Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_sse2_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_sse2_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS sse2_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_sse2_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse2_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_sse2_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
101     real             *vftab;
102     __m128i          ewitab;
103     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     real             *ewtab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
128
129     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
137     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
138     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
139     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
165                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
166
167         fix0             = _mm_setzero_pd();
168         fiy0             = _mm_setzero_pd();
169         fiz0             = _mm_setzero_pd();
170         fix1             = _mm_setzero_pd();
171         fiy1             = _mm_setzero_pd();
172         fiz1             = _mm_setzero_pd();
173         fix2             = _mm_setzero_pd();
174         fiy2             = _mm_setzero_pd();
175         fiz2             = _mm_setzero_pd();
176
177         /* Reset potential sums */
178         velecsum         = _mm_setzero_pd();
179         vvdwsum          = _mm_setzero_pd();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_pd(ix0,jx0);
197             dy00             = _mm_sub_pd(iy0,jy0);
198             dz00             = _mm_sub_pd(iz0,jz0);
199             dx10             = _mm_sub_pd(ix1,jx0);
200             dy10             = _mm_sub_pd(iy1,jy0);
201             dz10             = _mm_sub_pd(iz1,jz0);
202             dx20             = _mm_sub_pd(ix2,jx0);
203             dy20             = _mm_sub_pd(iy2,jy0);
204             dz20             = _mm_sub_pd(iz2,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
208             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
209             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
210
211             rinv00           = sse2_invsqrt_d(rsq00);
212             rinv10           = sse2_invsqrt_d(rsq10);
213             rinv20           = sse2_invsqrt_d(rsq20);
214
215             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
216             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
217             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
221             vdwjidx0A        = 2*vdwtype[jnrA+0];
222             vdwjidx0B        = 2*vdwtype[jnrB+0];
223
224             fjx0             = _mm_setzero_pd();
225             fjy0             = _mm_setzero_pd();
226             fjz0             = _mm_setzero_pd();
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             r00              = _mm_mul_pd(rsq00,rinv00);
233
234             /* Compute parameters for interactions between i and j atoms */
235             qq00             = _mm_mul_pd(iq0,jq0);
236             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
237                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
238
239             /* Calculate table index by multiplying r with table scale and truncate to integer */
240             rt               = _mm_mul_pd(r00,vftabscale);
241             vfitab           = _mm_cvttpd_epi32(rt);
242             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
243             vfitab           = _mm_slli_epi32(vfitab,3);
244
245             /* EWALD ELECTROSTATICS */
246
247             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
248             ewrt             = _mm_mul_pd(r00,ewtabscale);
249             ewitab           = _mm_cvttpd_epi32(ewrt);
250             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
251             ewitab           = _mm_slli_epi32(ewitab,2);
252             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
253             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
254             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
255             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
256             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
257             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
258             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
259             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
260             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
261             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
262
263             /* CUBIC SPLINE TABLE DISPERSION */
264             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
265             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
266             GMX_MM_TRANSPOSE2_PD(Y,F);
267             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
268             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
269             GMX_MM_TRANSPOSE2_PD(G,H);
270             Heps             = _mm_mul_pd(vfeps,H);
271             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
272             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
273             vvdw6            = _mm_mul_pd(c6_00,VV);
274             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
275             fvdw6            = _mm_mul_pd(c6_00,FF);
276
277             /* CUBIC SPLINE TABLE REPULSION */
278             vfitab           = _mm_add_epi32(vfitab,ifour);
279             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
280             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
281             GMX_MM_TRANSPOSE2_PD(Y,F);
282             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
283             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
284             GMX_MM_TRANSPOSE2_PD(G,H);
285             Heps             = _mm_mul_pd(vfeps,H);
286             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
287             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
288             vvdw12           = _mm_mul_pd(c12_00,VV);
289             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
290             fvdw12           = _mm_mul_pd(c12_00,FF);
291             vvdw             = _mm_add_pd(vvdw12,vvdw6);
292             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             velecsum         = _mm_add_pd(velecsum,velec);
296             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
297
298             fscal            = _mm_add_pd(felec,fvdw);
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm_mul_pd(fscal,dx00);
302             ty               = _mm_mul_pd(fscal,dy00);
303             tz               = _mm_mul_pd(fscal,dz00);
304
305             /* Update vectorial force */
306             fix0             = _mm_add_pd(fix0,tx);
307             fiy0             = _mm_add_pd(fiy0,ty);
308             fiz0             = _mm_add_pd(fiz0,tz);
309
310             fjx0             = _mm_add_pd(fjx0,tx);
311             fjy0             = _mm_add_pd(fjy0,ty);
312             fjz0             = _mm_add_pd(fjz0,tz);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r10              = _mm_mul_pd(rsq10,rinv10);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq10             = _mm_mul_pd(iq1,jq0);
322
323             /* EWALD ELECTROSTATICS */
324
325             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
326             ewrt             = _mm_mul_pd(r10,ewtabscale);
327             ewitab           = _mm_cvttpd_epi32(ewrt);
328             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
329             ewitab           = _mm_slli_epi32(ewitab,2);
330             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
331             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
332             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
333             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
334             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
335             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
336             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
337             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
338             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
339             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velecsum         = _mm_add_pd(velecsum,velec);
343
344             fscal            = felec;
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm_mul_pd(fscal,dx10);
348             ty               = _mm_mul_pd(fscal,dy10);
349             tz               = _mm_mul_pd(fscal,dz10);
350
351             /* Update vectorial force */
352             fix1             = _mm_add_pd(fix1,tx);
353             fiy1             = _mm_add_pd(fiy1,ty);
354             fiz1             = _mm_add_pd(fiz1,tz);
355
356             fjx0             = _mm_add_pd(fjx0,tx);
357             fjy0             = _mm_add_pd(fjy0,ty);
358             fjz0             = _mm_add_pd(fjz0,tz);
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             r20              = _mm_mul_pd(rsq20,rinv20);
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq20             = _mm_mul_pd(iq2,jq0);
368
369             /* EWALD ELECTROSTATICS */
370
371             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
372             ewrt             = _mm_mul_pd(r20,ewtabscale);
373             ewitab           = _mm_cvttpd_epi32(ewrt);
374             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
375             ewitab           = _mm_slli_epi32(ewitab,2);
376             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
377             ewtabD           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,1) );
378             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
379             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
380             ewtabFn          = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,1) +2);
381             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
382             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
383             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
384             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
385             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velecsum         = _mm_add_pd(velecsum,velec);
389
390             fscal            = felec;
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm_mul_pd(fscal,dx20);
394             ty               = _mm_mul_pd(fscal,dy20);
395             tz               = _mm_mul_pd(fscal,dz20);
396
397             /* Update vectorial force */
398             fix2             = _mm_add_pd(fix2,tx);
399             fiy2             = _mm_add_pd(fiy2,ty);
400             fiz2             = _mm_add_pd(fiz2,tz);
401
402             fjx0             = _mm_add_pd(fjx0,tx);
403             fjy0             = _mm_add_pd(fjy0,ty);
404             fjz0             = _mm_add_pd(fjz0,tz);
405
406             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
407
408             /* Inner loop uses 160 flops */
409         }
410
411         if(jidx<j_index_end)
412         {
413
414             jnrA             = jjnr[jidx];
415             j_coord_offsetA  = DIM*jnrA;
416
417             /* load j atom coordinates */
418             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
419                                               &jx0,&jy0,&jz0);
420
421             /* Calculate displacement vector */
422             dx00             = _mm_sub_pd(ix0,jx0);
423             dy00             = _mm_sub_pd(iy0,jy0);
424             dz00             = _mm_sub_pd(iz0,jz0);
425             dx10             = _mm_sub_pd(ix1,jx0);
426             dy10             = _mm_sub_pd(iy1,jy0);
427             dz10             = _mm_sub_pd(iz1,jz0);
428             dx20             = _mm_sub_pd(ix2,jx0);
429             dy20             = _mm_sub_pd(iy2,jy0);
430             dz20             = _mm_sub_pd(iz2,jz0);
431
432             /* Calculate squared distance and things based on it */
433             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
434             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
435             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
436
437             rinv00           = sse2_invsqrt_d(rsq00);
438             rinv10           = sse2_invsqrt_d(rsq10);
439             rinv20           = sse2_invsqrt_d(rsq20);
440
441             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
442             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
443             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
444
445             /* Load parameters for j particles */
446             jq0              = _mm_load_sd(charge+jnrA+0);
447             vdwjidx0A        = 2*vdwtype[jnrA+0];
448
449             fjx0             = _mm_setzero_pd();
450             fjy0             = _mm_setzero_pd();
451             fjz0             = _mm_setzero_pd();
452
453             /**************************
454              * CALCULATE INTERACTIONS *
455              **************************/
456
457             r00              = _mm_mul_pd(rsq00,rinv00);
458
459             /* Compute parameters for interactions between i and j atoms */
460             qq00             = _mm_mul_pd(iq0,jq0);
461             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
462
463             /* Calculate table index by multiplying r with table scale and truncate to integer */
464             rt               = _mm_mul_pd(r00,vftabscale);
465             vfitab           = _mm_cvttpd_epi32(rt);
466             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
467             vfitab           = _mm_slli_epi32(vfitab,3);
468
469             /* EWALD ELECTROSTATICS */
470
471             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
472             ewrt             = _mm_mul_pd(r00,ewtabscale);
473             ewitab           = _mm_cvttpd_epi32(ewrt);
474             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
475             ewitab           = _mm_slli_epi32(ewitab,2);
476             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
477             ewtabD           = _mm_setzero_pd();
478             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
479             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
480             ewtabFn          = _mm_setzero_pd();
481             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
482             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
483             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
484             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
485             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
486
487             /* CUBIC SPLINE TABLE DISPERSION */
488             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
489             F                = _mm_setzero_pd();
490             GMX_MM_TRANSPOSE2_PD(Y,F);
491             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
492             H                = _mm_setzero_pd();
493             GMX_MM_TRANSPOSE2_PD(G,H);
494             Heps             = _mm_mul_pd(vfeps,H);
495             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
496             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
497             vvdw6            = _mm_mul_pd(c6_00,VV);
498             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
499             fvdw6            = _mm_mul_pd(c6_00,FF);
500
501             /* CUBIC SPLINE TABLE REPULSION */
502             vfitab           = _mm_add_epi32(vfitab,ifour);
503             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
504             F                = _mm_setzero_pd();
505             GMX_MM_TRANSPOSE2_PD(Y,F);
506             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
507             H                = _mm_setzero_pd();
508             GMX_MM_TRANSPOSE2_PD(G,H);
509             Heps             = _mm_mul_pd(vfeps,H);
510             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
511             VV               = _mm_add_pd(Y,_mm_mul_pd(vfeps,Fp));
512             vvdw12           = _mm_mul_pd(c12_00,VV);
513             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
514             fvdw12           = _mm_mul_pd(c12_00,FF);
515             vvdw             = _mm_add_pd(vvdw12,vvdw6);
516             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
517
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
520             velecsum         = _mm_add_pd(velecsum,velec);
521             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
522             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
523
524             fscal            = _mm_add_pd(felec,fvdw);
525
526             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
527
528             /* Calculate temporary vectorial force */
529             tx               = _mm_mul_pd(fscal,dx00);
530             ty               = _mm_mul_pd(fscal,dy00);
531             tz               = _mm_mul_pd(fscal,dz00);
532
533             /* Update vectorial force */
534             fix0             = _mm_add_pd(fix0,tx);
535             fiy0             = _mm_add_pd(fiy0,ty);
536             fiz0             = _mm_add_pd(fiz0,tz);
537
538             fjx0             = _mm_add_pd(fjx0,tx);
539             fjy0             = _mm_add_pd(fjy0,ty);
540             fjz0             = _mm_add_pd(fjz0,tz);
541
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             r10              = _mm_mul_pd(rsq10,rinv10);
547
548             /* Compute parameters for interactions between i and j atoms */
549             qq10             = _mm_mul_pd(iq1,jq0);
550
551             /* EWALD ELECTROSTATICS */
552
553             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
554             ewrt             = _mm_mul_pd(r10,ewtabscale);
555             ewitab           = _mm_cvttpd_epi32(ewrt);
556             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
557             ewitab           = _mm_slli_epi32(ewitab,2);
558             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
559             ewtabD           = _mm_setzero_pd();
560             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
561             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
562             ewtabFn          = _mm_setzero_pd();
563             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
564             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
565             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
566             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
567             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
568
569             /* Update potential sum for this i atom from the interaction with this j atom. */
570             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
571             velecsum         = _mm_add_pd(velecsum,velec);
572
573             fscal            = felec;
574
575             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
576
577             /* Calculate temporary vectorial force */
578             tx               = _mm_mul_pd(fscal,dx10);
579             ty               = _mm_mul_pd(fscal,dy10);
580             tz               = _mm_mul_pd(fscal,dz10);
581
582             /* Update vectorial force */
583             fix1             = _mm_add_pd(fix1,tx);
584             fiy1             = _mm_add_pd(fiy1,ty);
585             fiz1             = _mm_add_pd(fiz1,tz);
586
587             fjx0             = _mm_add_pd(fjx0,tx);
588             fjy0             = _mm_add_pd(fjy0,ty);
589             fjz0             = _mm_add_pd(fjz0,tz);
590
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             r20              = _mm_mul_pd(rsq20,rinv20);
596
597             /* Compute parameters for interactions between i and j atoms */
598             qq20             = _mm_mul_pd(iq2,jq0);
599
600             /* EWALD ELECTROSTATICS */
601
602             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
603             ewrt             = _mm_mul_pd(r20,ewtabscale);
604             ewitab           = _mm_cvttpd_epi32(ewrt);
605             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
606             ewitab           = _mm_slli_epi32(ewitab,2);
607             ewtabF           = _mm_load_pd( ewtab + gmx_mm_extract_epi32(ewitab,0) );
608             ewtabD           = _mm_setzero_pd();
609             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
610             ewtabV           = _mm_load_sd( ewtab + gmx_mm_extract_epi32(ewitab,0) +2);
611             ewtabFn          = _mm_setzero_pd();
612             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
613             felec            = _mm_add_pd(ewtabF,_mm_mul_pd(eweps,ewtabD));
614             velec            = _mm_sub_pd(ewtabV,_mm_mul_pd(_mm_mul_pd(ewtabhalfspace,eweps),_mm_add_pd(ewtabF,felec)));
615             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
616             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
617
618             /* Update potential sum for this i atom from the interaction with this j atom. */
619             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
620             velecsum         = _mm_add_pd(velecsum,velec);
621
622             fscal            = felec;
623
624             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
625
626             /* Calculate temporary vectorial force */
627             tx               = _mm_mul_pd(fscal,dx20);
628             ty               = _mm_mul_pd(fscal,dy20);
629             tz               = _mm_mul_pd(fscal,dz20);
630
631             /* Update vectorial force */
632             fix2             = _mm_add_pd(fix2,tx);
633             fiy2             = _mm_add_pd(fiy2,ty);
634             fiz2             = _mm_add_pd(fiz2,tz);
635
636             fjx0             = _mm_add_pd(fjx0,tx);
637             fjy0             = _mm_add_pd(fjy0,ty);
638             fjz0             = _mm_add_pd(fjz0,tz);
639
640             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
641
642             /* Inner loop uses 160 flops */
643         }
644
645         /* End of innermost loop */
646
647         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
648                                               f+i_coord_offset,fshift+i_shift_offset);
649
650         ggid                        = gid[iidx];
651         /* Update potential energies */
652         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
653         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
654
655         /* Increment number of inner iterations */
656         inneriter                  += j_index_end - j_index_start;
657
658         /* Outer loop uses 20 flops */
659     }
660
661     /* Increment number of outer iterations */
662     outeriter        += nri;
663
664     /* Update outer/inner flops */
665
666     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*160);
667 }
668 /*
669  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse2_double
670  * Electrostatics interaction: Ewald
671  * VdW interaction:            CubicSplineTable
672  * Geometry:                   Water3-Particle
673  * Calculate force/pot:        Force
674  */
675 void
676 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_sse2_double
677                     (t_nblist                    * gmx_restrict       nlist,
678                      rvec                        * gmx_restrict          xx,
679                      rvec                        * gmx_restrict          ff,
680                      struct t_forcerec           * gmx_restrict          fr,
681                      t_mdatoms                   * gmx_restrict     mdatoms,
682                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
683                      t_nrnb                      * gmx_restrict        nrnb)
684 {
685     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
686      * just 0 for non-waters.
687      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
688      * jnr indices corresponding to data put in the four positions in the SIMD register.
689      */
690     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
691     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
692     int              jnrA,jnrB;
693     int              j_coord_offsetA,j_coord_offsetB;
694     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
695     real             rcutoff_scalar;
696     real             *shiftvec,*fshift,*x,*f;
697     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
698     int              vdwioffset0;
699     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
700     int              vdwioffset1;
701     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
702     int              vdwioffset2;
703     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
704     int              vdwjidx0A,vdwjidx0B;
705     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
706     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
707     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
708     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
709     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
710     real             *charge;
711     int              nvdwtype;
712     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
713     int              *vdwtype;
714     real             *vdwparam;
715     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
716     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
717     __m128i          vfitab;
718     __m128i          ifour       = _mm_set1_epi32(4);
719     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
720     real             *vftab;
721     __m128i          ewitab;
722     __m128d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
723     real             *ewtab;
724     __m128d          dummy_mask,cutoff_mask;
725     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
726     __m128d          one     = _mm_set1_pd(1.0);
727     __m128d          two     = _mm_set1_pd(2.0);
728     x                = xx[0];
729     f                = ff[0];
730
731     nri              = nlist->nri;
732     iinr             = nlist->iinr;
733     jindex           = nlist->jindex;
734     jjnr             = nlist->jjnr;
735     shiftidx         = nlist->shift;
736     gid              = nlist->gid;
737     shiftvec         = fr->shift_vec[0];
738     fshift           = fr->fshift[0];
739     facel            = _mm_set1_pd(fr->ic->epsfac);
740     charge           = mdatoms->chargeA;
741     nvdwtype         = fr->ntype;
742     vdwparam         = fr->nbfp;
743     vdwtype          = mdatoms->typeA;
744
745     vftab            = kernel_data->table_vdw->data;
746     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
747
748     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
749     ewtab            = fr->ic->tabq_coul_F;
750     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
751     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
752
753     /* Setup water-specific parameters */
754     inr              = nlist->iinr[0];
755     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
756     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
757     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
758     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
759
760     /* Avoid stupid compiler warnings */
761     jnrA = jnrB = 0;
762     j_coord_offsetA = 0;
763     j_coord_offsetB = 0;
764
765     outeriter        = 0;
766     inneriter        = 0;
767
768     /* Start outer loop over neighborlists */
769     for(iidx=0; iidx<nri; iidx++)
770     {
771         /* Load shift vector for this list */
772         i_shift_offset   = DIM*shiftidx[iidx];
773
774         /* Load limits for loop over neighbors */
775         j_index_start    = jindex[iidx];
776         j_index_end      = jindex[iidx+1];
777
778         /* Get outer coordinate index */
779         inr              = iinr[iidx];
780         i_coord_offset   = DIM*inr;
781
782         /* Load i particle coords and add shift vector */
783         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
784                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
785
786         fix0             = _mm_setzero_pd();
787         fiy0             = _mm_setzero_pd();
788         fiz0             = _mm_setzero_pd();
789         fix1             = _mm_setzero_pd();
790         fiy1             = _mm_setzero_pd();
791         fiz1             = _mm_setzero_pd();
792         fix2             = _mm_setzero_pd();
793         fiy2             = _mm_setzero_pd();
794         fiz2             = _mm_setzero_pd();
795
796         /* Start inner kernel loop */
797         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
798         {
799
800             /* Get j neighbor index, and coordinate index */
801             jnrA             = jjnr[jidx];
802             jnrB             = jjnr[jidx+1];
803             j_coord_offsetA  = DIM*jnrA;
804             j_coord_offsetB  = DIM*jnrB;
805
806             /* load j atom coordinates */
807             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
808                                               &jx0,&jy0,&jz0);
809
810             /* Calculate displacement vector */
811             dx00             = _mm_sub_pd(ix0,jx0);
812             dy00             = _mm_sub_pd(iy0,jy0);
813             dz00             = _mm_sub_pd(iz0,jz0);
814             dx10             = _mm_sub_pd(ix1,jx0);
815             dy10             = _mm_sub_pd(iy1,jy0);
816             dz10             = _mm_sub_pd(iz1,jz0);
817             dx20             = _mm_sub_pd(ix2,jx0);
818             dy20             = _mm_sub_pd(iy2,jy0);
819             dz20             = _mm_sub_pd(iz2,jz0);
820
821             /* Calculate squared distance and things based on it */
822             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
823             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
824             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
825
826             rinv00           = sse2_invsqrt_d(rsq00);
827             rinv10           = sse2_invsqrt_d(rsq10);
828             rinv20           = sse2_invsqrt_d(rsq20);
829
830             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
831             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
832             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
833
834             /* Load parameters for j particles */
835             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
836             vdwjidx0A        = 2*vdwtype[jnrA+0];
837             vdwjidx0B        = 2*vdwtype[jnrB+0];
838
839             fjx0             = _mm_setzero_pd();
840             fjy0             = _mm_setzero_pd();
841             fjz0             = _mm_setzero_pd();
842
843             /**************************
844              * CALCULATE INTERACTIONS *
845              **************************/
846
847             r00              = _mm_mul_pd(rsq00,rinv00);
848
849             /* Compute parameters for interactions between i and j atoms */
850             qq00             = _mm_mul_pd(iq0,jq0);
851             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
852                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
853
854             /* Calculate table index by multiplying r with table scale and truncate to integer */
855             rt               = _mm_mul_pd(r00,vftabscale);
856             vfitab           = _mm_cvttpd_epi32(rt);
857             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
858             vfitab           = _mm_slli_epi32(vfitab,3);
859
860             /* EWALD ELECTROSTATICS */
861
862             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
863             ewrt             = _mm_mul_pd(r00,ewtabscale);
864             ewitab           = _mm_cvttpd_epi32(ewrt);
865             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
866             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
867                                          &ewtabF,&ewtabFn);
868             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
869             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
870
871             /* CUBIC SPLINE TABLE DISPERSION */
872             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
873             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
874             GMX_MM_TRANSPOSE2_PD(Y,F);
875             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
876             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
877             GMX_MM_TRANSPOSE2_PD(G,H);
878             Heps             = _mm_mul_pd(vfeps,H);
879             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
880             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
881             fvdw6            = _mm_mul_pd(c6_00,FF);
882
883             /* CUBIC SPLINE TABLE REPULSION */
884             vfitab           = _mm_add_epi32(vfitab,ifour);
885             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
886             F                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) );
887             GMX_MM_TRANSPOSE2_PD(Y,F);
888             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
889             H                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,1) +2);
890             GMX_MM_TRANSPOSE2_PD(G,H);
891             Heps             = _mm_mul_pd(vfeps,H);
892             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
893             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
894             fvdw12           = _mm_mul_pd(c12_00,FF);
895             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
896
897             fscal            = _mm_add_pd(felec,fvdw);
898
899             /* Calculate temporary vectorial force */
900             tx               = _mm_mul_pd(fscal,dx00);
901             ty               = _mm_mul_pd(fscal,dy00);
902             tz               = _mm_mul_pd(fscal,dz00);
903
904             /* Update vectorial force */
905             fix0             = _mm_add_pd(fix0,tx);
906             fiy0             = _mm_add_pd(fiy0,ty);
907             fiz0             = _mm_add_pd(fiz0,tz);
908
909             fjx0             = _mm_add_pd(fjx0,tx);
910             fjy0             = _mm_add_pd(fjy0,ty);
911             fjz0             = _mm_add_pd(fjz0,tz);
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r10              = _mm_mul_pd(rsq10,rinv10);
918
919             /* Compute parameters for interactions between i and j atoms */
920             qq10             = _mm_mul_pd(iq1,jq0);
921
922             /* EWALD ELECTROSTATICS */
923
924             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
925             ewrt             = _mm_mul_pd(r10,ewtabscale);
926             ewitab           = _mm_cvttpd_epi32(ewrt);
927             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
928             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
929                                          &ewtabF,&ewtabFn);
930             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
931             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
932
933             fscal            = felec;
934
935             /* Calculate temporary vectorial force */
936             tx               = _mm_mul_pd(fscal,dx10);
937             ty               = _mm_mul_pd(fscal,dy10);
938             tz               = _mm_mul_pd(fscal,dz10);
939
940             /* Update vectorial force */
941             fix1             = _mm_add_pd(fix1,tx);
942             fiy1             = _mm_add_pd(fiy1,ty);
943             fiz1             = _mm_add_pd(fiz1,tz);
944
945             fjx0             = _mm_add_pd(fjx0,tx);
946             fjy0             = _mm_add_pd(fjy0,ty);
947             fjz0             = _mm_add_pd(fjz0,tz);
948
949             /**************************
950              * CALCULATE INTERACTIONS *
951              **************************/
952
953             r20              = _mm_mul_pd(rsq20,rinv20);
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq20             = _mm_mul_pd(iq2,jq0);
957
958             /* EWALD ELECTROSTATICS */
959
960             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
961             ewrt             = _mm_mul_pd(r20,ewtabscale);
962             ewitab           = _mm_cvttpd_epi32(ewrt);
963             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
964             gmx_mm_load_2pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),ewtab+gmx_mm_extract_epi32(ewitab,1),
965                                          &ewtabF,&ewtabFn);
966             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
967             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
968
969             fscal            = felec;
970
971             /* Calculate temporary vectorial force */
972             tx               = _mm_mul_pd(fscal,dx20);
973             ty               = _mm_mul_pd(fscal,dy20);
974             tz               = _mm_mul_pd(fscal,dz20);
975
976             /* Update vectorial force */
977             fix2             = _mm_add_pd(fix2,tx);
978             fiy2             = _mm_add_pd(fiy2,ty);
979             fiz2             = _mm_add_pd(fiz2,tz);
980
981             fjx0             = _mm_add_pd(fjx0,tx);
982             fjy0             = _mm_add_pd(fjy0,ty);
983             fjz0             = _mm_add_pd(fjz0,tz);
984
985             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
986
987             /* Inner loop uses 137 flops */
988         }
989
990         if(jidx<j_index_end)
991         {
992
993             jnrA             = jjnr[jidx];
994             j_coord_offsetA  = DIM*jnrA;
995
996             /* load j atom coordinates */
997             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
998                                               &jx0,&jy0,&jz0);
999
1000             /* Calculate displacement vector */
1001             dx00             = _mm_sub_pd(ix0,jx0);
1002             dy00             = _mm_sub_pd(iy0,jy0);
1003             dz00             = _mm_sub_pd(iz0,jz0);
1004             dx10             = _mm_sub_pd(ix1,jx0);
1005             dy10             = _mm_sub_pd(iy1,jy0);
1006             dz10             = _mm_sub_pd(iz1,jz0);
1007             dx20             = _mm_sub_pd(ix2,jx0);
1008             dy20             = _mm_sub_pd(iy2,jy0);
1009             dz20             = _mm_sub_pd(iz2,jz0);
1010
1011             /* Calculate squared distance and things based on it */
1012             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1013             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1014             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1015
1016             rinv00           = sse2_invsqrt_d(rsq00);
1017             rinv10           = sse2_invsqrt_d(rsq10);
1018             rinv20           = sse2_invsqrt_d(rsq20);
1019
1020             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1021             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1022             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1023
1024             /* Load parameters for j particles */
1025             jq0              = _mm_load_sd(charge+jnrA+0);
1026             vdwjidx0A        = 2*vdwtype[jnrA+0];
1027
1028             fjx0             = _mm_setzero_pd();
1029             fjy0             = _mm_setzero_pd();
1030             fjz0             = _mm_setzero_pd();
1031
1032             /**************************
1033              * CALCULATE INTERACTIONS *
1034              **************************/
1035
1036             r00              = _mm_mul_pd(rsq00,rinv00);
1037
1038             /* Compute parameters for interactions between i and j atoms */
1039             qq00             = _mm_mul_pd(iq0,jq0);
1040             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1041
1042             /* Calculate table index by multiplying r with table scale and truncate to integer */
1043             rt               = _mm_mul_pd(r00,vftabscale);
1044             vfitab           = _mm_cvttpd_epi32(rt);
1045             vfeps            = _mm_sub_pd(rt,_mm_cvtepi32_pd(vfitab));
1046             vfitab           = _mm_slli_epi32(vfitab,3);
1047
1048             /* EWALD ELECTROSTATICS */
1049
1050             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1051             ewrt             = _mm_mul_pd(r00,ewtabscale);
1052             ewitab           = _mm_cvttpd_epi32(ewrt);
1053             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1054             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1055             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1056             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1057
1058             /* CUBIC SPLINE TABLE DISPERSION */
1059             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1060             F                = _mm_setzero_pd();
1061             GMX_MM_TRANSPOSE2_PD(Y,F);
1062             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1063             H                = _mm_setzero_pd();
1064             GMX_MM_TRANSPOSE2_PD(G,H);
1065             Heps             = _mm_mul_pd(vfeps,H);
1066             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1067             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1068             fvdw6            = _mm_mul_pd(c6_00,FF);
1069
1070             /* CUBIC SPLINE TABLE REPULSION */
1071             vfitab           = _mm_add_epi32(vfitab,ifour);
1072             Y                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) );
1073             F                = _mm_setzero_pd();
1074             GMX_MM_TRANSPOSE2_PD(Y,F);
1075             G                = _mm_load_pd( vftab + gmx_mm_extract_epi32(vfitab,0) +2);
1076             H                = _mm_setzero_pd();
1077             GMX_MM_TRANSPOSE2_PD(G,H);
1078             Heps             = _mm_mul_pd(vfeps,H);
1079             Fp               = _mm_add_pd(F,_mm_mul_pd(vfeps,_mm_add_pd(G,Heps)));
1080             FF               = _mm_add_pd(Fp,_mm_mul_pd(vfeps,_mm_add_pd(G,_mm_add_pd(Heps,Heps))));
1081             fvdw12           = _mm_mul_pd(c12_00,FF);
1082             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1083
1084             fscal            = _mm_add_pd(felec,fvdw);
1085
1086             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1087
1088             /* Calculate temporary vectorial force */
1089             tx               = _mm_mul_pd(fscal,dx00);
1090             ty               = _mm_mul_pd(fscal,dy00);
1091             tz               = _mm_mul_pd(fscal,dz00);
1092
1093             /* Update vectorial force */
1094             fix0             = _mm_add_pd(fix0,tx);
1095             fiy0             = _mm_add_pd(fiy0,ty);
1096             fiz0             = _mm_add_pd(fiz0,tz);
1097
1098             fjx0             = _mm_add_pd(fjx0,tx);
1099             fjy0             = _mm_add_pd(fjy0,ty);
1100             fjz0             = _mm_add_pd(fjz0,tz);
1101
1102             /**************************
1103              * CALCULATE INTERACTIONS *
1104              **************************/
1105
1106             r10              = _mm_mul_pd(rsq10,rinv10);
1107
1108             /* Compute parameters for interactions between i and j atoms */
1109             qq10             = _mm_mul_pd(iq1,jq0);
1110
1111             /* EWALD ELECTROSTATICS */
1112
1113             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1114             ewrt             = _mm_mul_pd(r10,ewtabscale);
1115             ewitab           = _mm_cvttpd_epi32(ewrt);
1116             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1117             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1118             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1119             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1120
1121             fscal            = felec;
1122
1123             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1124
1125             /* Calculate temporary vectorial force */
1126             tx               = _mm_mul_pd(fscal,dx10);
1127             ty               = _mm_mul_pd(fscal,dy10);
1128             tz               = _mm_mul_pd(fscal,dz10);
1129
1130             /* Update vectorial force */
1131             fix1             = _mm_add_pd(fix1,tx);
1132             fiy1             = _mm_add_pd(fiy1,ty);
1133             fiz1             = _mm_add_pd(fiz1,tz);
1134
1135             fjx0             = _mm_add_pd(fjx0,tx);
1136             fjy0             = _mm_add_pd(fjy0,ty);
1137             fjz0             = _mm_add_pd(fjz0,tz);
1138
1139             /**************************
1140              * CALCULATE INTERACTIONS *
1141              **************************/
1142
1143             r20              = _mm_mul_pd(rsq20,rinv20);
1144
1145             /* Compute parameters for interactions between i and j atoms */
1146             qq20             = _mm_mul_pd(iq2,jq0);
1147
1148             /* EWALD ELECTROSTATICS */
1149
1150             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1151             ewrt             = _mm_mul_pd(r20,ewtabscale);
1152             ewitab           = _mm_cvttpd_epi32(ewrt);
1153             eweps            = _mm_sub_pd(ewrt,_mm_cvtepi32_pd(ewitab));
1154             gmx_mm_load_1pair_swizzle_pd(ewtab+gmx_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1155             felec            = _mm_add_pd(_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF),_mm_mul_pd(eweps,ewtabFn));
1156             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1157
1158             fscal            = felec;
1159
1160             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1161
1162             /* Calculate temporary vectorial force */
1163             tx               = _mm_mul_pd(fscal,dx20);
1164             ty               = _mm_mul_pd(fscal,dy20);
1165             tz               = _mm_mul_pd(fscal,dz20);
1166
1167             /* Update vectorial force */
1168             fix2             = _mm_add_pd(fix2,tx);
1169             fiy2             = _mm_add_pd(fiy2,ty);
1170             fiz2             = _mm_add_pd(fiz2,tz);
1171
1172             fjx0             = _mm_add_pd(fjx0,tx);
1173             fjy0             = _mm_add_pd(fjy0,ty);
1174             fjz0             = _mm_add_pd(fjz0,tz);
1175
1176             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1177
1178             /* Inner loop uses 137 flops */
1179         }
1180
1181         /* End of innermost loop */
1182
1183         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1184                                               f+i_coord_offset,fshift+i_shift_offset);
1185
1186         /* Increment number of inner iterations */
1187         inneriter                  += j_index_end - j_index_start;
1188
1189         /* Outer loop uses 18 flops */
1190     }
1191
1192     /* Increment number of outer iterations */
1193     outeriter        += nri;
1194
1195     /* Update outer/inner flops */
1196
1197     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*137);
1198 }