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123     vdwgridparam     = fr->ljpme_c6grid;
124     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
125     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
126     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
127
128     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm_setzero_pd();
159         fiy0             = _mm_setzero_pd();
160         fiz0             = _mm_setzero_pd();
161
162         /* Load parameters for i particles */
163         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
164         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_pd();
168         vvdwsum          = _mm_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_pd(ix0,jx0);
186             dy00             = _mm_sub_pd(iy0,jy0);
187             dz00             = _mm_sub_pd(iz0,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
191
192             rinv00           = gmx_mm_invsqrt_pd(rsq00);
193
194             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
198             vdwjidx0A        = 2*vdwtype[jnrA+0];
199             vdwjidx0B        = 2*vdwtype[jnrB+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _mm_mul_pd(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _mm_mul_pd(iq0,jq0);
209             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
210                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
211
212             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
213                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
214
215             /* EWALD ELECTROSTATICS */
216
217             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
218             ewrt             = _mm_mul_pd(r00,ewtabscale);
219             ewitab           = _mm_cvttpd_epi32(ewrt);
220             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
221             ewitab           = _mm_slli_epi32(ewitab,2);
222             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
223             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
224             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
225             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
226             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
227             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
228             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
229             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
230             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
231             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
232
233             /* Analytical LJ-PME */
234             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
235             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
236             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
237             exponent         = gmx_simd_exp_d(ewcljrsq);
238             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
239             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
240             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
241             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
242             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
243             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
244             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
245             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             velecsum         = _mm_add_pd(velecsum,velec);
249             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
250
251             fscal            = _mm_add_pd(felec,fvdw);
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm_mul_pd(fscal,dx00);
255             ty               = _mm_mul_pd(fscal,dy00);
256             tz               = _mm_mul_pd(fscal,dz00);
257
258             /* Update vectorial force */
259             fix0             = _mm_add_pd(fix0,tx);
260             fiy0             = _mm_add_pd(fiy0,ty);
261             fiz0             = _mm_add_pd(fiz0,tz);
262
263             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
264
265             /* Inner loop uses 69 flops */
266         }
267
268         if(jidx<j_index_end)
269         {
270
271             jnrA             = jjnr[jidx];
272             j_coord_offsetA  = DIM*jnrA;
273
274             /* load j atom coordinates */
275             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
276                                               &jx0,&jy0,&jz0);
277
278             /* Calculate displacement vector */
279             dx00             = _mm_sub_pd(ix0,jx0);
280             dy00             = _mm_sub_pd(iy0,jy0);
281             dz00             = _mm_sub_pd(iz0,jz0);
282
283             /* Calculate squared distance and things based on it */
284             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
285
286             rinv00           = gmx_mm_invsqrt_pd(rsq00);
287
288             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
289
290             /* Load parameters for j particles */
291             jq0              = _mm_load_sd(charge+jnrA+0);
292             vdwjidx0A        = 2*vdwtype[jnrA+0];
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             r00              = _mm_mul_pd(rsq00,rinv00);
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq00             = _mm_mul_pd(iq0,jq0);
302             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
303
304             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
305
306             /* EWALD ELECTROSTATICS */
307
308             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
309             ewrt             = _mm_mul_pd(r00,ewtabscale);
310             ewitab           = _mm_cvttpd_epi32(ewrt);
311             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
312             ewitab           = _mm_slli_epi32(ewitab,2);
313             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
314             ewtabD           = _mm_setzero_pd();
315             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
316             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
317             ewtabFn          = _mm_setzero_pd();
318             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
319             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
320             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
321             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
322             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
323
324             /* Analytical LJ-PME */
325             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
326             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
327             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
328             exponent         = gmx_simd_exp_d(ewcljrsq);
329             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
330             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
331             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
332             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
333             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
334             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
335             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
336             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
340             velecsum         = _mm_add_pd(velecsum,velec);
341             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
342             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
343
344             fscal            = _mm_add_pd(felec,fvdw);
345
346             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm_mul_pd(fscal,dx00);
350             ty               = _mm_mul_pd(fscal,dy00);
351             tz               = _mm_mul_pd(fscal,dz00);
352
353             /* Update vectorial force */
354             fix0             = _mm_add_pd(fix0,tx);
355             fiy0             = _mm_add_pd(fiy0,ty);
356             fiz0             = _mm_add_pd(fiz0,tz);
357
358             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
359
360             /* Inner loop uses 69 flops */
361         }
362
363         /* End of innermost loop */
364
365         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
366                                               f+i_coord_offset,fshift+i_shift_offset);
367
368         ggid                        = gid[iidx];
369         /* Update potential energies */
370         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
371         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
372
373         /* Increment number of inner iterations */
374         inneriter                  += j_index_end - j_index_start;
375
376         /* Outer loop uses 9 flops */
377     }
378
379     /* Increment number of outer iterations */
380     outeriter        += nri;
381
382     /* Update outer/inner flops */
383
384     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*69);
385 }
386 /*
387  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse2_double
388  * Electrostatics interaction: Ewald
389  * VdW interaction:            LJEwald
390  * Geometry:                   Particle-Particle
391  * Calculate force/pot:        Force
392  */
393 void
394 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse2_double
395                     (t_nblist                    * gmx_restrict       nlist,
396                      rvec                        * gmx_restrict          xx,
397                      rvec                        * gmx_restrict          ff,
398                      t_forcerec                  * gmx_restrict          fr,
399                      t_mdatoms                   * gmx_restrict     mdatoms,
400                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
401                      t_nrnb                      * gmx_restrict        nrnb)
402 {
403     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
404      * just 0 for non-waters.
405      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
406      * jnr indices corresponding to data put in the four positions in the SIMD register.
407      */
408     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
409     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
410     int              jnrA,jnrB;
411     int              j_coord_offsetA,j_coord_offsetB;
412     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
413     real             rcutoff_scalar;
414     real             *shiftvec,*fshift,*x,*f;
415     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
416     int              vdwioffset0;
417     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
418     int              vdwjidx0A,vdwjidx0B;
419     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
420     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
421     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
422     real             *charge;
423     int              nvdwtype;
424     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
425     int              *vdwtype;
426     real             *vdwparam;
427     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
428     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
429     __m128d           c6grid_00;
430     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
431     real             *vdwgridparam;
432     __m128d           one_half = _mm_set1_pd(0.5);
433     __m128d           minus_one = _mm_set1_pd(-1.0);
434     __m128i          ewitab;
435     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
436     real             *ewtab;
437     __m128d          dummy_mask,cutoff_mask;
438     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
439     __m128d          one     = _mm_set1_pd(1.0);
440     __m128d          two     = _mm_set1_pd(2.0);
441     x                = xx[0];
442     f                = ff[0];
443
444     nri              = nlist->nri;
445     iinr             = nlist->iinr;
446     jindex           = nlist->jindex;
447     jjnr             = nlist->jjnr;
448     shiftidx         = nlist->shift;
449     gid              = nlist->gid;
450     shiftvec         = fr->shift_vec[0];
451     fshift           = fr->fshift[0];
452     facel            = _mm_set1_pd(fr->epsfac);
453     charge           = mdatoms->chargeA;
454     nvdwtype         = fr->ntype;
455     vdwparam         = fr->nbfp;
456     vdwtype          = mdatoms->typeA;
457     vdwgridparam     = fr->ljpme_c6grid;
458     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
459     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
460     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
461
462     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
463     ewtab            = fr->ic->tabq_coul_F;
464     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
465     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
466
467     /* Avoid stupid compiler warnings */
468     jnrA = jnrB = 0;
469     j_coord_offsetA = 0;
470     j_coord_offsetB = 0;
471
472     outeriter        = 0;
473     inneriter        = 0;
474
475     /* Start outer loop over neighborlists */
476     for(iidx=0; iidx<nri; iidx++)
477     {
478         /* Load shift vector for this list */
479         i_shift_offset   = DIM*shiftidx[iidx];
480
481         /* Load limits for loop over neighbors */
482         j_index_start    = jindex[iidx];
483         j_index_end      = jindex[iidx+1];
484
485         /* Get outer coordinate index */
486         inr              = iinr[iidx];
487         i_coord_offset   = DIM*inr;
488
489         /* Load i particle coords and add shift vector */
490         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
491
492         fix0             = _mm_setzero_pd();
493         fiy0             = _mm_setzero_pd();
494         fiz0             = _mm_setzero_pd();
495
496         /* Load parameters for i particles */
497         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
498         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
499
500         /* Start inner kernel loop */
501         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
502         {
503
504             /* Get j neighbor index, and coordinate index */
505             jnrA             = jjnr[jidx];
506             jnrB             = jjnr[jidx+1];
507             j_coord_offsetA  = DIM*jnrA;
508             j_coord_offsetB  = DIM*jnrB;
509
510             /* load j atom coordinates */
511             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
512                                               &jx0,&jy0,&jz0);
513
514             /* Calculate displacement vector */
515             dx00             = _mm_sub_pd(ix0,jx0);
516             dy00             = _mm_sub_pd(iy0,jy0);
517             dz00             = _mm_sub_pd(iz0,jz0);
518
519             /* Calculate squared distance and things based on it */
520             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
521
522             rinv00           = gmx_mm_invsqrt_pd(rsq00);
523
524             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
525
526             /* Load parameters for j particles */
527             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
528             vdwjidx0A        = 2*vdwtype[jnrA+0];
529             vdwjidx0B        = 2*vdwtype[jnrB+0];
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             r00              = _mm_mul_pd(rsq00,rinv00);
536
537             /* Compute parameters for interactions between i and j atoms */
538             qq00             = _mm_mul_pd(iq0,jq0);
539             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
540                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
541
542             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
543                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
544
545             /* EWALD ELECTROSTATICS */
546
547             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
548             ewrt             = _mm_mul_pd(r00,ewtabscale);
549             ewitab           = _mm_cvttpd_epi32(ewrt);
550             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
551             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
552                                          &ewtabF,&ewtabFn);
553             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
554             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
555
556             /* Analytical LJ-PME */
557             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
558             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
559             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
560             exponent         = gmx_simd_exp_d(ewcljrsq);
561             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
562             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
563             /* f6A = 6 * C6grid * (1 - poly) */
564             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
565             /* f6B = C6grid * exponent * beta^6 */
566             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
567             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
568             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
569
570             fscal            = _mm_add_pd(felec,fvdw);
571
572             /* Calculate temporary vectorial force */
573             tx               = _mm_mul_pd(fscal,dx00);
574             ty               = _mm_mul_pd(fscal,dy00);
575             tz               = _mm_mul_pd(fscal,dz00);
576
577             /* Update vectorial force */
578             fix0             = _mm_add_pd(fix0,tx);
579             fiy0             = _mm_add_pd(fiy0,ty);
580             fiz0             = _mm_add_pd(fiz0,tz);
581
582             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
583
584             /* Inner loop uses 59 flops */
585         }
586
587         if(jidx<j_index_end)
588         {
589
590             jnrA             = jjnr[jidx];
591             j_coord_offsetA  = DIM*jnrA;
592
593             /* load j atom coordinates */
594             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
595                                               &jx0,&jy0,&jz0);
596
597             /* Calculate displacement vector */
598             dx00             = _mm_sub_pd(ix0,jx0);
599             dy00             = _mm_sub_pd(iy0,jy0);
600             dz00             = _mm_sub_pd(iz0,jz0);
601
602             /* Calculate squared distance and things based on it */
603             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
604
605             rinv00           = gmx_mm_invsqrt_pd(rsq00);
606
607             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
608
609             /* Load parameters for j particles */
610             jq0              = _mm_load_sd(charge+jnrA+0);
611             vdwjidx0A        = 2*vdwtype[jnrA+0];
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             r00              = _mm_mul_pd(rsq00,rinv00);
618
619             /* Compute parameters for interactions between i and j atoms */
620             qq00             = _mm_mul_pd(iq0,jq0);
621             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
622
623             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
624
625             /* EWALD ELECTROSTATICS */
626
627             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
628             ewrt             = _mm_mul_pd(r00,ewtabscale);
629             ewitab           = _mm_cvttpd_epi32(ewrt);
630             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
631             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
632             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
633             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
634
635             /* Analytical LJ-PME */
636             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
637             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
638             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
639             exponent         = gmx_simd_exp_d(ewcljrsq);
640             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
641             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
642             /* f6A = 6 * C6grid * (1 - poly) */
643             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
644             /* f6B = C6grid * exponent * beta^6 */
645             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
646             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
647             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
648
649             fscal            = _mm_add_pd(felec,fvdw);
650
651             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
652
653             /* Calculate temporary vectorial force */
654             tx               = _mm_mul_pd(fscal,dx00);
655             ty               = _mm_mul_pd(fscal,dy00);
656             tz               = _mm_mul_pd(fscal,dz00);
657
658             /* Update vectorial force */
659             fix0             = _mm_add_pd(fix0,tx);
660             fiy0             = _mm_add_pd(fiy0,ty);
661             fiz0             = _mm_add_pd(fiz0,tz);
662
663             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
664
665             /* Inner loop uses 59 flops */
666         }
667
668         /* End of innermost loop */
669
670         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
671                                               f+i_coord_offset,fshift+i_shift_offset);
672
673         /* Increment number of inner iterations */
674         inneriter                  += j_index_end - j_index_start;
675
676         /* Outer loop uses 7 flops */
677     }
678
679     /* Increment number of outer iterations */
680     outeriter        += nri;
681
682     /* Update outer/inner flops */
683
684     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*59);
685 }