Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_sse2_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_sse2_double.h"
48 #include "kernelutil_x86_sse2_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse2_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_sse2_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m128i          ewitab;
107     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     real             *ewtab;
109     __m128d          dummy_mask,cutoff_mask;
110     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
111     __m128d          one     = _mm_set1_pd(1.0);
112     __m128d          two     = _mm_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
132
133     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
141     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
142     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
170
171         fix0             = _mm_setzero_pd();
172         fiy0             = _mm_setzero_pd();
173         fiz0             = _mm_setzero_pd();
174         fix1             = _mm_setzero_pd();
175         fiy1             = _mm_setzero_pd();
176         fiz1             = _mm_setzero_pd();
177         fix2             = _mm_setzero_pd();
178         fiy2             = _mm_setzero_pd();
179         fiz2             = _mm_setzero_pd();
180         fix3             = _mm_setzero_pd();
181         fiy3             = _mm_setzero_pd();
182         fiz3             = _mm_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_pd();
186         vvdwsum          = _mm_setzero_pd();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_pd(ix0,jx0);
204             dy00             = _mm_sub_pd(iy0,jy0);
205             dz00             = _mm_sub_pd(iz0,jz0);
206             dx10             = _mm_sub_pd(ix1,jx0);
207             dy10             = _mm_sub_pd(iy1,jy0);
208             dz10             = _mm_sub_pd(iz1,jz0);
209             dx20             = _mm_sub_pd(ix2,jx0);
210             dy20             = _mm_sub_pd(iy2,jy0);
211             dz20             = _mm_sub_pd(iz2,jz0);
212             dx30             = _mm_sub_pd(ix3,jx0);
213             dy30             = _mm_sub_pd(iy3,jy0);
214             dz30             = _mm_sub_pd(iz3,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
218             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
219             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
220             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
221
222             rinv00           = gmx_mm_invsqrt_pd(rsq00);
223             rinv10           = gmx_mm_invsqrt_pd(rsq10);
224             rinv20           = gmx_mm_invsqrt_pd(rsq20);
225             rinv30           = gmx_mm_invsqrt_pd(rsq30);
226
227             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
228             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
229             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235
236             fjx0             = _mm_setzero_pd();
237             fjy0             = _mm_setzero_pd();
238             fjz0             = _mm_setzero_pd();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             r00              = _mm_mul_pd(rsq00,rinv00);
245
246             /* Compute parameters for interactions between i and j atoms */
247             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
249
250             /* Calculate table index by multiplying r with table scale and truncate to integer */
251             rt               = _mm_mul_pd(r00,vftabscale);
252             vfitab           = _mm_cvttpd_epi32(rt);
253             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
254             vfitab           = _mm_slli_epi32(vfitab,3);
255
256             /* CUBIC SPLINE TABLE DISPERSION */
257             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
258             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
259             GMX_MM_TRANSPOSE2_PD(Y,F);
260             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
261             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
262             GMX_MM_TRANSPOSE2_PD(G,H);
263             Heps             = _mm_mul_pd(vfeps,H);
264             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
265             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
266             vvdw6            = _mm_mul_pd(c6_00,VV);
267             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
268             fvdw6            = _mm_mul_pd(c6_00,FF);
269
270             /* CUBIC SPLINE TABLE REPULSION */
271             vfitab           = _mm_add_epi32(vfitab,ifour);
272             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
273             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
274             GMX_MM_TRANSPOSE2_PD(Y,F);
275             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
276             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
277             GMX_MM_TRANSPOSE2_PD(G,H);
278             Heps             = _mm_mul_pd(vfeps,H);
279             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
280             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
281             vvdw12           = _mm_mul_pd(c12_00,VV);
282             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
283             fvdw12           = _mm_mul_pd(c12_00,FF);
284             vvdw             = _mm_add_pd(vvdw12,vvdw6);
285             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
289
290             fscal            = fvdw;
291
292             /* Calculate temporary vectorial force */
293             tx               = _mm_mul_pd(fscal,dx00);
294             ty               = _mm_mul_pd(fscal,dy00);
295             tz               = _mm_mul_pd(fscal,dz00);
296
297             /* Update vectorial force */
298             fix0             = _mm_add_pd(fix0,tx);
299             fiy0             = _mm_add_pd(fiy0,ty);
300             fiz0             = _mm_add_pd(fiz0,tz);
301
302             fjx0             = _mm_add_pd(fjx0,tx);
303             fjy0             = _mm_add_pd(fjy0,ty);
304             fjz0             = _mm_add_pd(fjz0,tz);
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             r10              = _mm_mul_pd(rsq10,rinv10);
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq10             = _mm_mul_pd(iq1,jq0);
314
315             /* EWALD ELECTROSTATICS */
316
317             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
318             ewrt             = _mm_mul_pd(r10,ewtabscale);
319             ewitab           = _mm_cvttpd_epi32(ewrt);
320             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
321             ewitab           = _mm_slli_epi32(ewitab,2);
322             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
323             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
324             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
325             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
326             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
327             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
328             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
329             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
330             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
331             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             velecsum         = _mm_add_pd(velecsum,velec);
335
336             fscal            = felec;
337
338             /* Calculate temporary vectorial force */
339             tx               = _mm_mul_pd(fscal,dx10);
340             ty               = _mm_mul_pd(fscal,dy10);
341             tz               = _mm_mul_pd(fscal,dz10);
342
343             /* Update vectorial force */
344             fix1             = _mm_add_pd(fix1,tx);
345             fiy1             = _mm_add_pd(fiy1,ty);
346             fiz1             = _mm_add_pd(fiz1,tz);
347
348             fjx0             = _mm_add_pd(fjx0,tx);
349             fjy0             = _mm_add_pd(fjy0,ty);
350             fjz0             = _mm_add_pd(fjz0,tz);
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             r20              = _mm_mul_pd(rsq20,rinv20);
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq20             = _mm_mul_pd(iq2,jq0);
360
361             /* EWALD ELECTROSTATICS */
362
363             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
364             ewrt             = _mm_mul_pd(r20,ewtabscale);
365             ewitab           = _mm_cvttpd_epi32(ewrt);
366             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
367             ewitab           = _mm_slli_epi32(ewitab,2);
368             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
369             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
370             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
371             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
372             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
373             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
374             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
375             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
376             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
377             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
378
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velecsum         = _mm_add_pd(velecsum,velec);
381
382             fscal            = felec;
383
384             /* Calculate temporary vectorial force */
385             tx               = _mm_mul_pd(fscal,dx20);
386             ty               = _mm_mul_pd(fscal,dy20);
387             tz               = _mm_mul_pd(fscal,dz20);
388
389             /* Update vectorial force */
390             fix2             = _mm_add_pd(fix2,tx);
391             fiy2             = _mm_add_pd(fiy2,ty);
392             fiz2             = _mm_add_pd(fiz2,tz);
393
394             fjx0             = _mm_add_pd(fjx0,tx);
395             fjy0             = _mm_add_pd(fjy0,ty);
396             fjz0             = _mm_add_pd(fjz0,tz);
397
398             /**************************
399              * CALCULATE INTERACTIONS *
400              **************************/
401
402             r30              = _mm_mul_pd(rsq30,rinv30);
403
404             /* Compute parameters for interactions between i and j atoms */
405             qq30             = _mm_mul_pd(iq3,jq0);
406
407             /* EWALD ELECTROSTATICS */
408
409             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
410             ewrt             = _mm_mul_pd(r30,ewtabscale);
411             ewitab           = _mm_cvttpd_epi32(ewrt);
412             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
413             ewitab           = _mm_slli_epi32(ewitab,2);
414             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
415             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
416             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
417             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
418             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
419             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
420             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
421             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
422             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
423             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
424
425             /* Update potential sum for this i atom from the interaction with this j atom. */
426             velecsum         = _mm_add_pd(velecsum,velec);
427
428             fscal            = felec;
429
430             /* Calculate temporary vectorial force */
431             tx               = _mm_mul_pd(fscal,dx30);
432             ty               = _mm_mul_pd(fscal,dy30);
433             tz               = _mm_mul_pd(fscal,dz30);
434
435             /* Update vectorial force */
436             fix3             = _mm_add_pd(fix3,tx);
437             fiy3             = _mm_add_pd(fiy3,ty);
438             fiz3             = _mm_add_pd(fiz3,tz);
439
440             fjx0             = _mm_add_pd(fjx0,tx);
441             fjy0             = _mm_add_pd(fjy0,ty);
442             fjz0             = _mm_add_pd(fjz0,tz);
443
444             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
445
446             /* Inner loop uses 182 flops */
447         }
448
449         if(jidx<j_index_end)
450         {
451
452             jnrA             = jjnr[jidx];
453             j_coord_offsetA  = DIM*jnrA;
454
455             /* load j atom coordinates */
456             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
457                                               &jx0,&jy0,&jz0);
458
459             /* Calculate displacement vector */
460             dx00             = _mm_sub_pd(ix0,jx0);
461             dy00             = _mm_sub_pd(iy0,jy0);
462             dz00             = _mm_sub_pd(iz0,jz0);
463             dx10             = _mm_sub_pd(ix1,jx0);
464             dy10             = _mm_sub_pd(iy1,jy0);
465             dz10             = _mm_sub_pd(iz1,jz0);
466             dx20             = _mm_sub_pd(ix2,jx0);
467             dy20             = _mm_sub_pd(iy2,jy0);
468             dz20             = _mm_sub_pd(iz2,jz0);
469             dx30             = _mm_sub_pd(ix3,jx0);
470             dy30             = _mm_sub_pd(iy3,jy0);
471             dz30             = _mm_sub_pd(iz3,jz0);
472
473             /* Calculate squared distance and things based on it */
474             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
475             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
476             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
477             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
478
479             rinv00           = gmx_mm_invsqrt_pd(rsq00);
480             rinv10           = gmx_mm_invsqrt_pd(rsq10);
481             rinv20           = gmx_mm_invsqrt_pd(rsq20);
482             rinv30           = gmx_mm_invsqrt_pd(rsq30);
483
484             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
485             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
486             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
487
488             /* Load parameters for j particles */
489             jq0              = _mm_load_sd(charge+jnrA+0);
490             vdwjidx0A        = 2*vdwtype[jnrA+0];
491
492             fjx0             = _mm_setzero_pd();
493             fjy0             = _mm_setzero_pd();
494             fjz0             = _mm_setzero_pd();
495
496             /**************************
497              * CALCULATE INTERACTIONS *
498              **************************/
499
500             r00              = _mm_mul_pd(rsq00,rinv00);
501
502             /* Compute parameters for interactions between i and j atoms */
503             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
504
505             /* Calculate table index by multiplying r with table scale and truncate to integer */
506             rt               = _mm_mul_pd(r00,vftabscale);
507             vfitab           = _mm_cvttpd_epi32(rt);
508             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
509             vfitab           = _mm_slli_epi32(vfitab,3);
510
511             /* CUBIC SPLINE TABLE DISPERSION */
512             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
513             F                = _mm_setzero_pd();
514             GMX_MM_TRANSPOSE2_PD(Y,F);
515             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
516             H                = _mm_setzero_pd();
517             GMX_MM_TRANSPOSE2_PD(G,H);
518             Heps             = _mm_mul_pd(vfeps,H);
519             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
520             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
521             vvdw6            = _mm_mul_pd(c6_00,VV);
522             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
523             fvdw6            = _mm_mul_pd(c6_00,FF);
524
525             /* CUBIC SPLINE TABLE REPULSION */
526             vfitab           = _mm_add_epi32(vfitab,ifour);
527             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
528             F                = _mm_setzero_pd();
529             GMX_MM_TRANSPOSE2_PD(Y,F);
530             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
531             H                = _mm_setzero_pd();
532             GMX_MM_TRANSPOSE2_PD(G,H);
533             Heps             = _mm_mul_pd(vfeps,H);
534             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
535             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
536             vvdw12           = _mm_mul_pd(c12_00,VV);
537             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
538             fvdw12           = _mm_mul_pd(c12_00,FF);
539             vvdw             = _mm_add_pd(vvdw12,vvdw6);
540             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
541
542             /* Update potential sum for this i atom from the interaction with this j atom. */
543             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
544             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
545
546             fscal            = fvdw;
547
548             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
549
550             /* Calculate temporary vectorial force */
551             tx               = _mm_mul_pd(fscal,dx00);
552             ty               = _mm_mul_pd(fscal,dy00);
553             tz               = _mm_mul_pd(fscal,dz00);
554
555             /* Update vectorial force */
556             fix0             = _mm_add_pd(fix0,tx);
557             fiy0             = _mm_add_pd(fiy0,ty);
558             fiz0             = _mm_add_pd(fiz0,tz);
559
560             fjx0             = _mm_add_pd(fjx0,tx);
561             fjy0             = _mm_add_pd(fjy0,ty);
562             fjz0             = _mm_add_pd(fjz0,tz);
563
564             /**************************
565              * CALCULATE INTERACTIONS *
566              **************************/
567
568             r10              = _mm_mul_pd(rsq10,rinv10);
569
570             /* Compute parameters for interactions between i and j atoms */
571             qq10             = _mm_mul_pd(iq1,jq0);
572
573             /* EWALD ELECTROSTATICS */
574
575             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
576             ewrt             = _mm_mul_pd(r10,ewtabscale);
577             ewitab           = _mm_cvttpd_epi32(ewrt);
578             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
579             ewitab           = _mm_slli_epi32(ewitab,2);
580             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
581             ewtabD           = _mm_setzero_pd();
582             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
583             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
584             ewtabFn          = _mm_setzero_pd();
585             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
586             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
587             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
588             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
589             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
590
591             /* Update potential sum for this i atom from the interaction with this j atom. */
592             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
593             velecsum         = _mm_add_pd(velecsum,velec);
594
595             fscal            = felec;
596
597             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
598
599             /* Calculate temporary vectorial force */
600             tx               = _mm_mul_pd(fscal,dx10);
601             ty               = _mm_mul_pd(fscal,dy10);
602             tz               = _mm_mul_pd(fscal,dz10);
603
604             /* Update vectorial force */
605             fix1             = _mm_add_pd(fix1,tx);
606             fiy1             = _mm_add_pd(fiy1,ty);
607             fiz1             = _mm_add_pd(fiz1,tz);
608
609             fjx0             = _mm_add_pd(fjx0,tx);
610             fjy0             = _mm_add_pd(fjy0,ty);
611             fjz0             = _mm_add_pd(fjz0,tz);
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             r20              = _mm_mul_pd(rsq20,rinv20);
618
619             /* Compute parameters for interactions between i and j atoms */
620             qq20             = _mm_mul_pd(iq2,jq0);
621
622             /* EWALD ELECTROSTATICS */
623
624             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
625             ewrt             = _mm_mul_pd(r20,ewtabscale);
626             ewitab           = _mm_cvttpd_epi32(ewrt);
627             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
628             ewitab           = _mm_slli_epi32(ewitab,2);
629             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
630             ewtabD           = _mm_setzero_pd();
631             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
632             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
633             ewtabFn          = _mm_setzero_pd();
634             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
635             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
636             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
637             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
638             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
639
640             /* Update potential sum for this i atom from the interaction with this j atom. */
641             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
642             velecsum         = _mm_add_pd(velecsum,velec);
643
644             fscal            = felec;
645
646             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
647
648             /* Calculate temporary vectorial force */
649             tx               = _mm_mul_pd(fscal,dx20);
650             ty               = _mm_mul_pd(fscal,dy20);
651             tz               = _mm_mul_pd(fscal,dz20);
652
653             /* Update vectorial force */
654             fix2             = _mm_add_pd(fix2,tx);
655             fiy2             = _mm_add_pd(fiy2,ty);
656             fiz2             = _mm_add_pd(fiz2,tz);
657
658             fjx0             = _mm_add_pd(fjx0,tx);
659             fjy0             = _mm_add_pd(fjy0,ty);
660             fjz0             = _mm_add_pd(fjz0,tz);
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             r30              = _mm_mul_pd(rsq30,rinv30);
667
668             /* Compute parameters for interactions between i and j atoms */
669             qq30             = _mm_mul_pd(iq3,jq0);
670
671             /* EWALD ELECTROSTATICS */
672
673             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
674             ewrt             = _mm_mul_pd(r30,ewtabscale);
675             ewitab           = _mm_cvttpd_epi32(ewrt);
676             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
677             ewitab           = _mm_slli_epi32(ewitab,2);
678             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
679             ewtabD           = _mm_setzero_pd();
680             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
681             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
682             ewtabFn          = _mm_setzero_pd();
683             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
684             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
685             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
686             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
687             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
688
689             /* Update potential sum for this i atom from the interaction with this j atom. */
690             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
691             velecsum         = _mm_add_pd(velecsum,velec);
692
693             fscal            = felec;
694
695             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
696
697             /* Calculate temporary vectorial force */
698             tx               = _mm_mul_pd(fscal,dx30);
699             ty               = _mm_mul_pd(fscal,dy30);
700             tz               = _mm_mul_pd(fscal,dz30);
701
702             /* Update vectorial force */
703             fix3             = _mm_add_pd(fix3,tx);
704             fiy3             = _mm_add_pd(fiy3,ty);
705             fiz3             = _mm_add_pd(fiz3,tz);
706
707             fjx0             = _mm_add_pd(fjx0,tx);
708             fjy0             = _mm_add_pd(fjy0,ty);
709             fjz0             = _mm_add_pd(fjz0,tz);
710
711             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
712
713             /* Inner loop uses 182 flops */
714         }
715
716         /* End of innermost loop */
717
718         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
719                                               f+i_coord_offset,fshift+i_shift_offset);
720
721         ggid                        = gid[iidx];
722         /* Update potential energies */
723         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
724         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
725
726         /* Increment number of inner iterations */
727         inneriter                  += j_index_end - j_index_start;
728
729         /* Outer loop uses 26 flops */
730     }
731
732     /* Increment number of outer iterations */
733     outeriter        += nri;
734
735     /* Update outer/inner flops */
736
737     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*182);
738 }
739 /*
740  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse2_double
741  * Electrostatics interaction: Ewald
742  * VdW interaction:            CubicSplineTable
743  * Geometry:                   Water4-Particle
744  * Calculate force/pot:        Force
745  */
746 void
747 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_sse2_double
748                     (t_nblist                    * gmx_restrict       nlist,
749                      rvec                        * gmx_restrict          xx,
750                      rvec                        * gmx_restrict          ff,
751                      t_forcerec                  * gmx_restrict          fr,
752                      t_mdatoms                   * gmx_restrict     mdatoms,
753                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
754                      t_nrnb                      * gmx_restrict        nrnb)
755 {
756     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
757      * just 0 for non-waters.
758      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
759      * jnr indices corresponding to data put in the four positions in the SIMD register.
760      */
761     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
762     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
763     int              jnrA,jnrB;
764     int              j_coord_offsetA,j_coord_offsetB;
765     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
766     real             rcutoff_scalar;
767     real             *shiftvec,*fshift,*x,*f;
768     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
769     int              vdwioffset0;
770     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
771     int              vdwioffset1;
772     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
773     int              vdwioffset2;
774     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
775     int              vdwioffset3;
776     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
777     int              vdwjidx0A,vdwjidx0B;
778     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
779     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
780     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
781     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
782     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
783     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
784     real             *charge;
785     int              nvdwtype;
786     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
787     int              *vdwtype;
788     real             *vdwparam;
789     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
790     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
791     __m128i          vfitab;
792     __m128i          ifour       = _mm_set1_epi32(4);
793     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
794     real             *vftab;
795     __m128i          ewitab;
796     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
797     real             *ewtab;
798     __m128d          dummy_mask,cutoff_mask;
799     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
800     __m128d          one     = _mm_set1_pd(1.0);
801     __m128d          two     = _mm_set1_pd(2.0);
802     x                = xx[0];
803     f                = ff[0];
804
805     nri              = nlist->nri;
806     iinr             = nlist->iinr;
807     jindex           = nlist->jindex;
808     jjnr             = nlist->jjnr;
809     shiftidx         = nlist->shift;
810     gid              = nlist->gid;
811     shiftvec         = fr->shift_vec[0];
812     fshift           = fr->fshift[0];
813     facel            = _mm_set1_pd(fr->epsfac);
814     charge           = mdatoms->chargeA;
815     nvdwtype         = fr->ntype;
816     vdwparam         = fr->nbfp;
817     vdwtype          = mdatoms->typeA;
818
819     vftab            = kernel_data->table_vdw->data;
820     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
821
822     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
823     ewtab            = fr->ic->tabq_coul_F;
824     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
825     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
826
827     /* Setup water-specific parameters */
828     inr              = nlist->iinr[0];
829     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
830     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
831     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
832     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
833
834     /* Avoid stupid compiler warnings */
835     jnrA = jnrB = 0;
836     j_coord_offsetA = 0;
837     j_coord_offsetB = 0;
838
839     outeriter        = 0;
840     inneriter        = 0;
841
842     /* Start outer loop over neighborlists */
843     for(iidx=0; iidx<nri; iidx++)
844     {
845         /* Load shift vector for this list */
846         i_shift_offset   = DIM*shiftidx[iidx];
847
848         /* Load limits for loop over neighbors */
849         j_index_start    = jindex[iidx];
850         j_index_end      = jindex[iidx+1];
851
852         /* Get outer coordinate index */
853         inr              = iinr[iidx];
854         i_coord_offset   = DIM*inr;
855
856         /* Load i particle coords and add shift vector */
857         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
858                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
859
860         fix0             = _mm_setzero_pd();
861         fiy0             = _mm_setzero_pd();
862         fiz0             = _mm_setzero_pd();
863         fix1             = _mm_setzero_pd();
864         fiy1             = _mm_setzero_pd();
865         fiz1             = _mm_setzero_pd();
866         fix2             = _mm_setzero_pd();
867         fiy2             = _mm_setzero_pd();
868         fiz2             = _mm_setzero_pd();
869         fix3             = _mm_setzero_pd();
870         fiy3             = _mm_setzero_pd();
871         fiz3             = _mm_setzero_pd();
872
873         /* Start inner kernel loop */
874         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
875         {
876
877             /* Get j neighbor index, and coordinate index */
878             jnrA             = jjnr[jidx];
879             jnrB             = jjnr[jidx+1];
880             j_coord_offsetA  = DIM*jnrA;
881             j_coord_offsetB  = DIM*jnrB;
882
883             /* load j atom coordinates */
884             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
885                                               &jx0,&jy0,&jz0);
886
887             /* Calculate displacement vector */
888             dx00             = _mm_sub_pd(ix0,jx0);
889             dy00             = _mm_sub_pd(iy0,jy0);
890             dz00             = _mm_sub_pd(iz0,jz0);
891             dx10             = _mm_sub_pd(ix1,jx0);
892             dy10             = _mm_sub_pd(iy1,jy0);
893             dz10             = _mm_sub_pd(iz1,jz0);
894             dx20             = _mm_sub_pd(ix2,jx0);
895             dy20             = _mm_sub_pd(iy2,jy0);
896             dz20             = _mm_sub_pd(iz2,jz0);
897             dx30             = _mm_sub_pd(ix3,jx0);
898             dy30             = _mm_sub_pd(iy3,jy0);
899             dz30             = _mm_sub_pd(iz3,jz0);
900
901             /* Calculate squared distance and things based on it */
902             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
903             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
904             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
905             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
906
907             rinv00           = gmx_mm_invsqrt_pd(rsq00);
908             rinv10           = gmx_mm_invsqrt_pd(rsq10);
909             rinv20           = gmx_mm_invsqrt_pd(rsq20);
910             rinv30           = gmx_mm_invsqrt_pd(rsq30);
911
912             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
913             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
914             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
915
916             /* Load parameters for j particles */
917             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
918             vdwjidx0A        = 2*vdwtype[jnrA+0];
919             vdwjidx0B        = 2*vdwtype[jnrB+0];
920
921             fjx0             = _mm_setzero_pd();
922             fjy0             = _mm_setzero_pd();
923             fjz0             = _mm_setzero_pd();
924
925             /**************************
926              * CALCULATE INTERACTIONS *
927              **************************/
928
929             r00              = _mm_mul_pd(rsq00,rinv00);
930
931             /* Compute parameters for interactions between i and j atoms */
932             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
933                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
934
935             /* Calculate table index by multiplying r with table scale and truncate to integer */
936             rt               = _mm_mul_pd(r00,vftabscale);
937             vfitab           = _mm_cvttpd_epi32(rt);
938             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
939             vfitab           = _mm_slli_epi32(vfitab,3);
940
941             /* CUBIC SPLINE TABLE DISPERSION */
942             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
943             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
944             GMX_MM_TRANSPOSE2_PD(Y,F);
945             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
946             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
947             GMX_MM_TRANSPOSE2_PD(G,H);
948             Heps             = _mm_mul_pd(vfeps,H);
949             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
950             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
951             fvdw6            = _mm_mul_pd(c6_00,FF);
952
953             /* CUBIC SPLINE TABLE REPULSION */
954             vfitab           = _mm_add_epi32(vfitab,ifour);
955             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
956             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
957             GMX_MM_TRANSPOSE2_PD(Y,F);
958             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
959             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
960             GMX_MM_TRANSPOSE2_PD(G,H);
961             Heps             = _mm_mul_pd(vfeps,H);
962             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
963             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
964             fvdw12           = _mm_mul_pd(c12_00,FF);
965             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
966
967             fscal            = fvdw;
968
969             /* Calculate temporary vectorial force */
970             tx               = _mm_mul_pd(fscal,dx00);
971             ty               = _mm_mul_pd(fscal,dy00);
972             tz               = _mm_mul_pd(fscal,dz00);
973
974             /* Update vectorial force */
975             fix0             = _mm_add_pd(fix0,tx);
976             fiy0             = _mm_add_pd(fiy0,ty);
977             fiz0             = _mm_add_pd(fiz0,tz);
978
979             fjx0             = _mm_add_pd(fjx0,tx);
980             fjy0             = _mm_add_pd(fjy0,ty);
981             fjz0             = _mm_add_pd(fjz0,tz);
982
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             r10              = _mm_mul_pd(rsq10,rinv10);
988
989             /* Compute parameters for interactions between i and j atoms */
990             qq10             = _mm_mul_pd(iq1,jq0);
991
992             /* EWALD ELECTROSTATICS */
993
994             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
995             ewrt             = _mm_mul_pd(r10,ewtabscale);
996             ewitab           = _mm_cvttpd_epi32(ewrt);
997             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
998             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
999                                          &ewtabF,&ewtabFn);
1000             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1001             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1002
1003             fscal            = felec;
1004
1005             /* Calculate temporary vectorial force */
1006             tx               = _mm_mul_pd(fscal,dx10);
1007             ty               = _mm_mul_pd(fscal,dy10);
1008             tz               = _mm_mul_pd(fscal,dz10);
1009
1010             /* Update vectorial force */
1011             fix1             = _mm_add_pd(fix1,tx);
1012             fiy1             = _mm_add_pd(fiy1,ty);
1013             fiz1             = _mm_add_pd(fiz1,tz);
1014
1015             fjx0             = _mm_add_pd(fjx0,tx);
1016             fjy0             = _mm_add_pd(fjy0,ty);
1017             fjz0             = _mm_add_pd(fjz0,tz);
1018
1019             /**************************
1020              * CALCULATE INTERACTIONS *
1021              **************************/
1022
1023             r20              = _mm_mul_pd(rsq20,rinv20);
1024
1025             /* Compute parameters for interactions between i and j atoms */
1026             qq20             = _mm_mul_pd(iq2,jq0);
1027
1028             /* EWALD ELECTROSTATICS */
1029
1030             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1031             ewrt             = _mm_mul_pd(r20,ewtabscale);
1032             ewitab           = _mm_cvttpd_epi32(ewrt);
1033             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1034             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1035                                          &ewtabF,&ewtabFn);
1036             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1037             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1038
1039             fscal            = felec;
1040
1041             /* Calculate temporary vectorial force */
1042             tx               = _mm_mul_pd(fscal,dx20);
1043             ty               = _mm_mul_pd(fscal,dy20);
1044             tz               = _mm_mul_pd(fscal,dz20);
1045
1046             /* Update vectorial force */
1047             fix2             = _mm_add_pd(fix2,tx);
1048             fiy2             = _mm_add_pd(fiy2,ty);
1049             fiz2             = _mm_add_pd(fiz2,tz);
1050
1051             fjx0             = _mm_add_pd(fjx0,tx);
1052             fjy0             = _mm_add_pd(fjy0,ty);
1053             fjz0             = _mm_add_pd(fjz0,tz);
1054
1055             /**************************
1056              * CALCULATE INTERACTIONS *
1057              **************************/
1058
1059             r30              = _mm_mul_pd(rsq30,rinv30);
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             qq30             = _mm_mul_pd(iq3,jq0);
1063
1064             /* EWALD ELECTROSTATICS */
1065
1066             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1067             ewrt             = _mm_mul_pd(r30,ewtabscale);
1068             ewitab           = _mm_cvttpd_epi32(ewrt);
1069             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1070             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
1071                                          &ewtabF,&ewtabFn);
1072             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1073             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1074
1075             fscal            = felec;
1076
1077             /* Calculate temporary vectorial force */
1078             tx               = _mm_mul_pd(fscal,dx30);
1079             ty               = _mm_mul_pd(fscal,dy30);
1080             tz               = _mm_mul_pd(fscal,dz30);
1081
1082             /* Update vectorial force */
1083             fix3             = _mm_add_pd(fix3,tx);
1084             fiy3             = _mm_add_pd(fiy3,ty);
1085             fiz3             = _mm_add_pd(fiz3,tz);
1086
1087             fjx0             = _mm_add_pd(fjx0,tx);
1088             fjy0             = _mm_add_pd(fjy0,ty);
1089             fjz0             = _mm_add_pd(fjz0,tz);
1090
1091             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1092
1093             /* Inner loop uses 159 flops */
1094         }
1095
1096         if(jidx<j_index_end)
1097         {
1098
1099             jnrA             = jjnr[jidx];
1100             j_coord_offsetA  = DIM*jnrA;
1101
1102             /* load j atom coordinates */
1103             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1104                                               &jx0,&jy0,&jz0);
1105
1106             /* Calculate displacement vector */
1107             dx00             = _mm_sub_pd(ix0,jx0);
1108             dy00             = _mm_sub_pd(iy0,jy0);
1109             dz00             = _mm_sub_pd(iz0,jz0);
1110             dx10             = _mm_sub_pd(ix1,jx0);
1111             dy10             = _mm_sub_pd(iy1,jy0);
1112             dz10             = _mm_sub_pd(iz1,jz0);
1113             dx20             = _mm_sub_pd(ix2,jx0);
1114             dy20             = _mm_sub_pd(iy2,jy0);
1115             dz20             = _mm_sub_pd(iz2,jz0);
1116             dx30             = _mm_sub_pd(ix3,jx0);
1117             dy30             = _mm_sub_pd(iy3,jy0);
1118             dz30             = _mm_sub_pd(iz3,jz0);
1119
1120             /* Calculate squared distance and things based on it */
1121             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1122             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1123             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1124             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1125
1126             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1127             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1128             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1129             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1130
1131             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1132             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1133             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1134
1135             /* Load parameters for j particles */
1136             jq0              = _mm_load_sd(charge+jnrA+0);
1137             vdwjidx0A        = 2*vdwtype[jnrA+0];
1138
1139             fjx0             = _mm_setzero_pd();
1140             fjy0             = _mm_setzero_pd();
1141             fjz0             = _mm_setzero_pd();
1142
1143             /**************************
1144              * CALCULATE INTERACTIONS *
1145              **************************/
1146
1147             r00              = _mm_mul_pd(rsq00,rinv00);
1148
1149             /* Compute parameters for interactions between i and j atoms */
1150             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1151
1152             /* Calculate table index by multiplying r with table scale and truncate to integer */
1153             rt               = _mm_mul_pd(r00,vftabscale);
1154             vfitab           = _mm_cvttpd_epi32(rt);
1155             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1156             vfitab           = _mm_slli_epi32(vfitab,3);
1157
1158             /* CUBIC SPLINE TABLE DISPERSION */
1159             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1160             F                = _mm_setzero_pd();
1161             GMX_MM_TRANSPOSE2_PD(Y,F);
1162             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1163             H                = _mm_setzero_pd();
1164             GMX_MM_TRANSPOSE2_PD(G,H);
1165             Heps             = _mm_mul_pd(vfeps,H);
1166             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1167             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1168             fvdw6            = _mm_mul_pd(c6_00,FF);
1169
1170             /* CUBIC SPLINE TABLE REPULSION */
1171             vfitab           = _mm_add_epi32(vfitab,ifour);
1172             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1173             F                = _mm_setzero_pd();
1174             GMX_MM_TRANSPOSE2_PD(Y,F);
1175             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1176             H                = _mm_setzero_pd();
1177             GMX_MM_TRANSPOSE2_PD(G,H);
1178             Heps             = _mm_mul_pd(vfeps,H);
1179             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1180             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1181             fvdw12           = _mm_mul_pd(c12_00,FF);
1182             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1183
1184             fscal            = fvdw;
1185
1186             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1187
1188             /* Calculate temporary vectorial force */
1189             tx               = _mm_mul_pd(fscal,dx00);
1190             ty               = _mm_mul_pd(fscal,dy00);
1191             tz               = _mm_mul_pd(fscal,dz00);
1192
1193             /* Update vectorial force */
1194             fix0             = _mm_add_pd(fix0,tx);
1195             fiy0             = _mm_add_pd(fiy0,ty);
1196             fiz0             = _mm_add_pd(fiz0,tz);
1197
1198             fjx0             = _mm_add_pd(fjx0,tx);
1199             fjy0             = _mm_add_pd(fjy0,ty);
1200             fjz0             = _mm_add_pd(fjz0,tz);
1201
1202             /**************************
1203              * CALCULATE INTERACTIONS *
1204              **************************/
1205
1206             r10              = _mm_mul_pd(rsq10,rinv10);
1207
1208             /* Compute parameters for interactions between i and j atoms */
1209             qq10             = _mm_mul_pd(iq1,jq0);
1210
1211             /* EWALD ELECTROSTATICS */
1212
1213             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1214             ewrt             = _mm_mul_pd(r10,ewtabscale);
1215             ewitab           = _mm_cvttpd_epi32(ewrt);
1216             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1217             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1218             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1219             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1220
1221             fscal            = felec;
1222
1223             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1224
1225             /* Calculate temporary vectorial force */
1226             tx               = _mm_mul_pd(fscal,dx10);
1227             ty               = _mm_mul_pd(fscal,dy10);
1228             tz               = _mm_mul_pd(fscal,dz10);
1229
1230             /* Update vectorial force */
1231             fix1             = _mm_add_pd(fix1,tx);
1232             fiy1             = _mm_add_pd(fiy1,ty);
1233             fiz1             = _mm_add_pd(fiz1,tz);
1234
1235             fjx0             = _mm_add_pd(fjx0,tx);
1236             fjy0             = _mm_add_pd(fjy0,ty);
1237             fjz0             = _mm_add_pd(fjz0,tz);
1238
1239             /**************************
1240              * CALCULATE INTERACTIONS *
1241              **************************/
1242
1243             r20              = _mm_mul_pd(rsq20,rinv20);
1244
1245             /* Compute parameters for interactions between i and j atoms */
1246             qq20             = _mm_mul_pd(iq2,jq0);
1247
1248             /* EWALD ELECTROSTATICS */
1249
1250             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1251             ewrt             = _mm_mul_pd(r20,ewtabscale);
1252             ewitab           = _mm_cvttpd_epi32(ewrt);
1253             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1254             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1255             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1256             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1257
1258             fscal            = felec;
1259
1260             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1261
1262             /* Calculate temporary vectorial force */
1263             tx               = _mm_mul_pd(fscal,dx20);
1264             ty               = _mm_mul_pd(fscal,dy20);
1265             tz               = _mm_mul_pd(fscal,dz20);
1266
1267             /* Update vectorial force */
1268             fix2             = _mm_add_pd(fix2,tx);
1269             fiy2             = _mm_add_pd(fiy2,ty);
1270             fiz2             = _mm_add_pd(fiz2,tz);
1271
1272             fjx0             = _mm_add_pd(fjx0,tx);
1273             fjy0             = _mm_add_pd(fjy0,ty);
1274             fjz0             = _mm_add_pd(fjz0,tz);
1275
1276             /**************************
1277              * CALCULATE INTERACTIONS *
1278              **************************/
1279
1280             r30              = _mm_mul_pd(rsq30,rinv30);
1281
1282             /* Compute parameters for interactions between i and j atoms */
1283             qq30             = _mm_mul_pd(iq3,jq0);
1284
1285             /* EWALD ELECTROSTATICS */
1286
1287             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1288             ewrt             = _mm_mul_pd(r30,ewtabscale);
1289             ewitab           = _mm_cvttpd_epi32(ewrt);
1290             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1291             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1292             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1293             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1294
1295             fscal            = felec;
1296
1297             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1298
1299             /* Calculate temporary vectorial force */
1300             tx               = _mm_mul_pd(fscal,dx30);
1301             ty               = _mm_mul_pd(fscal,dy30);
1302             tz               = _mm_mul_pd(fscal,dz30);
1303
1304             /* Update vectorial force */
1305             fix3             = _mm_add_pd(fix3,tx);
1306             fiy3             = _mm_add_pd(fiy3,ty);
1307             fiz3             = _mm_add_pd(fiz3,tz);
1308
1309             fjx0             = _mm_add_pd(fjx0,tx);
1310             fjy0             = _mm_add_pd(fjy0,ty);
1311             fjz0             = _mm_add_pd(fjz0,tz);
1312
1313             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1314
1315             /* Inner loop uses 159 flops */
1316         }
1317
1318         /* End of innermost loop */
1319
1320         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1321                                               f+i_coord_offset,fshift+i_shift_offset);
1322
1323         /* Increment number of inner iterations */
1324         inneriter                  += j_index_end - j_index_start;
1325
1326         /* Outer loop uses 24 flops */
1327     }
1328
1329     /* Increment number of outer iterations */
1330     outeriter        += nri;
1331
1332     /* Update outer/inner flops */
1333
1334     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*159);
1335 }