b5afe526107b29266d4f2366c3554e88aaadcfd4
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwCSTab_GeomW4W4_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4W4_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Water4
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomW4W4_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     int              vdwjidx1A,vdwjidx1B;
91     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
92     int              vdwjidx2A,vdwjidx2B;
93     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
94     int              vdwjidx3A,vdwjidx3B;
95     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
96     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
98     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
99     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
100     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
101     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
102     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
103     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
104     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
105     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
106     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
107     real             *charge;
108     int              nvdwtype;
109     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
110     int              *vdwtype;
111     real             *vdwparam;
112     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
113     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
114     __m128i          vfitab;
115     __m128i          ifour       = _mm_set1_epi32(4);
116     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
117     real             *vftab;
118     __m128i          ewitab;
119     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
120     real             *ewtab;
121     __m128d          dummy_mask,cutoff_mask;
122     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
123     __m128d          one     = _mm_set1_pd(1.0);
124     __m128d          two     = _mm_set1_pd(2.0);
125     x                = xx[0];
126     f                = ff[0];
127
128     nri              = nlist->nri;
129     iinr             = nlist->iinr;
130     jindex           = nlist->jindex;
131     jjnr             = nlist->jjnr;
132     shiftidx         = nlist->shift;
133     gid              = nlist->gid;
134     shiftvec         = fr->shift_vec[0];
135     fshift           = fr->fshift[0];
136     facel            = _mm_set1_pd(fr->epsfac);
137     charge           = mdatoms->chargeA;
138     nvdwtype         = fr->ntype;
139     vdwparam         = fr->nbfp;
140     vdwtype          = mdatoms->typeA;
141
142     vftab            = kernel_data->table_vdw->data;
143     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
144
145     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
146     ewtab            = fr->ic->tabq_coul_FDV0;
147     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
148     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
149
150     /* Setup water-specific parameters */
151     inr              = nlist->iinr[0];
152     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
153     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
154     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
155     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
156
157     jq1              = _mm_set1_pd(charge[inr+1]);
158     jq2              = _mm_set1_pd(charge[inr+2]);
159     jq3              = _mm_set1_pd(charge[inr+3]);
160     vdwjidx0A        = 2*vdwtype[inr+0];
161     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
162     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
163     qq11             = _mm_mul_pd(iq1,jq1);
164     qq12             = _mm_mul_pd(iq1,jq2);
165     qq13             = _mm_mul_pd(iq1,jq3);
166     qq21             = _mm_mul_pd(iq2,jq1);
167     qq22             = _mm_mul_pd(iq2,jq2);
168     qq23             = _mm_mul_pd(iq2,jq3);
169     qq31             = _mm_mul_pd(iq3,jq1);
170     qq32             = _mm_mul_pd(iq3,jq2);
171     qq33             = _mm_mul_pd(iq3,jq3);
172
173     /* Avoid stupid compiler warnings */
174     jnrA = jnrB = 0;
175     j_coord_offsetA = 0;
176     j_coord_offsetB = 0;
177
178     outeriter        = 0;
179     inneriter        = 0;
180
181     /* Start outer loop over neighborlists */
182     for(iidx=0; iidx<nri; iidx++)
183     {
184         /* Load shift vector for this list */
185         i_shift_offset   = DIM*shiftidx[iidx];
186
187         /* Load limits for loop over neighbors */
188         j_index_start    = jindex[iidx];
189         j_index_end      = jindex[iidx+1];
190
191         /* Get outer coordinate index */
192         inr              = iinr[iidx];
193         i_coord_offset   = DIM*inr;
194
195         /* Load i particle coords and add shift vector */
196         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
197                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
198
199         fix0             = _mm_setzero_pd();
200         fiy0             = _mm_setzero_pd();
201         fiz0             = _mm_setzero_pd();
202         fix1             = _mm_setzero_pd();
203         fiy1             = _mm_setzero_pd();
204         fiz1             = _mm_setzero_pd();
205         fix2             = _mm_setzero_pd();
206         fiy2             = _mm_setzero_pd();
207         fiz2             = _mm_setzero_pd();
208         fix3             = _mm_setzero_pd();
209         fiy3             = _mm_setzero_pd();
210         fiz3             = _mm_setzero_pd();
211
212         /* Reset potential sums */
213         velecsum         = _mm_setzero_pd();
214         vvdwsum          = _mm_setzero_pd();
215
216         /* Start inner kernel loop */
217         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
218         {
219
220             /* Get j neighbor index, and coordinate index */
221             jnrA             = jjnr[jidx];
222             jnrB             = jjnr[jidx+1];
223             j_coord_offsetA  = DIM*jnrA;
224             j_coord_offsetB  = DIM*jnrB;
225
226             /* load j atom coordinates */
227             gmx_mm_load_4rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
228                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
229                                               &jy2,&jz2,&jx3,&jy3,&jz3);
230
231             /* Calculate displacement vector */
232             dx00             = _mm_sub_pd(ix0,jx0);
233             dy00             = _mm_sub_pd(iy0,jy0);
234             dz00             = _mm_sub_pd(iz0,jz0);
235             dx11             = _mm_sub_pd(ix1,jx1);
236             dy11             = _mm_sub_pd(iy1,jy1);
237             dz11             = _mm_sub_pd(iz1,jz1);
238             dx12             = _mm_sub_pd(ix1,jx2);
239             dy12             = _mm_sub_pd(iy1,jy2);
240             dz12             = _mm_sub_pd(iz1,jz2);
241             dx13             = _mm_sub_pd(ix1,jx3);
242             dy13             = _mm_sub_pd(iy1,jy3);
243             dz13             = _mm_sub_pd(iz1,jz3);
244             dx21             = _mm_sub_pd(ix2,jx1);
245             dy21             = _mm_sub_pd(iy2,jy1);
246             dz21             = _mm_sub_pd(iz2,jz1);
247             dx22             = _mm_sub_pd(ix2,jx2);
248             dy22             = _mm_sub_pd(iy2,jy2);
249             dz22             = _mm_sub_pd(iz2,jz2);
250             dx23             = _mm_sub_pd(ix2,jx3);
251             dy23             = _mm_sub_pd(iy2,jy3);
252             dz23             = _mm_sub_pd(iz2,jz3);
253             dx31             = _mm_sub_pd(ix3,jx1);
254             dy31             = _mm_sub_pd(iy3,jy1);
255             dz31             = _mm_sub_pd(iz3,jz1);
256             dx32             = _mm_sub_pd(ix3,jx2);
257             dy32             = _mm_sub_pd(iy3,jy2);
258             dz32             = _mm_sub_pd(iz3,jz2);
259             dx33             = _mm_sub_pd(ix3,jx3);
260             dy33             = _mm_sub_pd(iy3,jy3);
261             dz33             = _mm_sub_pd(iz3,jz3);
262
263             /* Calculate squared distance and things based on it */
264             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
265             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
266             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
267             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
268             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
269             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
270             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
271             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
272             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
273             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
274
275             rinv00           = gmx_mm_invsqrt_pd(rsq00);
276             rinv11           = gmx_mm_invsqrt_pd(rsq11);
277             rinv12           = gmx_mm_invsqrt_pd(rsq12);
278             rinv13           = gmx_mm_invsqrt_pd(rsq13);
279             rinv21           = gmx_mm_invsqrt_pd(rsq21);
280             rinv22           = gmx_mm_invsqrt_pd(rsq22);
281             rinv23           = gmx_mm_invsqrt_pd(rsq23);
282             rinv31           = gmx_mm_invsqrt_pd(rsq31);
283             rinv32           = gmx_mm_invsqrt_pd(rsq32);
284             rinv33           = gmx_mm_invsqrt_pd(rsq33);
285
286             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
287             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
288             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
289             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
290             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
291             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
292             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
293             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
294             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
295
296             fjx0             = _mm_setzero_pd();
297             fjy0             = _mm_setzero_pd();
298             fjz0             = _mm_setzero_pd();
299             fjx1             = _mm_setzero_pd();
300             fjy1             = _mm_setzero_pd();
301             fjz1             = _mm_setzero_pd();
302             fjx2             = _mm_setzero_pd();
303             fjy2             = _mm_setzero_pd();
304             fjz2             = _mm_setzero_pd();
305             fjx3             = _mm_setzero_pd();
306             fjy3             = _mm_setzero_pd();
307             fjz3             = _mm_setzero_pd();
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             r00              = _mm_mul_pd(rsq00,rinv00);
314
315             /* Calculate table index by multiplying r with table scale and truncate to integer */
316             rt               = _mm_mul_pd(r00,vftabscale);
317             vfitab           = _mm_cvttpd_epi32(rt);
318             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
319             vfitab           = _mm_slli_epi32(vfitab,3);
320
321             /* CUBIC SPLINE TABLE DISPERSION */
322             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
323             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
324             GMX_MM_TRANSPOSE2_PD(Y,F);
325             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
326             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
327             GMX_MM_TRANSPOSE2_PD(G,H);
328             Heps             = _mm_mul_pd(vfeps,H);
329             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
330             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
331             vvdw6            = _mm_mul_pd(c6_00,VV);
332             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
333             fvdw6            = _mm_mul_pd(c6_00,FF);
334
335             /* CUBIC SPLINE TABLE REPULSION */
336             vfitab           = _mm_add_epi32(vfitab,ifour);
337             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
338             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
339             GMX_MM_TRANSPOSE2_PD(Y,F);
340             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
341             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
342             GMX_MM_TRANSPOSE2_PD(G,H);
343             Heps             = _mm_mul_pd(vfeps,H);
344             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
345             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
346             vvdw12           = _mm_mul_pd(c12_00,VV);
347             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
348             fvdw12           = _mm_mul_pd(c12_00,FF);
349             vvdw             = _mm_add_pd(vvdw12,vvdw6);
350             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
351
352             /* Update potential sum for this i atom from the interaction with this j atom. */
353             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
354
355             fscal            = fvdw;
356
357             /* Calculate temporary vectorial force */
358             tx               = _mm_mul_pd(fscal,dx00);
359             ty               = _mm_mul_pd(fscal,dy00);
360             tz               = _mm_mul_pd(fscal,dz00);
361
362             /* Update vectorial force */
363             fix0             = _mm_add_pd(fix0,tx);
364             fiy0             = _mm_add_pd(fiy0,ty);
365             fiz0             = _mm_add_pd(fiz0,tz);
366
367             fjx0             = _mm_add_pd(fjx0,tx);
368             fjy0             = _mm_add_pd(fjy0,ty);
369             fjz0             = _mm_add_pd(fjz0,tz);
370
371             /**************************
372              * CALCULATE INTERACTIONS *
373              **************************/
374
375             r11              = _mm_mul_pd(rsq11,rinv11);
376
377             /* EWALD ELECTROSTATICS */
378
379             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
380             ewrt             = _mm_mul_pd(r11,ewtabscale);
381             ewitab           = _mm_cvttpd_epi32(ewrt);
382             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
383             ewitab           = _mm_slli_epi32(ewitab,2);
384             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
385             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
386             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
387             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
388             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
389             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
390             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
391             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
392             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
393             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
394
395             /* Update potential sum for this i atom from the interaction with this j atom. */
396             velecsum         = _mm_add_pd(velecsum,velec);
397
398             fscal            = felec;
399
400             /* Calculate temporary vectorial force */
401             tx               = _mm_mul_pd(fscal,dx11);
402             ty               = _mm_mul_pd(fscal,dy11);
403             tz               = _mm_mul_pd(fscal,dz11);
404
405             /* Update vectorial force */
406             fix1             = _mm_add_pd(fix1,tx);
407             fiy1             = _mm_add_pd(fiy1,ty);
408             fiz1             = _mm_add_pd(fiz1,tz);
409
410             fjx1             = _mm_add_pd(fjx1,tx);
411             fjy1             = _mm_add_pd(fjy1,ty);
412             fjz1             = _mm_add_pd(fjz1,tz);
413
414             /**************************
415              * CALCULATE INTERACTIONS *
416              **************************/
417
418             r12              = _mm_mul_pd(rsq12,rinv12);
419
420             /* EWALD ELECTROSTATICS */
421
422             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
423             ewrt             = _mm_mul_pd(r12,ewtabscale);
424             ewitab           = _mm_cvttpd_epi32(ewrt);
425             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
426             ewitab           = _mm_slli_epi32(ewitab,2);
427             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
428             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
429             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
430             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
431             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
432             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
433             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
434             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
435             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
436             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
437
438             /* Update potential sum for this i atom from the interaction with this j atom. */
439             velecsum         = _mm_add_pd(velecsum,velec);
440
441             fscal            = felec;
442
443             /* Calculate temporary vectorial force */
444             tx               = _mm_mul_pd(fscal,dx12);
445             ty               = _mm_mul_pd(fscal,dy12);
446             tz               = _mm_mul_pd(fscal,dz12);
447
448             /* Update vectorial force */
449             fix1             = _mm_add_pd(fix1,tx);
450             fiy1             = _mm_add_pd(fiy1,ty);
451             fiz1             = _mm_add_pd(fiz1,tz);
452
453             fjx2             = _mm_add_pd(fjx2,tx);
454             fjy2             = _mm_add_pd(fjy2,ty);
455             fjz2             = _mm_add_pd(fjz2,tz);
456
457             /**************************
458              * CALCULATE INTERACTIONS *
459              **************************/
460
461             r13              = _mm_mul_pd(rsq13,rinv13);
462
463             /* EWALD ELECTROSTATICS */
464
465             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
466             ewrt             = _mm_mul_pd(r13,ewtabscale);
467             ewitab           = _mm_cvttpd_epi32(ewrt);
468             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
469             ewitab           = _mm_slli_epi32(ewitab,2);
470             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
471             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
472             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
473             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
474             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
475             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
476             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
477             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
478             velec            = _mm_mul_pd(qq13,_mm_sub_pd(rinv13,velec));
479             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
480
481             /* Update potential sum for this i atom from the interaction with this j atom. */
482             velecsum         = _mm_add_pd(velecsum,velec);
483
484             fscal            = felec;
485
486             /* Calculate temporary vectorial force */
487             tx               = _mm_mul_pd(fscal,dx13);
488             ty               = _mm_mul_pd(fscal,dy13);
489             tz               = _mm_mul_pd(fscal,dz13);
490
491             /* Update vectorial force */
492             fix1             = _mm_add_pd(fix1,tx);
493             fiy1             = _mm_add_pd(fiy1,ty);
494             fiz1             = _mm_add_pd(fiz1,tz);
495
496             fjx3             = _mm_add_pd(fjx3,tx);
497             fjy3             = _mm_add_pd(fjy3,ty);
498             fjz3             = _mm_add_pd(fjz3,tz);
499
500             /**************************
501              * CALCULATE INTERACTIONS *
502              **************************/
503
504             r21              = _mm_mul_pd(rsq21,rinv21);
505
506             /* EWALD ELECTROSTATICS */
507
508             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
509             ewrt             = _mm_mul_pd(r21,ewtabscale);
510             ewitab           = _mm_cvttpd_epi32(ewrt);
511             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
512             ewitab           = _mm_slli_epi32(ewitab,2);
513             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
514             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
515             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
516             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
517             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
518             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
519             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
520             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
521             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
522             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
523
524             /* Update potential sum for this i atom from the interaction with this j atom. */
525             velecsum         = _mm_add_pd(velecsum,velec);
526
527             fscal            = felec;
528
529             /* Calculate temporary vectorial force */
530             tx               = _mm_mul_pd(fscal,dx21);
531             ty               = _mm_mul_pd(fscal,dy21);
532             tz               = _mm_mul_pd(fscal,dz21);
533
534             /* Update vectorial force */
535             fix2             = _mm_add_pd(fix2,tx);
536             fiy2             = _mm_add_pd(fiy2,ty);
537             fiz2             = _mm_add_pd(fiz2,tz);
538
539             fjx1             = _mm_add_pd(fjx1,tx);
540             fjy1             = _mm_add_pd(fjy1,ty);
541             fjz1             = _mm_add_pd(fjz1,tz);
542
543             /**************************
544              * CALCULATE INTERACTIONS *
545              **************************/
546
547             r22              = _mm_mul_pd(rsq22,rinv22);
548
549             /* EWALD ELECTROSTATICS */
550
551             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
552             ewrt             = _mm_mul_pd(r22,ewtabscale);
553             ewitab           = _mm_cvttpd_epi32(ewrt);
554             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
555             ewitab           = _mm_slli_epi32(ewitab,2);
556             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
557             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
558             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
559             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
560             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
561             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
562             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
563             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
564             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
565             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
566
567             /* Update potential sum for this i atom from the interaction with this j atom. */
568             velecsum         = _mm_add_pd(velecsum,velec);
569
570             fscal            = felec;
571
572             /* Calculate temporary vectorial force */
573             tx               = _mm_mul_pd(fscal,dx22);
574             ty               = _mm_mul_pd(fscal,dy22);
575             tz               = _mm_mul_pd(fscal,dz22);
576
577             /* Update vectorial force */
578             fix2             = _mm_add_pd(fix2,tx);
579             fiy2             = _mm_add_pd(fiy2,ty);
580             fiz2             = _mm_add_pd(fiz2,tz);
581
582             fjx2             = _mm_add_pd(fjx2,tx);
583             fjy2             = _mm_add_pd(fjy2,ty);
584             fjz2             = _mm_add_pd(fjz2,tz);
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             r23              = _mm_mul_pd(rsq23,rinv23);
591
592             /* EWALD ELECTROSTATICS */
593
594             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
595             ewrt             = _mm_mul_pd(r23,ewtabscale);
596             ewitab           = _mm_cvttpd_epi32(ewrt);
597             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
598             ewitab           = _mm_slli_epi32(ewitab,2);
599             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
600             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
601             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
602             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
603             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
604             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
605             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
606             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
607             velec            = _mm_mul_pd(qq23,_mm_sub_pd(rinv23,velec));
608             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
609
610             /* Update potential sum for this i atom from the interaction with this j atom. */
611             velecsum         = _mm_add_pd(velecsum,velec);
612
613             fscal            = felec;
614
615             /* Calculate temporary vectorial force */
616             tx               = _mm_mul_pd(fscal,dx23);
617             ty               = _mm_mul_pd(fscal,dy23);
618             tz               = _mm_mul_pd(fscal,dz23);
619
620             /* Update vectorial force */
621             fix2             = _mm_add_pd(fix2,tx);
622             fiy2             = _mm_add_pd(fiy2,ty);
623             fiz2             = _mm_add_pd(fiz2,tz);
624
625             fjx3             = _mm_add_pd(fjx3,tx);
626             fjy3             = _mm_add_pd(fjy3,ty);
627             fjz3             = _mm_add_pd(fjz3,tz);
628
629             /**************************
630              * CALCULATE INTERACTIONS *
631              **************************/
632
633             r31              = _mm_mul_pd(rsq31,rinv31);
634
635             /* EWALD ELECTROSTATICS */
636
637             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
638             ewrt             = _mm_mul_pd(r31,ewtabscale);
639             ewitab           = _mm_cvttpd_epi32(ewrt);
640             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
641             ewitab           = _mm_slli_epi32(ewitab,2);
642             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
643             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
644             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
645             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
646             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
647             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
648             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
649             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
650             velec            = _mm_mul_pd(qq31,_mm_sub_pd(rinv31,velec));
651             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
652
653             /* Update potential sum for this i atom from the interaction with this j atom. */
654             velecsum         = _mm_add_pd(velecsum,velec);
655
656             fscal            = felec;
657
658             /* Calculate temporary vectorial force */
659             tx               = _mm_mul_pd(fscal,dx31);
660             ty               = _mm_mul_pd(fscal,dy31);
661             tz               = _mm_mul_pd(fscal,dz31);
662
663             /* Update vectorial force */
664             fix3             = _mm_add_pd(fix3,tx);
665             fiy3             = _mm_add_pd(fiy3,ty);
666             fiz3             = _mm_add_pd(fiz3,tz);
667
668             fjx1             = _mm_add_pd(fjx1,tx);
669             fjy1             = _mm_add_pd(fjy1,ty);
670             fjz1             = _mm_add_pd(fjz1,tz);
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             r32              = _mm_mul_pd(rsq32,rinv32);
677
678             /* EWALD ELECTROSTATICS */
679
680             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
681             ewrt             = _mm_mul_pd(r32,ewtabscale);
682             ewitab           = _mm_cvttpd_epi32(ewrt);
683             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
684             ewitab           = _mm_slli_epi32(ewitab,2);
685             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
686             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
687             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
688             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
689             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
690             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
691             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
692             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
693             velec            = _mm_mul_pd(qq32,_mm_sub_pd(rinv32,velec));
694             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
695
696             /* Update potential sum for this i atom from the interaction with this j atom. */
697             velecsum         = _mm_add_pd(velecsum,velec);
698
699             fscal            = felec;
700
701             /* Calculate temporary vectorial force */
702             tx               = _mm_mul_pd(fscal,dx32);
703             ty               = _mm_mul_pd(fscal,dy32);
704             tz               = _mm_mul_pd(fscal,dz32);
705
706             /* Update vectorial force */
707             fix3             = _mm_add_pd(fix3,tx);
708             fiy3             = _mm_add_pd(fiy3,ty);
709             fiz3             = _mm_add_pd(fiz3,tz);
710
711             fjx2             = _mm_add_pd(fjx2,tx);
712             fjy2             = _mm_add_pd(fjy2,ty);
713             fjz2             = _mm_add_pd(fjz2,tz);
714
715             /**************************
716              * CALCULATE INTERACTIONS *
717              **************************/
718
719             r33              = _mm_mul_pd(rsq33,rinv33);
720
721             /* EWALD ELECTROSTATICS */
722
723             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
724             ewrt             = _mm_mul_pd(r33,ewtabscale);
725             ewitab           = _mm_cvttpd_epi32(ewrt);
726             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
727             ewitab           = _mm_slli_epi32(ewitab,2);
728             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
729             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
730             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
731             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
732             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
733             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
734             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
735             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
736             velec            = _mm_mul_pd(qq33,_mm_sub_pd(rinv33,velec));
737             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
738
739             /* Update potential sum for this i atom from the interaction with this j atom. */
740             velecsum         = _mm_add_pd(velecsum,velec);
741
742             fscal            = felec;
743
744             /* Calculate temporary vectorial force */
745             tx               = _mm_mul_pd(fscal,dx33);
746             ty               = _mm_mul_pd(fscal,dy33);
747             tz               = _mm_mul_pd(fscal,dz33);
748
749             /* Update vectorial force */
750             fix3             = _mm_add_pd(fix3,tx);
751             fiy3             = _mm_add_pd(fiy3,ty);
752             fiz3             = _mm_add_pd(fiz3,tz);
753
754             fjx3             = _mm_add_pd(fjx3,tx);
755             fjy3             = _mm_add_pd(fjy3,ty);
756             fjz3             = _mm_add_pd(fjz3,tz);
757
758             gmx_mm_decrement_4rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
759
760             /* Inner loop uses 428 flops */
761         }
762
763         if(jidx<j_index_end)
764         {
765
766             jnrA             = jjnr[jidx];
767             j_coord_offsetA  = DIM*jnrA;
768
769             /* load j atom coordinates */
770             gmx_mm_load_4rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
771                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
772                                               &jy2,&jz2,&jx3,&jy3,&jz3);
773
774             /* Calculate displacement vector */
775             dx00             = _mm_sub_pd(ix0,jx0);
776             dy00             = _mm_sub_pd(iy0,jy0);
777             dz00             = _mm_sub_pd(iz0,jz0);
778             dx11             = _mm_sub_pd(ix1,jx1);
779             dy11             = _mm_sub_pd(iy1,jy1);
780             dz11             = _mm_sub_pd(iz1,jz1);
781             dx12             = _mm_sub_pd(ix1,jx2);
782             dy12             = _mm_sub_pd(iy1,jy2);
783             dz12             = _mm_sub_pd(iz1,jz2);
784             dx13             = _mm_sub_pd(ix1,jx3);
785             dy13             = _mm_sub_pd(iy1,jy3);
786             dz13             = _mm_sub_pd(iz1,jz3);
787             dx21             = _mm_sub_pd(ix2,jx1);
788             dy21             = _mm_sub_pd(iy2,jy1);
789             dz21             = _mm_sub_pd(iz2,jz1);
790             dx22             = _mm_sub_pd(ix2,jx2);
791             dy22             = _mm_sub_pd(iy2,jy2);
792             dz22             = _mm_sub_pd(iz2,jz2);
793             dx23             = _mm_sub_pd(ix2,jx3);
794             dy23             = _mm_sub_pd(iy2,jy3);
795             dz23             = _mm_sub_pd(iz2,jz3);
796             dx31             = _mm_sub_pd(ix3,jx1);
797             dy31             = _mm_sub_pd(iy3,jy1);
798             dz31             = _mm_sub_pd(iz3,jz1);
799             dx32             = _mm_sub_pd(ix3,jx2);
800             dy32             = _mm_sub_pd(iy3,jy2);
801             dz32             = _mm_sub_pd(iz3,jz2);
802             dx33             = _mm_sub_pd(ix3,jx3);
803             dy33             = _mm_sub_pd(iy3,jy3);
804             dz33             = _mm_sub_pd(iz3,jz3);
805
806             /* Calculate squared distance and things based on it */
807             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
808             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
809             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
810             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
811             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
812             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
813             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
814             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
815             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
816             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
817
818             rinv00           = gmx_mm_invsqrt_pd(rsq00);
819             rinv11           = gmx_mm_invsqrt_pd(rsq11);
820             rinv12           = gmx_mm_invsqrt_pd(rsq12);
821             rinv13           = gmx_mm_invsqrt_pd(rsq13);
822             rinv21           = gmx_mm_invsqrt_pd(rsq21);
823             rinv22           = gmx_mm_invsqrt_pd(rsq22);
824             rinv23           = gmx_mm_invsqrt_pd(rsq23);
825             rinv31           = gmx_mm_invsqrt_pd(rsq31);
826             rinv32           = gmx_mm_invsqrt_pd(rsq32);
827             rinv33           = gmx_mm_invsqrt_pd(rsq33);
828
829             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
830             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
831             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
832             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
833             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
834             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
835             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
836             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
837             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
838
839             fjx0             = _mm_setzero_pd();
840             fjy0             = _mm_setzero_pd();
841             fjz0             = _mm_setzero_pd();
842             fjx1             = _mm_setzero_pd();
843             fjy1             = _mm_setzero_pd();
844             fjz1             = _mm_setzero_pd();
845             fjx2             = _mm_setzero_pd();
846             fjy2             = _mm_setzero_pd();
847             fjz2             = _mm_setzero_pd();
848             fjx3             = _mm_setzero_pd();
849             fjy3             = _mm_setzero_pd();
850             fjz3             = _mm_setzero_pd();
851
852             /**************************
853              * CALCULATE INTERACTIONS *
854              **************************/
855
856             r00              = _mm_mul_pd(rsq00,rinv00);
857
858             /* Calculate table index by multiplying r with table scale and truncate to integer */
859             rt               = _mm_mul_pd(r00,vftabscale);
860             vfitab           = _mm_cvttpd_epi32(rt);
861             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
862             vfitab           = _mm_slli_epi32(vfitab,3);
863
864             /* CUBIC SPLINE TABLE DISPERSION */
865             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
866             F                = _mm_setzero_pd();
867             GMX_MM_TRANSPOSE2_PD(Y,F);
868             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
869             H                = _mm_setzero_pd();
870             GMX_MM_TRANSPOSE2_PD(G,H);
871             Heps             = _mm_mul_pd(vfeps,H);
872             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
873             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
874             vvdw6            = _mm_mul_pd(c6_00,VV);
875             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
876             fvdw6            = _mm_mul_pd(c6_00,FF);
877
878             /* CUBIC SPLINE TABLE REPULSION */
879             vfitab           = _mm_add_epi32(vfitab,ifour);
880             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
881             F                = _mm_setzero_pd();
882             GMX_MM_TRANSPOSE2_PD(Y,F);
883             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
884             H                = _mm_setzero_pd();
885             GMX_MM_TRANSPOSE2_PD(G,H);
886             Heps             = _mm_mul_pd(vfeps,H);
887             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
888             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
889             vvdw12           = _mm_mul_pd(c12_00,VV);
890             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
891             fvdw12           = _mm_mul_pd(c12_00,FF);
892             vvdw             = _mm_add_pd(vvdw12,vvdw6);
893             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
894
895             /* Update potential sum for this i atom from the interaction with this j atom. */
896             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
897             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
898
899             fscal            = fvdw;
900
901             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
902
903             /* Calculate temporary vectorial force */
904             tx               = _mm_mul_pd(fscal,dx00);
905             ty               = _mm_mul_pd(fscal,dy00);
906             tz               = _mm_mul_pd(fscal,dz00);
907
908             /* Update vectorial force */
909             fix0             = _mm_add_pd(fix0,tx);
910             fiy0             = _mm_add_pd(fiy0,ty);
911             fiz0             = _mm_add_pd(fiz0,tz);
912
913             fjx0             = _mm_add_pd(fjx0,tx);
914             fjy0             = _mm_add_pd(fjy0,ty);
915             fjz0             = _mm_add_pd(fjz0,tz);
916
917             /**************************
918              * CALCULATE INTERACTIONS *
919              **************************/
920
921             r11              = _mm_mul_pd(rsq11,rinv11);
922
923             /* EWALD ELECTROSTATICS */
924
925             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
926             ewrt             = _mm_mul_pd(r11,ewtabscale);
927             ewitab           = _mm_cvttpd_epi32(ewrt);
928             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
929             ewitab           = _mm_slli_epi32(ewitab,2);
930             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
931             ewtabD           = _mm_setzero_pd();
932             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
933             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
934             ewtabFn          = _mm_setzero_pd();
935             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
936             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
937             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
938             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
939             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
940
941             /* Update potential sum for this i atom from the interaction with this j atom. */
942             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
943             velecsum         = _mm_add_pd(velecsum,velec);
944
945             fscal            = felec;
946
947             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
948
949             /* Calculate temporary vectorial force */
950             tx               = _mm_mul_pd(fscal,dx11);
951             ty               = _mm_mul_pd(fscal,dy11);
952             tz               = _mm_mul_pd(fscal,dz11);
953
954             /* Update vectorial force */
955             fix1             = _mm_add_pd(fix1,tx);
956             fiy1             = _mm_add_pd(fiy1,ty);
957             fiz1             = _mm_add_pd(fiz1,tz);
958
959             fjx1             = _mm_add_pd(fjx1,tx);
960             fjy1             = _mm_add_pd(fjy1,ty);
961             fjz1             = _mm_add_pd(fjz1,tz);
962
963             /**************************
964              * CALCULATE INTERACTIONS *
965              **************************/
966
967             r12              = _mm_mul_pd(rsq12,rinv12);
968
969             /* EWALD ELECTROSTATICS */
970
971             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
972             ewrt             = _mm_mul_pd(r12,ewtabscale);
973             ewitab           = _mm_cvttpd_epi32(ewrt);
974             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
975             ewitab           = _mm_slli_epi32(ewitab,2);
976             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
977             ewtabD           = _mm_setzero_pd();
978             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
979             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
980             ewtabFn          = _mm_setzero_pd();
981             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
982             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
983             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
984             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
985             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
986
987             /* Update potential sum for this i atom from the interaction with this j atom. */
988             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
989             velecsum         = _mm_add_pd(velecsum,velec);
990
991             fscal            = felec;
992
993             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
994
995             /* Calculate temporary vectorial force */
996             tx               = _mm_mul_pd(fscal,dx12);
997             ty               = _mm_mul_pd(fscal,dy12);
998             tz               = _mm_mul_pd(fscal,dz12);
999
1000             /* Update vectorial force */
1001             fix1             = _mm_add_pd(fix1,tx);
1002             fiy1             = _mm_add_pd(fiy1,ty);
1003             fiz1             = _mm_add_pd(fiz1,tz);
1004
1005             fjx2             = _mm_add_pd(fjx2,tx);
1006             fjy2             = _mm_add_pd(fjy2,ty);
1007             fjz2             = _mm_add_pd(fjz2,tz);
1008
1009             /**************************
1010              * CALCULATE INTERACTIONS *
1011              **************************/
1012
1013             r13              = _mm_mul_pd(rsq13,rinv13);
1014
1015             /* EWALD ELECTROSTATICS */
1016
1017             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1018             ewrt             = _mm_mul_pd(r13,ewtabscale);
1019             ewitab           = _mm_cvttpd_epi32(ewrt);
1020             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1021             ewitab           = _mm_slli_epi32(ewitab,2);
1022             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1023             ewtabD           = _mm_setzero_pd();
1024             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1025             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1026             ewtabFn          = _mm_setzero_pd();
1027             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1028             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1029             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1030             velec            = _mm_mul_pd(qq13,_mm_sub_pd(rinv13,velec));
1031             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1032
1033             /* Update potential sum for this i atom from the interaction with this j atom. */
1034             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1035             velecsum         = _mm_add_pd(velecsum,velec);
1036
1037             fscal            = felec;
1038
1039             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1040
1041             /* Calculate temporary vectorial force */
1042             tx               = _mm_mul_pd(fscal,dx13);
1043             ty               = _mm_mul_pd(fscal,dy13);
1044             tz               = _mm_mul_pd(fscal,dz13);
1045
1046             /* Update vectorial force */
1047             fix1             = _mm_add_pd(fix1,tx);
1048             fiy1             = _mm_add_pd(fiy1,ty);
1049             fiz1             = _mm_add_pd(fiz1,tz);
1050
1051             fjx3             = _mm_add_pd(fjx3,tx);
1052             fjy3             = _mm_add_pd(fjy3,ty);
1053             fjz3             = _mm_add_pd(fjz3,tz);
1054
1055             /**************************
1056              * CALCULATE INTERACTIONS *
1057              **************************/
1058
1059             r21              = _mm_mul_pd(rsq21,rinv21);
1060
1061             /* EWALD ELECTROSTATICS */
1062
1063             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1064             ewrt             = _mm_mul_pd(r21,ewtabscale);
1065             ewitab           = _mm_cvttpd_epi32(ewrt);
1066             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1067             ewitab           = _mm_slli_epi32(ewitab,2);
1068             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1069             ewtabD           = _mm_setzero_pd();
1070             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1071             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1072             ewtabFn          = _mm_setzero_pd();
1073             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1074             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1075             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1076             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1077             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1078
1079             /* Update potential sum for this i atom from the interaction with this j atom. */
1080             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1081             velecsum         = _mm_add_pd(velecsum,velec);
1082
1083             fscal            = felec;
1084
1085             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1086
1087             /* Calculate temporary vectorial force */
1088             tx               = _mm_mul_pd(fscal,dx21);
1089             ty               = _mm_mul_pd(fscal,dy21);
1090             tz               = _mm_mul_pd(fscal,dz21);
1091
1092             /* Update vectorial force */
1093             fix2             = _mm_add_pd(fix2,tx);
1094             fiy2             = _mm_add_pd(fiy2,ty);
1095             fiz2             = _mm_add_pd(fiz2,tz);
1096
1097             fjx1             = _mm_add_pd(fjx1,tx);
1098             fjy1             = _mm_add_pd(fjy1,ty);
1099             fjz1             = _mm_add_pd(fjz1,tz);
1100
1101             /**************************
1102              * CALCULATE INTERACTIONS *
1103              **************************/
1104
1105             r22              = _mm_mul_pd(rsq22,rinv22);
1106
1107             /* EWALD ELECTROSTATICS */
1108
1109             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1110             ewrt             = _mm_mul_pd(r22,ewtabscale);
1111             ewitab           = _mm_cvttpd_epi32(ewrt);
1112             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1113             ewitab           = _mm_slli_epi32(ewitab,2);
1114             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1115             ewtabD           = _mm_setzero_pd();
1116             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1117             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1118             ewtabFn          = _mm_setzero_pd();
1119             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1120             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1121             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1122             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1123             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1124
1125             /* Update potential sum for this i atom from the interaction with this j atom. */
1126             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1127             velecsum         = _mm_add_pd(velecsum,velec);
1128
1129             fscal            = felec;
1130
1131             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1132
1133             /* Calculate temporary vectorial force */
1134             tx               = _mm_mul_pd(fscal,dx22);
1135             ty               = _mm_mul_pd(fscal,dy22);
1136             tz               = _mm_mul_pd(fscal,dz22);
1137
1138             /* Update vectorial force */
1139             fix2             = _mm_add_pd(fix2,tx);
1140             fiy2             = _mm_add_pd(fiy2,ty);
1141             fiz2             = _mm_add_pd(fiz2,tz);
1142
1143             fjx2             = _mm_add_pd(fjx2,tx);
1144             fjy2             = _mm_add_pd(fjy2,ty);
1145             fjz2             = _mm_add_pd(fjz2,tz);
1146
1147             /**************************
1148              * CALCULATE INTERACTIONS *
1149              **************************/
1150
1151             r23              = _mm_mul_pd(rsq23,rinv23);
1152
1153             /* EWALD ELECTROSTATICS */
1154
1155             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1156             ewrt             = _mm_mul_pd(r23,ewtabscale);
1157             ewitab           = _mm_cvttpd_epi32(ewrt);
1158             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1159             ewitab           = _mm_slli_epi32(ewitab,2);
1160             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1161             ewtabD           = _mm_setzero_pd();
1162             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1163             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1164             ewtabFn          = _mm_setzero_pd();
1165             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1166             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1167             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1168             velec            = _mm_mul_pd(qq23,_mm_sub_pd(rinv23,velec));
1169             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1170
1171             /* Update potential sum for this i atom from the interaction with this j atom. */
1172             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1173             velecsum         = _mm_add_pd(velecsum,velec);
1174
1175             fscal            = felec;
1176
1177             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1178
1179             /* Calculate temporary vectorial force */
1180             tx               = _mm_mul_pd(fscal,dx23);
1181             ty               = _mm_mul_pd(fscal,dy23);
1182             tz               = _mm_mul_pd(fscal,dz23);
1183
1184             /* Update vectorial force */
1185             fix2             = _mm_add_pd(fix2,tx);
1186             fiy2             = _mm_add_pd(fiy2,ty);
1187             fiz2             = _mm_add_pd(fiz2,tz);
1188
1189             fjx3             = _mm_add_pd(fjx3,tx);
1190             fjy3             = _mm_add_pd(fjy3,ty);
1191             fjz3             = _mm_add_pd(fjz3,tz);
1192
1193             /**************************
1194              * CALCULATE INTERACTIONS *
1195              **************************/
1196
1197             r31              = _mm_mul_pd(rsq31,rinv31);
1198
1199             /* EWALD ELECTROSTATICS */
1200
1201             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1202             ewrt             = _mm_mul_pd(r31,ewtabscale);
1203             ewitab           = _mm_cvttpd_epi32(ewrt);
1204             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1205             ewitab           = _mm_slli_epi32(ewitab,2);
1206             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1207             ewtabD           = _mm_setzero_pd();
1208             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1209             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1210             ewtabFn          = _mm_setzero_pd();
1211             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1212             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1213             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1214             velec            = _mm_mul_pd(qq31,_mm_sub_pd(rinv31,velec));
1215             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1216
1217             /* Update potential sum for this i atom from the interaction with this j atom. */
1218             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1219             velecsum         = _mm_add_pd(velecsum,velec);
1220
1221             fscal            = felec;
1222
1223             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1224
1225             /* Calculate temporary vectorial force */
1226             tx               = _mm_mul_pd(fscal,dx31);
1227             ty               = _mm_mul_pd(fscal,dy31);
1228             tz               = _mm_mul_pd(fscal,dz31);
1229
1230             /* Update vectorial force */
1231             fix3             = _mm_add_pd(fix3,tx);
1232             fiy3             = _mm_add_pd(fiy3,ty);
1233             fiz3             = _mm_add_pd(fiz3,tz);
1234
1235             fjx1             = _mm_add_pd(fjx1,tx);
1236             fjy1             = _mm_add_pd(fjy1,ty);
1237             fjz1             = _mm_add_pd(fjz1,tz);
1238
1239             /**************************
1240              * CALCULATE INTERACTIONS *
1241              **************************/
1242
1243             r32              = _mm_mul_pd(rsq32,rinv32);
1244
1245             /* EWALD ELECTROSTATICS */
1246
1247             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1248             ewrt             = _mm_mul_pd(r32,ewtabscale);
1249             ewitab           = _mm_cvttpd_epi32(ewrt);
1250             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1251             ewitab           = _mm_slli_epi32(ewitab,2);
1252             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1253             ewtabD           = _mm_setzero_pd();
1254             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1255             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1256             ewtabFn          = _mm_setzero_pd();
1257             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1258             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1259             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1260             velec            = _mm_mul_pd(qq32,_mm_sub_pd(rinv32,velec));
1261             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1262
1263             /* Update potential sum for this i atom from the interaction with this j atom. */
1264             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1265             velecsum         = _mm_add_pd(velecsum,velec);
1266
1267             fscal            = felec;
1268
1269             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1270
1271             /* Calculate temporary vectorial force */
1272             tx               = _mm_mul_pd(fscal,dx32);
1273             ty               = _mm_mul_pd(fscal,dy32);
1274             tz               = _mm_mul_pd(fscal,dz32);
1275
1276             /* Update vectorial force */
1277             fix3             = _mm_add_pd(fix3,tx);
1278             fiy3             = _mm_add_pd(fiy3,ty);
1279             fiz3             = _mm_add_pd(fiz3,tz);
1280
1281             fjx2             = _mm_add_pd(fjx2,tx);
1282             fjy2             = _mm_add_pd(fjy2,ty);
1283             fjz2             = _mm_add_pd(fjz2,tz);
1284
1285             /**************************
1286              * CALCULATE INTERACTIONS *
1287              **************************/
1288
1289             r33              = _mm_mul_pd(rsq33,rinv33);
1290
1291             /* EWALD ELECTROSTATICS */
1292
1293             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1294             ewrt             = _mm_mul_pd(r33,ewtabscale);
1295             ewitab           = _mm_cvttpd_epi32(ewrt);
1296             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1297             ewitab           = _mm_slli_epi32(ewitab,2);
1298             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
1299             ewtabD           = _mm_setzero_pd();
1300             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1301             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
1302             ewtabFn          = _mm_setzero_pd();
1303             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1304             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
1305             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
1306             velec            = _mm_mul_pd(qq33,_mm_sub_pd(rinv33,velec));
1307             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1308
1309             /* Update potential sum for this i atom from the interaction with this j atom. */
1310             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1311             velecsum         = _mm_add_pd(velecsum,velec);
1312
1313             fscal            = felec;
1314
1315             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1316
1317             /* Calculate temporary vectorial force */
1318             tx               = _mm_mul_pd(fscal,dx33);
1319             ty               = _mm_mul_pd(fscal,dy33);
1320             tz               = _mm_mul_pd(fscal,dz33);
1321
1322             /* Update vectorial force */
1323             fix3             = _mm_add_pd(fix3,tx);
1324             fiy3             = _mm_add_pd(fiy3,ty);
1325             fiz3             = _mm_add_pd(fiz3,tz);
1326
1327             fjx3             = _mm_add_pd(fjx3,tx);
1328             fjy3             = _mm_add_pd(fjy3,ty);
1329             fjz3             = _mm_add_pd(fjz3,tz);
1330
1331             gmx_mm_decrement_4rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1332
1333             /* Inner loop uses 428 flops */
1334         }
1335
1336         /* End of innermost loop */
1337
1338         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1339                                               f+i_coord_offset,fshift+i_shift_offset);
1340
1341         ggid                        = gid[iidx];
1342         /* Update potential energies */
1343         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1344         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1345
1346         /* Increment number of inner iterations */
1347         inneriter                  += j_index_end - j_index_start;
1348
1349         /* Outer loop uses 26 flops */
1350     }
1351
1352     /* Increment number of outer iterations */
1353     outeriter        += nri;
1354
1355     /* Update outer/inner flops */
1356
1357     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*26 + inneriter*428);
1358 }
1359 /*
1360  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4W4_F_sse2_double
1361  * Electrostatics interaction: Ewald
1362  * VdW interaction:            CubicSplineTable
1363  * Geometry:                   Water4-Water4
1364  * Calculate force/pot:        Force
1365  */
1366 void
1367 nb_kernel_ElecEw_VdwCSTab_GeomW4W4_F_sse2_double
1368                     (t_nblist                    * gmx_restrict       nlist,
1369                      rvec                        * gmx_restrict          xx,
1370                      rvec                        * gmx_restrict          ff,
1371                      t_forcerec                  * gmx_restrict          fr,
1372                      t_mdatoms                   * gmx_restrict     mdatoms,
1373                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1374                      t_nrnb                      * gmx_restrict        nrnb)
1375 {
1376     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1377      * just 0 for non-waters.
1378      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1379      * jnr indices corresponding to data put in the four positions in the SIMD register.
1380      */
1381     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1382     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1383     int              jnrA,jnrB;
1384     int              j_coord_offsetA,j_coord_offsetB;
1385     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1386     real             rcutoff_scalar;
1387     real             *shiftvec,*fshift,*x,*f;
1388     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1389     int              vdwioffset0;
1390     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1391     int              vdwioffset1;
1392     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1393     int              vdwioffset2;
1394     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1395     int              vdwioffset3;
1396     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1397     int              vdwjidx0A,vdwjidx0B;
1398     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1399     int              vdwjidx1A,vdwjidx1B;
1400     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1401     int              vdwjidx2A,vdwjidx2B;
1402     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1403     int              vdwjidx3A,vdwjidx3B;
1404     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1405     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1406     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1407     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1408     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1409     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1410     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1411     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1412     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1413     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1414     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1415     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1416     real             *charge;
1417     int              nvdwtype;
1418     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1419     int              *vdwtype;
1420     real             *vdwparam;
1421     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1422     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1423     __m128i          vfitab;
1424     __m128i          ifour       = _mm_set1_epi32(4);
1425     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
1426     real             *vftab;
1427     __m128i          ewitab;
1428     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1429     real             *ewtab;
1430     __m128d          dummy_mask,cutoff_mask;
1431     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1432     __m128d          one     = _mm_set1_pd(1.0);
1433     __m128d          two     = _mm_set1_pd(2.0);
1434     x                = xx[0];
1435     f                = ff[0];
1436
1437     nri              = nlist->nri;
1438     iinr             = nlist->iinr;
1439     jindex           = nlist->jindex;
1440     jjnr             = nlist->jjnr;
1441     shiftidx         = nlist->shift;
1442     gid              = nlist->gid;
1443     shiftvec         = fr->shift_vec[0];
1444     fshift           = fr->fshift[0];
1445     facel            = _mm_set1_pd(fr->epsfac);
1446     charge           = mdatoms->chargeA;
1447     nvdwtype         = fr->ntype;
1448     vdwparam         = fr->nbfp;
1449     vdwtype          = mdatoms->typeA;
1450
1451     vftab            = kernel_data->table_vdw->data;
1452     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
1453
1454     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1455     ewtab            = fr->ic->tabq_coul_F;
1456     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1457     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1458
1459     /* Setup water-specific parameters */
1460     inr              = nlist->iinr[0];
1461     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1462     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1463     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
1464     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1465
1466     jq1              = _mm_set1_pd(charge[inr+1]);
1467     jq2              = _mm_set1_pd(charge[inr+2]);
1468     jq3              = _mm_set1_pd(charge[inr+3]);
1469     vdwjidx0A        = 2*vdwtype[inr+0];
1470     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1471     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1472     qq11             = _mm_mul_pd(iq1,jq1);
1473     qq12             = _mm_mul_pd(iq1,jq2);
1474     qq13             = _mm_mul_pd(iq1,jq3);
1475     qq21             = _mm_mul_pd(iq2,jq1);
1476     qq22             = _mm_mul_pd(iq2,jq2);
1477     qq23             = _mm_mul_pd(iq2,jq3);
1478     qq31             = _mm_mul_pd(iq3,jq1);
1479     qq32             = _mm_mul_pd(iq3,jq2);
1480     qq33             = _mm_mul_pd(iq3,jq3);
1481
1482     /* Avoid stupid compiler warnings */
1483     jnrA = jnrB = 0;
1484     j_coord_offsetA = 0;
1485     j_coord_offsetB = 0;
1486
1487     outeriter        = 0;
1488     inneriter        = 0;
1489
1490     /* Start outer loop over neighborlists */
1491     for(iidx=0; iidx<nri; iidx++)
1492     {
1493         /* Load shift vector for this list */
1494         i_shift_offset   = DIM*shiftidx[iidx];
1495
1496         /* Load limits for loop over neighbors */
1497         j_index_start    = jindex[iidx];
1498         j_index_end      = jindex[iidx+1];
1499
1500         /* Get outer coordinate index */
1501         inr              = iinr[iidx];
1502         i_coord_offset   = DIM*inr;
1503
1504         /* Load i particle coords and add shift vector */
1505         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1506                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1507
1508         fix0             = _mm_setzero_pd();
1509         fiy0             = _mm_setzero_pd();
1510         fiz0             = _mm_setzero_pd();
1511         fix1             = _mm_setzero_pd();
1512         fiy1             = _mm_setzero_pd();
1513         fiz1             = _mm_setzero_pd();
1514         fix2             = _mm_setzero_pd();
1515         fiy2             = _mm_setzero_pd();
1516         fiz2             = _mm_setzero_pd();
1517         fix3             = _mm_setzero_pd();
1518         fiy3             = _mm_setzero_pd();
1519         fiz3             = _mm_setzero_pd();
1520
1521         /* Start inner kernel loop */
1522         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1523         {
1524
1525             /* Get j neighbor index, and coordinate index */
1526             jnrA             = jjnr[jidx];
1527             jnrB             = jjnr[jidx+1];
1528             j_coord_offsetA  = DIM*jnrA;
1529             j_coord_offsetB  = DIM*jnrB;
1530
1531             /* load j atom coordinates */
1532             gmx_mm_load_4rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1533                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1534                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1535
1536             /* Calculate displacement vector */
1537             dx00             = _mm_sub_pd(ix0,jx0);
1538             dy00             = _mm_sub_pd(iy0,jy0);
1539             dz00             = _mm_sub_pd(iz0,jz0);
1540             dx11             = _mm_sub_pd(ix1,jx1);
1541             dy11             = _mm_sub_pd(iy1,jy1);
1542             dz11             = _mm_sub_pd(iz1,jz1);
1543             dx12             = _mm_sub_pd(ix1,jx2);
1544             dy12             = _mm_sub_pd(iy1,jy2);
1545             dz12             = _mm_sub_pd(iz1,jz2);
1546             dx13             = _mm_sub_pd(ix1,jx3);
1547             dy13             = _mm_sub_pd(iy1,jy3);
1548             dz13             = _mm_sub_pd(iz1,jz3);
1549             dx21             = _mm_sub_pd(ix2,jx1);
1550             dy21             = _mm_sub_pd(iy2,jy1);
1551             dz21             = _mm_sub_pd(iz2,jz1);
1552             dx22             = _mm_sub_pd(ix2,jx2);
1553             dy22             = _mm_sub_pd(iy2,jy2);
1554             dz22             = _mm_sub_pd(iz2,jz2);
1555             dx23             = _mm_sub_pd(ix2,jx3);
1556             dy23             = _mm_sub_pd(iy2,jy3);
1557             dz23             = _mm_sub_pd(iz2,jz3);
1558             dx31             = _mm_sub_pd(ix3,jx1);
1559             dy31             = _mm_sub_pd(iy3,jy1);
1560             dz31             = _mm_sub_pd(iz3,jz1);
1561             dx32             = _mm_sub_pd(ix3,jx2);
1562             dy32             = _mm_sub_pd(iy3,jy2);
1563             dz32             = _mm_sub_pd(iz3,jz2);
1564             dx33             = _mm_sub_pd(ix3,jx3);
1565             dy33             = _mm_sub_pd(iy3,jy3);
1566             dz33             = _mm_sub_pd(iz3,jz3);
1567
1568             /* Calculate squared distance and things based on it */
1569             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1570             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1571             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1572             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1573             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1574             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1575             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1576             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1577             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1578             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1579
1580             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1581             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1582             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1583             rinv13           = gmx_mm_invsqrt_pd(rsq13);
1584             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1585             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1586             rinv23           = gmx_mm_invsqrt_pd(rsq23);
1587             rinv31           = gmx_mm_invsqrt_pd(rsq31);
1588             rinv32           = gmx_mm_invsqrt_pd(rsq32);
1589             rinv33           = gmx_mm_invsqrt_pd(rsq33);
1590
1591             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1592             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1593             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
1594             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1595             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1596             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
1597             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
1598             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
1599             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
1600
1601             fjx0             = _mm_setzero_pd();
1602             fjy0             = _mm_setzero_pd();
1603             fjz0             = _mm_setzero_pd();
1604             fjx1             = _mm_setzero_pd();
1605             fjy1             = _mm_setzero_pd();
1606             fjz1             = _mm_setzero_pd();
1607             fjx2             = _mm_setzero_pd();
1608             fjy2             = _mm_setzero_pd();
1609             fjz2             = _mm_setzero_pd();
1610             fjx3             = _mm_setzero_pd();
1611             fjy3             = _mm_setzero_pd();
1612             fjz3             = _mm_setzero_pd();
1613
1614             /**************************
1615              * CALCULATE INTERACTIONS *
1616              **************************/
1617
1618             r00              = _mm_mul_pd(rsq00,rinv00);
1619
1620             /* Calculate table index by multiplying r with table scale and truncate to integer */
1621             rt               = _mm_mul_pd(r00,vftabscale);
1622             vfitab           = _mm_cvttpd_epi32(rt);
1623             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1624             vfitab           = _mm_slli_epi32(vfitab,3);
1625
1626             /* CUBIC SPLINE TABLE DISPERSION */
1627             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1628             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1629             GMX_MM_TRANSPOSE2_PD(Y,F);
1630             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1631             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1632             GMX_MM_TRANSPOSE2_PD(G,H);
1633             Heps             = _mm_mul_pd(vfeps,H);
1634             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1635             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1636             fvdw6            = _mm_mul_pd(c6_00,FF);
1637
1638             /* CUBIC SPLINE TABLE REPULSION */
1639             vfitab           = _mm_add_epi32(vfitab,ifour);
1640             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1641             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
1642             GMX_MM_TRANSPOSE2_PD(Y,F);
1643             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1644             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
1645             GMX_MM_TRANSPOSE2_PD(G,H);
1646             Heps             = _mm_mul_pd(vfeps,H);
1647             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1648             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1649             fvdw12           = _mm_mul_pd(c12_00,FF);
1650             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1651
1652             fscal            = fvdw;
1653
1654             /* Calculate temporary vectorial force */
1655             tx               = _mm_mul_pd(fscal,dx00);
1656             ty               = _mm_mul_pd(fscal,dy00);
1657             tz               = _mm_mul_pd(fscal,dz00);
1658
1659             /* Update vectorial force */
1660             fix0             = _mm_add_pd(fix0,tx);
1661             fiy0             = _mm_add_pd(fiy0,ty);
1662             fiz0             = _mm_add_pd(fiz0,tz);
1663
1664             fjx0             = _mm_add_pd(fjx0,tx);
1665             fjy0             = _mm_add_pd(fjy0,ty);
1666             fjz0             = _mm_add_pd(fjz0,tz);
1667
1668             /**************************
1669              * CALCULATE INTERACTIONS *
1670              **************************/
1671
1672             r11              = _mm_mul_pd(rsq11,rinv11);
1673
1674             /* EWALD ELECTROSTATICS */
1675
1676             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1677             ewrt             = _mm_mul_pd(r11,ewtabscale);
1678             ewitab           = _mm_cvttpd_epi32(ewrt);
1679             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1680             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1681                                          &ewtabF,&ewtabFn);
1682             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1683             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1684
1685             fscal            = felec;
1686
1687             /* Calculate temporary vectorial force */
1688             tx               = _mm_mul_pd(fscal,dx11);
1689             ty               = _mm_mul_pd(fscal,dy11);
1690             tz               = _mm_mul_pd(fscal,dz11);
1691
1692             /* Update vectorial force */
1693             fix1             = _mm_add_pd(fix1,tx);
1694             fiy1             = _mm_add_pd(fiy1,ty);
1695             fiz1             = _mm_add_pd(fiz1,tz);
1696
1697             fjx1             = _mm_add_pd(fjx1,tx);
1698             fjy1             = _mm_add_pd(fjy1,ty);
1699             fjz1             = _mm_add_pd(fjz1,tz);
1700
1701             /**************************
1702              * CALCULATE INTERACTIONS *
1703              **************************/
1704
1705             r12              = _mm_mul_pd(rsq12,rinv12);
1706
1707             /* EWALD ELECTROSTATICS */
1708
1709             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1710             ewrt             = _mm_mul_pd(r12,ewtabscale);
1711             ewitab           = _mm_cvttpd_epi32(ewrt);
1712             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1713             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1714                                          &ewtabF,&ewtabFn);
1715             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1716             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1717
1718             fscal            = felec;
1719
1720             /* Calculate temporary vectorial force */
1721             tx               = _mm_mul_pd(fscal,dx12);
1722             ty               = _mm_mul_pd(fscal,dy12);
1723             tz               = _mm_mul_pd(fscal,dz12);
1724
1725             /* Update vectorial force */
1726             fix1             = _mm_add_pd(fix1,tx);
1727             fiy1             = _mm_add_pd(fiy1,ty);
1728             fiz1             = _mm_add_pd(fiz1,tz);
1729
1730             fjx2             = _mm_add_pd(fjx2,tx);
1731             fjy2             = _mm_add_pd(fjy2,ty);
1732             fjz2             = _mm_add_pd(fjz2,tz);
1733
1734             /**************************
1735              * CALCULATE INTERACTIONS *
1736              **************************/
1737
1738             r13              = _mm_mul_pd(rsq13,rinv13);
1739
1740             /* EWALD ELECTROSTATICS */
1741
1742             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1743             ewrt             = _mm_mul_pd(r13,ewtabscale);
1744             ewitab           = _mm_cvttpd_epi32(ewrt);
1745             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1746             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1747                                          &ewtabF,&ewtabFn);
1748             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1749             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1750
1751             fscal            = felec;
1752
1753             /* Calculate temporary vectorial force */
1754             tx               = _mm_mul_pd(fscal,dx13);
1755             ty               = _mm_mul_pd(fscal,dy13);
1756             tz               = _mm_mul_pd(fscal,dz13);
1757
1758             /* Update vectorial force */
1759             fix1             = _mm_add_pd(fix1,tx);
1760             fiy1             = _mm_add_pd(fiy1,ty);
1761             fiz1             = _mm_add_pd(fiz1,tz);
1762
1763             fjx3             = _mm_add_pd(fjx3,tx);
1764             fjy3             = _mm_add_pd(fjy3,ty);
1765             fjz3             = _mm_add_pd(fjz3,tz);
1766
1767             /**************************
1768              * CALCULATE INTERACTIONS *
1769              **************************/
1770
1771             r21              = _mm_mul_pd(rsq21,rinv21);
1772
1773             /* EWALD ELECTROSTATICS */
1774
1775             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1776             ewrt             = _mm_mul_pd(r21,ewtabscale);
1777             ewitab           = _mm_cvttpd_epi32(ewrt);
1778             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1779             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1780                                          &ewtabF,&ewtabFn);
1781             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1782             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1783
1784             fscal            = felec;
1785
1786             /* Calculate temporary vectorial force */
1787             tx               = _mm_mul_pd(fscal,dx21);
1788             ty               = _mm_mul_pd(fscal,dy21);
1789             tz               = _mm_mul_pd(fscal,dz21);
1790
1791             /* Update vectorial force */
1792             fix2             = _mm_add_pd(fix2,tx);
1793             fiy2             = _mm_add_pd(fiy2,ty);
1794             fiz2             = _mm_add_pd(fiz2,tz);
1795
1796             fjx1             = _mm_add_pd(fjx1,tx);
1797             fjy1             = _mm_add_pd(fjy1,ty);
1798             fjz1             = _mm_add_pd(fjz1,tz);
1799
1800             /**************************
1801              * CALCULATE INTERACTIONS *
1802              **************************/
1803
1804             r22              = _mm_mul_pd(rsq22,rinv22);
1805
1806             /* EWALD ELECTROSTATICS */
1807
1808             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1809             ewrt             = _mm_mul_pd(r22,ewtabscale);
1810             ewitab           = _mm_cvttpd_epi32(ewrt);
1811             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1812             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1813                                          &ewtabF,&ewtabFn);
1814             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1815             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1816
1817             fscal            = felec;
1818
1819             /* Calculate temporary vectorial force */
1820             tx               = _mm_mul_pd(fscal,dx22);
1821             ty               = _mm_mul_pd(fscal,dy22);
1822             tz               = _mm_mul_pd(fscal,dz22);
1823
1824             /* Update vectorial force */
1825             fix2             = _mm_add_pd(fix2,tx);
1826             fiy2             = _mm_add_pd(fiy2,ty);
1827             fiz2             = _mm_add_pd(fiz2,tz);
1828
1829             fjx2             = _mm_add_pd(fjx2,tx);
1830             fjy2             = _mm_add_pd(fjy2,ty);
1831             fjz2             = _mm_add_pd(fjz2,tz);
1832
1833             /**************************
1834              * CALCULATE INTERACTIONS *
1835              **************************/
1836
1837             r23              = _mm_mul_pd(rsq23,rinv23);
1838
1839             /* EWALD ELECTROSTATICS */
1840
1841             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1842             ewrt             = _mm_mul_pd(r23,ewtabscale);
1843             ewitab           = _mm_cvttpd_epi32(ewrt);
1844             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1845             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1846                                          &ewtabF,&ewtabFn);
1847             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1848             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1849
1850             fscal            = felec;
1851
1852             /* Calculate temporary vectorial force */
1853             tx               = _mm_mul_pd(fscal,dx23);
1854             ty               = _mm_mul_pd(fscal,dy23);
1855             tz               = _mm_mul_pd(fscal,dz23);
1856
1857             /* Update vectorial force */
1858             fix2             = _mm_add_pd(fix2,tx);
1859             fiy2             = _mm_add_pd(fiy2,ty);
1860             fiz2             = _mm_add_pd(fiz2,tz);
1861
1862             fjx3             = _mm_add_pd(fjx3,tx);
1863             fjy3             = _mm_add_pd(fjy3,ty);
1864             fjz3             = _mm_add_pd(fjz3,tz);
1865
1866             /**************************
1867              * CALCULATE INTERACTIONS *
1868              **************************/
1869
1870             r31              = _mm_mul_pd(rsq31,rinv31);
1871
1872             /* EWALD ELECTROSTATICS */
1873
1874             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1875             ewrt             = _mm_mul_pd(r31,ewtabscale);
1876             ewitab           = _mm_cvttpd_epi32(ewrt);
1877             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1878             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1879                                          &ewtabF,&ewtabFn);
1880             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1881             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1882
1883             fscal            = felec;
1884
1885             /* Calculate temporary vectorial force */
1886             tx               = _mm_mul_pd(fscal,dx31);
1887             ty               = _mm_mul_pd(fscal,dy31);
1888             tz               = _mm_mul_pd(fscal,dz31);
1889
1890             /* Update vectorial force */
1891             fix3             = _mm_add_pd(fix3,tx);
1892             fiy3             = _mm_add_pd(fiy3,ty);
1893             fiz3             = _mm_add_pd(fiz3,tz);
1894
1895             fjx1             = _mm_add_pd(fjx1,tx);
1896             fjy1             = _mm_add_pd(fjy1,ty);
1897             fjz1             = _mm_add_pd(fjz1,tz);
1898
1899             /**************************
1900              * CALCULATE INTERACTIONS *
1901              **************************/
1902
1903             r32              = _mm_mul_pd(rsq32,rinv32);
1904
1905             /* EWALD ELECTROSTATICS */
1906
1907             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1908             ewrt             = _mm_mul_pd(r32,ewtabscale);
1909             ewitab           = _mm_cvttpd_epi32(ewrt);
1910             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1911             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1912                                          &ewtabF,&ewtabFn);
1913             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1914             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1915
1916             fscal            = felec;
1917
1918             /* Calculate temporary vectorial force */
1919             tx               = _mm_mul_pd(fscal,dx32);
1920             ty               = _mm_mul_pd(fscal,dy32);
1921             tz               = _mm_mul_pd(fscal,dz32);
1922
1923             /* Update vectorial force */
1924             fix3             = _mm_add_pd(fix3,tx);
1925             fiy3             = _mm_add_pd(fiy3,ty);
1926             fiz3             = _mm_add_pd(fiz3,tz);
1927
1928             fjx2             = _mm_add_pd(fjx2,tx);
1929             fjy2             = _mm_add_pd(fjy2,ty);
1930             fjz2             = _mm_add_pd(fjz2,tz);
1931
1932             /**************************
1933              * CALCULATE INTERACTIONS *
1934              **************************/
1935
1936             r33              = _mm_mul_pd(rsq33,rinv33);
1937
1938             /* EWALD ELECTROSTATICS */
1939
1940             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1941             ewrt             = _mm_mul_pd(r33,ewtabscale);
1942             ewitab           = _mm_cvttpd_epi32(ewrt);
1943             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1944             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1945                                          &ewtabF,&ewtabFn);
1946             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1947             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1948
1949             fscal            = felec;
1950
1951             /* Calculate temporary vectorial force */
1952             tx               = _mm_mul_pd(fscal,dx33);
1953             ty               = _mm_mul_pd(fscal,dy33);
1954             tz               = _mm_mul_pd(fscal,dz33);
1955
1956             /* Update vectorial force */
1957             fix3             = _mm_add_pd(fix3,tx);
1958             fiy3             = _mm_add_pd(fiy3,ty);
1959             fiz3             = _mm_add_pd(fiz3,tz);
1960
1961             fjx3             = _mm_add_pd(fjx3,tx);
1962             fjy3             = _mm_add_pd(fjy3,ty);
1963             fjz3             = _mm_add_pd(fjz3,tz);
1964
1965             gmx_mm_decrement_4rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1966
1967             /* Inner loop uses 375 flops */
1968         }
1969
1970         if(jidx<j_index_end)
1971         {
1972
1973             jnrA             = jjnr[jidx];
1974             j_coord_offsetA  = DIM*jnrA;
1975
1976             /* load j atom coordinates */
1977             gmx_mm_load_4rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1978                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1979                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1980
1981             /* Calculate displacement vector */
1982             dx00             = _mm_sub_pd(ix0,jx0);
1983             dy00             = _mm_sub_pd(iy0,jy0);
1984             dz00             = _mm_sub_pd(iz0,jz0);
1985             dx11             = _mm_sub_pd(ix1,jx1);
1986             dy11             = _mm_sub_pd(iy1,jy1);
1987             dz11             = _mm_sub_pd(iz1,jz1);
1988             dx12             = _mm_sub_pd(ix1,jx2);
1989             dy12             = _mm_sub_pd(iy1,jy2);
1990             dz12             = _mm_sub_pd(iz1,jz2);
1991             dx13             = _mm_sub_pd(ix1,jx3);
1992             dy13             = _mm_sub_pd(iy1,jy3);
1993             dz13             = _mm_sub_pd(iz1,jz3);
1994             dx21             = _mm_sub_pd(ix2,jx1);
1995             dy21             = _mm_sub_pd(iy2,jy1);
1996             dz21             = _mm_sub_pd(iz2,jz1);
1997             dx22             = _mm_sub_pd(ix2,jx2);
1998             dy22             = _mm_sub_pd(iy2,jy2);
1999             dz22             = _mm_sub_pd(iz2,jz2);
2000             dx23             = _mm_sub_pd(ix2,jx3);
2001             dy23             = _mm_sub_pd(iy2,jy3);
2002             dz23             = _mm_sub_pd(iz2,jz3);
2003             dx31             = _mm_sub_pd(ix3,jx1);
2004             dy31             = _mm_sub_pd(iy3,jy1);
2005             dz31             = _mm_sub_pd(iz3,jz1);
2006             dx32             = _mm_sub_pd(ix3,jx2);
2007             dy32             = _mm_sub_pd(iy3,jy2);
2008             dz32             = _mm_sub_pd(iz3,jz2);
2009             dx33             = _mm_sub_pd(ix3,jx3);
2010             dy33             = _mm_sub_pd(iy3,jy3);
2011             dz33             = _mm_sub_pd(iz3,jz3);
2012
2013             /* Calculate squared distance and things based on it */
2014             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
2015             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
2016             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
2017             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
2018             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
2019             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
2020             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
2021             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
2022             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
2023             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
2024
2025             rinv00           = gmx_mm_invsqrt_pd(rsq00);
2026             rinv11           = gmx_mm_invsqrt_pd(rsq11);
2027             rinv12           = gmx_mm_invsqrt_pd(rsq12);
2028             rinv13           = gmx_mm_invsqrt_pd(rsq13);
2029             rinv21           = gmx_mm_invsqrt_pd(rsq21);
2030             rinv22           = gmx_mm_invsqrt_pd(rsq22);
2031             rinv23           = gmx_mm_invsqrt_pd(rsq23);
2032             rinv31           = gmx_mm_invsqrt_pd(rsq31);
2033             rinv32           = gmx_mm_invsqrt_pd(rsq32);
2034             rinv33           = gmx_mm_invsqrt_pd(rsq33);
2035
2036             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
2037             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
2038             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
2039             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
2040             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
2041             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
2042             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
2043             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
2044             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
2045
2046             fjx0             = _mm_setzero_pd();
2047             fjy0             = _mm_setzero_pd();
2048             fjz0             = _mm_setzero_pd();
2049             fjx1             = _mm_setzero_pd();
2050             fjy1             = _mm_setzero_pd();
2051             fjz1             = _mm_setzero_pd();
2052             fjx2             = _mm_setzero_pd();
2053             fjy2             = _mm_setzero_pd();
2054             fjz2             = _mm_setzero_pd();
2055             fjx3             = _mm_setzero_pd();
2056             fjy3             = _mm_setzero_pd();
2057             fjz3             = _mm_setzero_pd();
2058
2059             /**************************
2060              * CALCULATE INTERACTIONS *
2061              **************************/
2062
2063             r00              = _mm_mul_pd(rsq00,rinv00);
2064
2065             /* Calculate table index by multiplying r with table scale and truncate to integer */
2066             rt               = _mm_mul_pd(r00,vftabscale);
2067             vfitab           = _mm_cvttpd_epi32(rt);
2068             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
2069             vfitab           = _mm_slli_epi32(vfitab,3);
2070
2071             /* CUBIC SPLINE TABLE DISPERSION */
2072             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
2073             F                = _mm_setzero_pd();
2074             GMX_MM_TRANSPOSE2_PD(Y,F);
2075             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
2076             H                = _mm_setzero_pd();
2077             GMX_MM_TRANSPOSE2_PD(G,H);
2078             Heps             = _mm_mul_pd(vfeps,H);
2079             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
2080             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
2081             fvdw6            = _mm_mul_pd(c6_00,FF);
2082
2083             /* CUBIC SPLINE TABLE REPULSION */
2084             vfitab           = _mm_add_epi32(vfitab,ifour);
2085             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
2086             F                = _mm_setzero_pd();
2087             GMX_MM_TRANSPOSE2_PD(Y,F);
2088             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
2089             H                = _mm_setzero_pd();
2090             GMX_MM_TRANSPOSE2_PD(G,H);
2091             Heps             = _mm_mul_pd(vfeps,H);
2092             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
2093             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
2094             fvdw12           = _mm_mul_pd(c12_00,FF);
2095             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
2096
2097             fscal            = fvdw;
2098
2099             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2100
2101             /* Calculate temporary vectorial force */
2102             tx               = _mm_mul_pd(fscal,dx00);
2103             ty               = _mm_mul_pd(fscal,dy00);
2104             tz               = _mm_mul_pd(fscal,dz00);
2105
2106             /* Update vectorial force */
2107             fix0             = _mm_add_pd(fix0,tx);
2108             fiy0             = _mm_add_pd(fiy0,ty);
2109             fiz0             = _mm_add_pd(fiz0,tz);
2110
2111             fjx0             = _mm_add_pd(fjx0,tx);
2112             fjy0             = _mm_add_pd(fjy0,ty);
2113             fjz0             = _mm_add_pd(fjz0,tz);
2114
2115             /**************************
2116              * CALCULATE INTERACTIONS *
2117              **************************/
2118
2119             r11              = _mm_mul_pd(rsq11,rinv11);
2120
2121             /* EWALD ELECTROSTATICS */
2122
2123             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2124             ewrt             = _mm_mul_pd(r11,ewtabscale);
2125             ewitab           = _mm_cvttpd_epi32(ewrt);
2126             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2127             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2128             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2129             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2130
2131             fscal            = felec;
2132
2133             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2134
2135             /* Calculate temporary vectorial force */
2136             tx               = _mm_mul_pd(fscal,dx11);
2137             ty               = _mm_mul_pd(fscal,dy11);
2138             tz               = _mm_mul_pd(fscal,dz11);
2139
2140             /* Update vectorial force */
2141             fix1             = _mm_add_pd(fix1,tx);
2142             fiy1             = _mm_add_pd(fiy1,ty);
2143             fiz1             = _mm_add_pd(fiz1,tz);
2144
2145             fjx1             = _mm_add_pd(fjx1,tx);
2146             fjy1             = _mm_add_pd(fjy1,ty);
2147             fjz1             = _mm_add_pd(fjz1,tz);
2148
2149             /**************************
2150              * CALCULATE INTERACTIONS *
2151              **************************/
2152
2153             r12              = _mm_mul_pd(rsq12,rinv12);
2154
2155             /* EWALD ELECTROSTATICS */
2156
2157             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2158             ewrt             = _mm_mul_pd(r12,ewtabscale);
2159             ewitab           = _mm_cvttpd_epi32(ewrt);
2160             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2161             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2162             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2163             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2164
2165             fscal            = felec;
2166
2167             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2168
2169             /* Calculate temporary vectorial force */
2170             tx               = _mm_mul_pd(fscal,dx12);
2171             ty               = _mm_mul_pd(fscal,dy12);
2172             tz               = _mm_mul_pd(fscal,dz12);
2173
2174             /* Update vectorial force */
2175             fix1             = _mm_add_pd(fix1,tx);
2176             fiy1             = _mm_add_pd(fiy1,ty);
2177             fiz1             = _mm_add_pd(fiz1,tz);
2178
2179             fjx2             = _mm_add_pd(fjx2,tx);
2180             fjy2             = _mm_add_pd(fjy2,ty);
2181             fjz2             = _mm_add_pd(fjz2,tz);
2182
2183             /**************************
2184              * CALCULATE INTERACTIONS *
2185              **************************/
2186
2187             r13              = _mm_mul_pd(rsq13,rinv13);
2188
2189             /* EWALD ELECTROSTATICS */
2190
2191             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2192             ewrt             = _mm_mul_pd(r13,ewtabscale);
2193             ewitab           = _mm_cvttpd_epi32(ewrt);
2194             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2195             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2196             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2197             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
2198
2199             fscal            = felec;
2200
2201             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2202
2203             /* Calculate temporary vectorial force */
2204             tx               = _mm_mul_pd(fscal,dx13);
2205             ty               = _mm_mul_pd(fscal,dy13);
2206             tz               = _mm_mul_pd(fscal,dz13);
2207
2208             /* Update vectorial force */
2209             fix1             = _mm_add_pd(fix1,tx);
2210             fiy1             = _mm_add_pd(fiy1,ty);
2211             fiz1             = _mm_add_pd(fiz1,tz);
2212
2213             fjx3             = _mm_add_pd(fjx3,tx);
2214             fjy3             = _mm_add_pd(fjy3,ty);
2215             fjz3             = _mm_add_pd(fjz3,tz);
2216
2217             /**************************
2218              * CALCULATE INTERACTIONS *
2219              **************************/
2220
2221             r21              = _mm_mul_pd(rsq21,rinv21);
2222
2223             /* EWALD ELECTROSTATICS */
2224
2225             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2226             ewrt             = _mm_mul_pd(r21,ewtabscale);
2227             ewitab           = _mm_cvttpd_epi32(ewrt);
2228             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2229             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2230             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2231             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2232
2233             fscal            = felec;
2234
2235             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2236
2237             /* Calculate temporary vectorial force */
2238             tx               = _mm_mul_pd(fscal,dx21);
2239             ty               = _mm_mul_pd(fscal,dy21);
2240             tz               = _mm_mul_pd(fscal,dz21);
2241
2242             /* Update vectorial force */
2243             fix2             = _mm_add_pd(fix2,tx);
2244             fiy2             = _mm_add_pd(fiy2,ty);
2245             fiz2             = _mm_add_pd(fiz2,tz);
2246
2247             fjx1             = _mm_add_pd(fjx1,tx);
2248             fjy1             = _mm_add_pd(fjy1,ty);
2249             fjz1             = _mm_add_pd(fjz1,tz);
2250
2251             /**************************
2252              * CALCULATE INTERACTIONS *
2253              **************************/
2254
2255             r22              = _mm_mul_pd(rsq22,rinv22);
2256
2257             /* EWALD ELECTROSTATICS */
2258
2259             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2260             ewrt             = _mm_mul_pd(r22,ewtabscale);
2261             ewitab           = _mm_cvttpd_epi32(ewrt);
2262             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2263             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2264             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2265             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2266
2267             fscal            = felec;
2268
2269             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2270
2271             /* Calculate temporary vectorial force */
2272             tx               = _mm_mul_pd(fscal,dx22);
2273             ty               = _mm_mul_pd(fscal,dy22);
2274             tz               = _mm_mul_pd(fscal,dz22);
2275
2276             /* Update vectorial force */
2277             fix2             = _mm_add_pd(fix2,tx);
2278             fiy2             = _mm_add_pd(fiy2,ty);
2279             fiz2             = _mm_add_pd(fiz2,tz);
2280
2281             fjx2             = _mm_add_pd(fjx2,tx);
2282             fjy2             = _mm_add_pd(fjy2,ty);
2283             fjz2             = _mm_add_pd(fjz2,tz);
2284
2285             /**************************
2286              * CALCULATE INTERACTIONS *
2287              **************************/
2288
2289             r23              = _mm_mul_pd(rsq23,rinv23);
2290
2291             /* EWALD ELECTROSTATICS */
2292
2293             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2294             ewrt             = _mm_mul_pd(r23,ewtabscale);
2295             ewitab           = _mm_cvttpd_epi32(ewrt);
2296             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2297             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2298             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2299             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
2300
2301             fscal            = felec;
2302
2303             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2304
2305             /* Calculate temporary vectorial force */
2306             tx               = _mm_mul_pd(fscal,dx23);
2307             ty               = _mm_mul_pd(fscal,dy23);
2308             tz               = _mm_mul_pd(fscal,dz23);
2309
2310             /* Update vectorial force */
2311             fix2             = _mm_add_pd(fix2,tx);
2312             fiy2             = _mm_add_pd(fiy2,ty);
2313             fiz2             = _mm_add_pd(fiz2,tz);
2314
2315             fjx3             = _mm_add_pd(fjx3,tx);
2316             fjy3             = _mm_add_pd(fjy3,ty);
2317             fjz3             = _mm_add_pd(fjz3,tz);
2318
2319             /**************************
2320              * CALCULATE INTERACTIONS *
2321              **************************/
2322
2323             r31              = _mm_mul_pd(rsq31,rinv31);
2324
2325             /* EWALD ELECTROSTATICS */
2326
2327             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2328             ewrt             = _mm_mul_pd(r31,ewtabscale);
2329             ewitab           = _mm_cvttpd_epi32(ewrt);
2330             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2331             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2332             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2333             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
2334
2335             fscal            = felec;
2336
2337             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2338
2339             /* Calculate temporary vectorial force */
2340             tx               = _mm_mul_pd(fscal,dx31);
2341             ty               = _mm_mul_pd(fscal,dy31);
2342             tz               = _mm_mul_pd(fscal,dz31);
2343
2344             /* Update vectorial force */
2345             fix3             = _mm_add_pd(fix3,tx);
2346             fiy3             = _mm_add_pd(fiy3,ty);
2347             fiz3             = _mm_add_pd(fiz3,tz);
2348
2349             fjx1             = _mm_add_pd(fjx1,tx);
2350             fjy1             = _mm_add_pd(fjy1,ty);
2351             fjz1             = _mm_add_pd(fjz1,tz);
2352
2353             /**************************
2354              * CALCULATE INTERACTIONS *
2355              **************************/
2356
2357             r32              = _mm_mul_pd(rsq32,rinv32);
2358
2359             /* EWALD ELECTROSTATICS */
2360
2361             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2362             ewrt             = _mm_mul_pd(r32,ewtabscale);
2363             ewitab           = _mm_cvttpd_epi32(ewrt);
2364             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2365             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2366             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2367             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
2368
2369             fscal            = felec;
2370
2371             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2372
2373             /* Calculate temporary vectorial force */
2374             tx               = _mm_mul_pd(fscal,dx32);
2375             ty               = _mm_mul_pd(fscal,dy32);
2376             tz               = _mm_mul_pd(fscal,dz32);
2377
2378             /* Update vectorial force */
2379             fix3             = _mm_add_pd(fix3,tx);
2380             fiy3             = _mm_add_pd(fiy3,ty);
2381             fiz3             = _mm_add_pd(fiz3,tz);
2382
2383             fjx2             = _mm_add_pd(fjx2,tx);
2384             fjy2             = _mm_add_pd(fjy2,ty);
2385             fjz2             = _mm_add_pd(fjz2,tz);
2386
2387             /**************************
2388              * CALCULATE INTERACTIONS *
2389              **************************/
2390
2391             r33              = _mm_mul_pd(rsq33,rinv33);
2392
2393             /* EWALD ELECTROSTATICS */
2394
2395             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2396             ewrt             = _mm_mul_pd(r33,ewtabscale);
2397             ewitab           = _mm_cvttpd_epi32(ewrt);
2398             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
2399             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2400             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
2401             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
2402
2403             fscal            = felec;
2404
2405             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2406
2407             /* Calculate temporary vectorial force */
2408             tx               = _mm_mul_pd(fscal,dx33);
2409             ty               = _mm_mul_pd(fscal,dy33);
2410             tz               = _mm_mul_pd(fscal,dz33);
2411
2412             /* Update vectorial force */
2413             fix3             = _mm_add_pd(fix3,tx);
2414             fiy3             = _mm_add_pd(fiy3,ty);
2415             fiz3             = _mm_add_pd(fiz3,tz);
2416
2417             fjx3             = _mm_add_pd(fjx3,tx);
2418             fjy3             = _mm_add_pd(fjy3,ty);
2419             fjz3             = _mm_add_pd(fjz3,tz);
2420
2421             gmx_mm_decrement_4rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2422
2423             /* Inner loop uses 375 flops */
2424         }
2425
2426         /* End of innermost loop */
2427
2428         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2429                                               f+i_coord_offset,fshift+i_shift_offset);
2430
2431         /* Increment number of inner iterations */
2432         inneriter                  += j_index_end - j_index_start;
2433
2434         /* Outer loop uses 24 flops */
2435     }
2436
2437     /* Increment number of outer iterations */
2438     outeriter        += nri;
2439
2440     /* Update outer/inner flops */
2441
2442     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*24 + inneriter*375);
2443 }