cb1a9dd954be8ba7d49e273f994329b5323d884e
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128d           c6grid_00;
94     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
95     real             *vdwgridparam;
96     __m128d           one_half = _mm_set1_pd(0.5);
97     __m128d           minus_one = _mm_set1_pd(-1.0);
98     __m128i          ewitab;
99     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     real             *ewtab;
101     __m128d          dummy_mask,cutoff_mask;
102     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103     __m128d          one     = _mm_set1_pd(1.0);
104     __m128d          two     = _mm_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_pd(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121     vdwgridparam     = fr->ljpme_c6grid;
122     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
123     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
124     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm_setzero_pd();
157         fiy0             = _mm_setzero_pd();
158         fiz0             = _mm_setzero_pd();
159
160         /* Load parameters for i particles */
161         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166         vvdwsum          = _mm_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_pd(ix0,jx0);
184             dy00             = _mm_sub_pd(iy0,jy0);
185             dz00             = _mm_sub_pd(iz0,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
189
190             rinv00           = gmx_mm_invsqrt_pd(rsq00);
191
192             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             r00              = _mm_mul_pd(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _mm_mul_pd(iq0,jq0);
207             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
208                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
209
210             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
211                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
212
213             /* EWALD ELECTROSTATICS */
214
215             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
216             ewrt             = _mm_mul_pd(r00,ewtabscale);
217             ewitab           = _mm_cvttpd_epi32(ewrt);
218             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
219             ewitab           = _mm_slli_epi32(ewitab,2);
220             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
221             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
222             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
223             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
224             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
225             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
226             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
227             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
228             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
229             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
230
231             /* Analytical LJ-PME */
232             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
233             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
234             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
235             exponent         = gmx_simd_exp_d(ewcljrsq);
236             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
237             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
238             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
239             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
240             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
241             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
242             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
243             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
244
245             /* Update potential sum for this i atom from the interaction with this j atom. */
246             velecsum         = _mm_add_pd(velecsum,velec);
247             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
248
249             fscal            = _mm_add_pd(felec,fvdw);
250
251             /* Calculate temporary vectorial force */
252             tx               = _mm_mul_pd(fscal,dx00);
253             ty               = _mm_mul_pd(fscal,dy00);
254             tz               = _mm_mul_pd(fscal,dz00);
255
256             /* Update vectorial force */
257             fix0             = _mm_add_pd(fix0,tx);
258             fiy0             = _mm_add_pd(fiy0,ty);
259             fiz0             = _mm_add_pd(fiz0,tz);
260
261             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
262
263             /* Inner loop uses 69 flops */
264         }
265
266         if(jidx<j_index_end)
267         {
268
269             jnrA             = jjnr[jidx];
270             j_coord_offsetA  = DIM*jnrA;
271
272             /* load j atom coordinates */
273             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
274                                               &jx0,&jy0,&jz0);
275
276             /* Calculate displacement vector */
277             dx00             = _mm_sub_pd(ix0,jx0);
278             dy00             = _mm_sub_pd(iy0,jy0);
279             dz00             = _mm_sub_pd(iz0,jz0);
280
281             /* Calculate squared distance and things based on it */
282             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
283
284             rinv00           = gmx_mm_invsqrt_pd(rsq00);
285
286             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
287
288             /* Load parameters for j particles */
289             jq0              = _mm_load_sd(charge+jnrA+0);
290             vdwjidx0A        = 2*vdwtype[jnrA+0];
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             r00              = _mm_mul_pd(rsq00,rinv00);
297
298             /* Compute parameters for interactions between i and j atoms */
299             qq00             = _mm_mul_pd(iq0,jq0);
300             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
301
302             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
303
304             /* EWALD ELECTROSTATICS */
305
306             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
307             ewrt             = _mm_mul_pd(r00,ewtabscale);
308             ewitab           = _mm_cvttpd_epi32(ewrt);
309             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
310             ewitab           = _mm_slli_epi32(ewitab,2);
311             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
312             ewtabD           = _mm_setzero_pd();
313             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
314             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
315             ewtabFn          = _mm_setzero_pd();
316             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
317             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
318             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
319             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
320             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
321
322             /* Analytical LJ-PME */
323             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
324             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
325             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
326             exponent         = gmx_simd_exp_d(ewcljrsq);
327             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
328             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
329             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
330             vvdw6            = _mm_mul_pd(_mm_sub_pd(c6_00,_mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly))),rinvsix);
331             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
332             vvdw             = _mm_sub_pd(_mm_mul_pd(vvdw12,one_twelfth),_mm_mul_pd(vvdw6,one_sixth));
333             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
334             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,_mm_sub_pd(vvdw6,_mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6)))),rinvsq00);
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
338             velecsum         = _mm_add_pd(velecsum,velec);
339             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
340             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
341
342             fscal            = _mm_add_pd(felec,fvdw);
343
344             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_pd(fscal,dx00);
348             ty               = _mm_mul_pd(fscal,dy00);
349             tz               = _mm_mul_pd(fscal,dz00);
350
351             /* Update vectorial force */
352             fix0             = _mm_add_pd(fix0,tx);
353             fiy0             = _mm_add_pd(fiy0,ty);
354             fiz0             = _mm_add_pd(fiz0,tz);
355
356             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
357
358             /* Inner loop uses 69 flops */
359         }
360
361         /* End of innermost loop */
362
363         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
364                                               f+i_coord_offset,fshift+i_shift_offset);
365
366         ggid                        = gid[iidx];
367         /* Update potential energies */
368         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
369         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
370
371         /* Increment number of inner iterations */
372         inneriter                  += j_index_end - j_index_start;
373
374         /* Outer loop uses 9 flops */
375     }
376
377     /* Increment number of outer iterations */
378     outeriter        += nri;
379
380     /* Update outer/inner flops */
381
382     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*69);
383 }
384 /*
385  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse2_double
386  * Electrostatics interaction: Ewald
387  * VdW interaction:            LJEwald
388  * Geometry:                   Particle-Particle
389  * Calculate force/pot:        Force
390  */
391 void
392 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_sse2_double
393                     (t_nblist                    * gmx_restrict       nlist,
394                      rvec                        * gmx_restrict          xx,
395                      rvec                        * gmx_restrict          ff,
396                      t_forcerec                  * gmx_restrict          fr,
397                      t_mdatoms                   * gmx_restrict     mdatoms,
398                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
399                      t_nrnb                      * gmx_restrict        nrnb)
400 {
401     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
402      * just 0 for non-waters.
403      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
404      * jnr indices corresponding to data put in the four positions in the SIMD register.
405      */
406     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
407     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
408     int              jnrA,jnrB;
409     int              j_coord_offsetA,j_coord_offsetB;
410     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
411     real             rcutoff_scalar;
412     real             *shiftvec,*fshift,*x,*f;
413     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
414     int              vdwioffset0;
415     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
416     int              vdwjidx0A,vdwjidx0B;
417     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
418     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
419     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
420     real             *charge;
421     int              nvdwtype;
422     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
423     int              *vdwtype;
424     real             *vdwparam;
425     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
426     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
427     __m128d           c6grid_00;
428     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
429     real             *vdwgridparam;
430     __m128d           one_half = _mm_set1_pd(0.5);
431     __m128d           minus_one = _mm_set1_pd(-1.0);
432     __m128i          ewitab;
433     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
434     real             *ewtab;
435     __m128d          dummy_mask,cutoff_mask;
436     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
437     __m128d          one     = _mm_set1_pd(1.0);
438     __m128d          two     = _mm_set1_pd(2.0);
439     x                = xx[0];
440     f                = ff[0];
441
442     nri              = nlist->nri;
443     iinr             = nlist->iinr;
444     jindex           = nlist->jindex;
445     jjnr             = nlist->jjnr;
446     shiftidx         = nlist->shift;
447     gid              = nlist->gid;
448     shiftvec         = fr->shift_vec[0];
449     fshift           = fr->fshift[0];
450     facel            = _mm_set1_pd(fr->epsfac);
451     charge           = mdatoms->chargeA;
452     nvdwtype         = fr->ntype;
453     vdwparam         = fr->nbfp;
454     vdwtype          = mdatoms->typeA;
455     vdwgridparam     = fr->ljpme_c6grid;
456     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
457     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
458     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
459
460     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
461     ewtab            = fr->ic->tabq_coul_F;
462     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
463     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
464
465     /* Avoid stupid compiler warnings */
466     jnrA = jnrB = 0;
467     j_coord_offsetA = 0;
468     j_coord_offsetB = 0;
469
470     outeriter        = 0;
471     inneriter        = 0;
472
473     /* Start outer loop over neighborlists */
474     for(iidx=0; iidx<nri; iidx++)
475     {
476         /* Load shift vector for this list */
477         i_shift_offset   = DIM*shiftidx[iidx];
478
479         /* Load limits for loop over neighbors */
480         j_index_start    = jindex[iidx];
481         j_index_end      = jindex[iidx+1];
482
483         /* Get outer coordinate index */
484         inr              = iinr[iidx];
485         i_coord_offset   = DIM*inr;
486
487         /* Load i particle coords and add shift vector */
488         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
489
490         fix0             = _mm_setzero_pd();
491         fiy0             = _mm_setzero_pd();
492         fiz0             = _mm_setzero_pd();
493
494         /* Load parameters for i particles */
495         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
496         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
497
498         /* Start inner kernel loop */
499         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
500         {
501
502             /* Get j neighbor index, and coordinate index */
503             jnrA             = jjnr[jidx];
504             jnrB             = jjnr[jidx+1];
505             j_coord_offsetA  = DIM*jnrA;
506             j_coord_offsetB  = DIM*jnrB;
507
508             /* load j atom coordinates */
509             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
510                                               &jx0,&jy0,&jz0);
511
512             /* Calculate displacement vector */
513             dx00             = _mm_sub_pd(ix0,jx0);
514             dy00             = _mm_sub_pd(iy0,jy0);
515             dz00             = _mm_sub_pd(iz0,jz0);
516
517             /* Calculate squared distance and things based on it */
518             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
519
520             rinv00           = gmx_mm_invsqrt_pd(rsq00);
521
522             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
523
524             /* Load parameters for j particles */
525             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
526             vdwjidx0A        = 2*vdwtype[jnrA+0];
527             vdwjidx0B        = 2*vdwtype[jnrB+0];
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             r00              = _mm_mul_pd(rsq00,rinv00);
534
535             /* Compute parameters for interactions between i and j atoms */
536             qq00             = _mm_mul_pd(iq0,jq0);
537             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
538                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
539
540             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
541                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
542
543             /* EWALD ELECTROSTATICS */
544
545             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
546             ewrt             = _mm_mul_pd(r00,ewtabscale);
547             ewitab           = _mm_cvttpd_epi32(ewrt);
548             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
549             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
550                                          &ewtabF,&ewtabFn);
551             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
552             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
553
554             /* Analytical LJ-PME */
555             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
556             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
557             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
558             exponent         = gmx_simd_exp_d(ewcljrsq);
559             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
560             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
561             /* f6A = 6 * C6grid * (1 - poly) */
562             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
563             /* f6B = C6grid * exponent * beta^6 */
564             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
565             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
566             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
567
568             fscal            = _mm_add_pd(felec,fvdw);
569
570             /* Calculate temporary vectorial force */
571             tx               = _mm_mul_pd(fscal,dx00);
572             ty               = _mm_mul_pd(fscal,dy00);
573             tz               = _mm_mul_pd(fscal,dz00);
574
575             /* Update vectorial force */
576             fix0             = _mm_add_pd(fix0,tx);
577             fiy0             = _mm_add_pd(fiy0,ty);
578             fiz0             = _mm_add_pd(fiz0,tz);
579
580             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,tx,ty,tz);
581
582             /* Inner loop uses 59 flops */
583         }
584
585         if(jidx<j_index_end)
586         {
587
588             jnrA             = jjnr[jidx];
589             j_coord_offsetA  = DIM*jnrA;
590
591             /* load j atom coordinates */
592             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
593                                               &jx0,&jy0,&jz0);
594
595             /* Calculate displacement vector */
596             dx00             = _mm_sub_pd(ix0,jx0);
597             dy00             = _mm_sub_pd(iy0,jy0);
598             dz00             = _mm_sub_pd(iz0,jz0);
599
600             /* Calculate squared distance and things based on it */
601             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
602
603             rinv00           = gmx_mm_invsqrt_pd(rsq00);
604
605             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
606
607             /* Load parameters for j particles */
608             jq0              = _mm_load_sd(charge+jnrA+0);
609             vdwjidx0A        = 2*vdwtype[jnrA+0];
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             r00              = _mm_mul_pd(rsq00,rinv00);
616
617             /* Compute parameters for interactions between i and j atoms */
618             qq00             = _mm_mul_pd(iq0,jq0);
619             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
620
621             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
622
623             /* EWALD ELECTROSTATICS */
624
625             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
626             ewrt             = _mm_mul_pd(r00,ewtabscale);
627             ewitab           = _mm_cvttpd_epi32(ewrt);
628             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
629             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
630             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
631             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
632
633             /* Analytical LJ-PME */
634             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
635             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
636             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
637             exponent         = gmx_simd_exp_d(ewcljrsq);
638             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
639             poly             = _mm_mul_pd(exponent,_mm_add_pd(_mm_sub_pd(one,ewcljrsq),_mm_mul_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half)));
640             /* f6A = 6 * C6grid * (1 - poly) */
641             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
642             /* f6B = C6grid * exponent * beta^6 */
643             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
644             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
645             fvdw              = _mm_mul_pd(_mm_add_pd(_mm_mul_pd(_mm_sub_pd(_mm_mul_pd(c12_00,rinvsix),_mm_sub_pd(c6_00,f6A)),rinvsix),f6B),rinvsq00);
646
647             fscal            = _mm_add_pd(felec,fvdw);
648
649             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
650
651             /* Calculate temporary vectorial force */
652             tx               = _mm_mul_pd(fscal,dx00);
653             ty               = _mm_mul_pd(fscal,dy00);
654             tz               = _mm_mul_pd(fscal,dz00);
655
656             /* Update vectorial force */
657             fix0             = _mm_add_pd(fix0,tx);
658             fiy0             = _mm_add_pd(fiy0,ty);
659             fiz0             = _mm_add_pd(fiz0,tz);
660
661             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,tx,ty,tz);
662
663             /* Inner loop uses 59 flops */
664         }
665
666         /* End of innermost loop */
667
668         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
669                                               f+i_coord_offset,fshift+i_shift_offset);
670
671         /* Increment number of inner iterations */
672         inneriter                  += j_index_end - j_index_start;
673
674         /* Outer loop uses 7 flops */
675     }
676
677     /* Increment number of outer iterations */
678     outeriter        += nri;
679
680     /* Update outer/inner flops */
681
682     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*59);
683 }